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Abstract
Generating synthetic loads which are sufficiently close to reality represents an important and
challenging task in performance and quality-of-service (QoS) evaluations of computer networks
and distributed systems. Here, the load to be generated represents sequences of requests at a
well-defined service interface within a network node. The paper presents a tool (UniLoG.HTTP)
which can be used in a flexible manner to generate realistic and representative server and network
loads, in terms of access requests to Web servers as well as creation of typical Web traffic within a
communication network. The paper describes the architecture of this load generator, the critical
design decisions and solution approaches which allowed us to obtain the desired flexibility.
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1 Introduction

Generating load for computer and communication networks in a sufficiently realistic manner
represents an important and challenging task. Realistic load generation typically is an
indispensable prerequisite to the analysis and prediction of network performance and of
quality-of-service (QoS). Moreover, load generation may support functionality testing of
network components (on various levels of component utilization) or the testing of the
effectiveness of security mechanisms.

Load generation can be required at very different interfaces within a computer network,
such as user-/application-oriented interfaces at which sequences of requests have to be
generated like requests to a Web server, files to be transferred, sequences of video frames or
of digitized voice data to be transmitted, etc. On the other hand, it might also be necessary
to generate load for a lower-layer interface within a protocol hierarchy, such as creation of IP
packets or of Ethernet frames to be transmitted.

An interesting approach for load generating, from our point of view, is the provisioning
of a unified tool which allows one to generate load (i.e. sequences of requests) at an interface
which can be chosen by an experimenter dependent on the kind of study he/she is carrying
out. This approach has been followed by the authors during the development of the unified
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load generator UniLoG [1]. The basic principle underlying the design and elaboration of
UniLoG has been to start with a formal description of an abstract load model and thereafter
to use an interface-dependent adapter to map the abstract requests to the concrete requests
as they are “understood” by the service providing component at the real interface in question.
Our earlier research covers the provisioning of adapters for TCP and UDP [2] as well as IP
[1] interfaces. Because of the pre-eminent importance of the World Wide Web (WWW) a
strong desire emerged to embed the capability into UniLoG of generating realistic Web traffic
and realistic Web server loads, too.

The following strongly different modeling approaches (MA) are possible and may be
useful for various kinds of studies when characterizing HTTP loads and the resulting Web
traffic induced by this load:

(MA1) Realistic description of sequences of requests as they are passed to the HTTP
interface IFc(HTTP ) within the Web client. Generating a (realistic) sequence of requests
at interface IFc(HTTP ) allows one, with only little expenditure, on the one hand to
generate some specific load for a Web server (in terms of client requests of varying
complexity) and on the other hand to generate some specific load for the network (in
terms of Web traffic of different structure and intensity) [3, 4].

(MA2) Realistic description of sequences of requests as they are passed, both, in the web client
C (as client requests) and in the Web server S (as server responses) to the corresponding
HTTP interfaces IFc(HTTP ) and IFs(HTTP ). As server responses are generated as
a consequence of client requests, precise modeling here requires coordination of load
generation at both interfaces – and this is a tedious task. The concurrent generation of
sequences of requests at interfaces IFc(HTTP ) and IFs(HTTP ) replaces the Web server
being used in MA1 by a load generator [5, 6]. Therefore, generation of load here gets much
more complicated because a sufficiently realistic model for the Web server is required
and load generation in the client and the server have to be coordinated. Moreover, this
approach does no longer allow the dedicated loading of a Web server with client requests.

(MA3) Realistic description of the sequence of IP packets (as observed at the IP interface
IFs(IP ) in the Web server) or requests at the TCP service interface (IFs(TCP ) in the
server) as they are induced by single or an overlay of client requests to the server. The
IP packets or TCP requests result from the transmission of the corresponding server
responses. This modeling approach fundamentally differs from MA1 and MA2 as it
assumes a completely different interface for load description/generation (IP instead of
HTTP interface). The approach is useful in cases, when, e.g., streams of IP packets
have to be injected into a network in a manner as they would have been induced by
single or an overlay of Web server accesses. Most of the currently existing literature on
characterization/generation of HTTP loads [7, 8] follows this modeling approach, though,
in order to be precise, one would have to consider it as a characterization/generation of
IP packet streams. Here also, the dedicated loading of a Web server with client requests
is impossible using this approach.

MA1 is the approach followed by us and presented in this paper, because we want to
generate load for the server, too, and not only for the network (which is impossible when
using approaches MA2 or MA3). Moreover, we want to inject the load directly at the HTTP
interface and therefore MA3 is again not an alternative to the MA1 approach.

A survey on the literature related with this work follows in Sec. 2. The application of
our unified approach to Web workload generation is illustrated in Sec. 3. In Sec. 4, the
architecture of the corresponding HTTP adapter along with an algorithm for the allocation
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of real requests from a pool of Web sites are explained. The estimation of the relevant
workload/traffic characteristics and the construction of a sufficiently large, representative
and stable pool of Web sites for load generation are presented in Sec. 5 and Sec. 6. A short
summary and an outlook on future work conclude this paper.

2 Related Work

Web workload generators are software tools based either on traces reflecting real Web user
sessions or on workload models that are designed and implemented to generate HTTP
requests. Floyd and Paxson demonstrated in their study [9] how difficult it is to generate
representative Web requests, especially when some particular characteristics in a dynamic
Web site should be modeled, and how these characteristics impact on the behaviour of the
Web clients.

One of the first studies trying to identify the common characteristics in Web server
workloads is the work done by Arlitt and Williamson [10], which used logs of Web server
accesses at six different sites (three from university environments, two from scientific research
organizations, and one from a commercial Internet service provider). The observed workload
characteristics were used to identify the possible strategies for the design of a caching system
to improve Web server performance.

Barford and Crovella [4] applied a number of observations of Web server usage to create
a realistic Web workload generation tool, called SURGE (Scalable URL Reference Generator)
which mimics a set of real users accessing a server and generates URL references matching
empirical measurements of request and server file size distribution, relative file popularity,
embedded file references, temporal locality of reference, and idle periods of individual users.
The relevance of these Web workload characteristics as well as their concrete values were
identified based on single (nonrecurring) measurements, so that later revisiting done by
Williams et al. [11] was required due to emerging Web technologies and a 30-fold increase in
overall traffic volume in 2005.

Rolland et al. [8] proposed the open-loop packet-level traffic generator LiTGen, which
statistically models IP traffic (resulting from Web requests) on a per user and application
basis and, in contrary to the recommendations of Paxon and Floyd [9], does not consider such
important network and protocol characteristics like RTT, link capacities or TCP dynamics.

ParaSynTG [6] is a synthetic trace generator for source-level representation of Web traffic
with different characteristics such as document size and type, popularity (in terms of frequency
of reference) as well as temporal locality of requests. The tool was designed for the generation
of workload traces only (which can be used, e.g., in simulation experiments) and, in the
opposite to the design objectives of our Web workload generator UniLoG, provides no facilities
to generate and to inject real HTTP requests into the network.

PackMime-NS [5] is an example for a source-level and Swing [7] is an example for a
packet-level traffic generation tool, respectively, with a lot of effort spent by the authors on
the ability to take into account the network and protocol characteristics (e.g., RTT, link
capacities and error rates, dynamic TCP interactions between Web clients and servers). As a
consequence, there are not only the Web clients and Web servers that have to be modeled by
these solutions, but also the other components of the network under study. Hence, the field
of application of these solutions is restricted to network simulation experiments (whereas our
solution is targeting performance evaluation studies for real networks and Web servers, too).

A further survey of traffic generation tools (including the solutions for other interfaces,
e.g., Ethernet, IP, TCP/UDP) can be found in [12].

KiVS’11
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3 Application of the UniLoG Approach to Web Traffic Generation

The characteristic behaviour of a user navigating Web sites by means of a browser is presented
in Fig. 1 (left). A typical Web site consists of a base object and multiple embedded objects.
With the first HTTP request the browser retrieves the base object of the site, parses it and
issues subsequent HTTP requests to fetch all embedded objects.
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Figure 1 Retrieval of multiple pages and embedded objects from the server WS (left) and the
corresponding UBA (right).

According to the unified load generation approach presented in [1], a set of HTTP service
users which are relevant for the particular modeling task at the interface IF = IFc(HTTP )
in the Web client is considered as an environment E while layers of the protocol stack below
the HTTP interface in the Web client, the Web server, and the communication network
are considered as being part of the service system S. The workload L = L(E,S, IF, T ) is
furthermore represented by a sequence of requests (ti, ri), ti ∈ T, i = 1, 2, ..., n (ti ∈ R: arrival
time of request ri at IF , ti ≤ tj for i < j, n ∈ N) passed by the environment E to the service
system S at the interface IF = IFc(HTTP ) during a time interval T .

Each request ri is characterized by the corresponding abstract request type which is
chosen from a set RT = {RT1, RT2, . . . , RTm},m ∈ N, of abstract request types supplied
by the experimenter. There is nearly a dozen of different request methods provided by the
HTTP/1.1 protocol specification (cf. RFC 2616) for the interaction with the Web server.
For the specification of an HTTP workload model, the experimenter can decide to provide
different abstract request types for each HTTP request method but he/she would often prefer
to define only one single abstract request type (e.g., HttpRequest, cf. Fig. 1) addressing
HTTP requests in general, and to concentrate on the identification of request parameters
which have a significant impact on the workload induced in the server and network. The
analysis of the workload characteristics used in a series of studies on Web workload modeling
(e.g., [3, 4, 5, 11]) drove the choice of the following request parameters to be provided with
our solution by default.
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serverName contains either the fully qualified domain name (FQDN) or the IP address of
the target Web server and has a direct influence on the generated network traffic matrix.
In case the experimenter plans to test a particular Web server or a specific function of a
Web service deployed onto it, the exact location of the object to be demanded can be
supplied by this parameter (e.g., by means of a URL including a full path and search
part, if needed).

replySize is the total amount of response data from the server including the size of all
embedded objects. This attribute is not part of the HTTP/1.1 message but it has a
significant impact on the load induced by HTTP request.

numberOfEmbeddedObjects specifies the number of embedded objects (e.g. images, links,
script objects) in the requested page. HTTP/1.1 allows a single TCP connection to be
used for multiple object requests.

complexity is provided to characterize the structural complexity of the page in general and
can be specified by means of a complexity class derived from the values of page complexity
characteristics numberOfEmbeddedObjects and replySize which do not consider the
induced server load directly.

requestSize is the total amount of data transferred from the client to the Web server, which
is affected by the number and the size of requests for the embedded objects in the page.
Some of HTTP request headers (e.g. Accept, User-Agent) may also influence the size of
HTTP messages [13].

inducedServerLoad characterizes the amount of time required for the server to respond to
the client request and can be specified by means of a server delay class derived from values
of particular server delays (d1 − d5, cf. Fig. 1) induced by requests to the main page
and its embedded objects. Client requests may induce further searching, authentication
or database retrieval activities on the server side and usually differ significantly in this
factor.

The set RT of abstract request types is constructed by including the relevant request
parameters from the list above into the corresponding request types RTr = Id(RTr) ∪
{a1, a2, . . . , ap}, RTr ∈ RT, r ∈ N, 1 ≤ r ≤ m, as abstract request attributes ak, k ∈ N, 1 ≤
k ≤ p, where p ∈ N, p = p(r) is the number of attributes in RTr and Id(RTr) is its unique
name. In this way, the experimenter can define abstract request types with different level of
abstraction dependent on the kind of study being carried out. For example, the experimenter
can decide to include only one single attribute inducedServerLoad into the abstract request
type HttpRequest in order to analyse the utilization level of some known Web server. In
case he/she plans to test a specific function of a Web service/application deployed to that
server, the attribute serverName containing the full URL of the referenced object is most
likely to be added to HttpRequest. In order to produce various background loads for the
network in terms of Web traffic of different structure and intensity, further attributes like
numberOfEmbeddedObjects or replySize can be included into HttpRequest.

For the specification of the possible sequences of requests, the set of relevant HTTP service
users is represented by a user behaviour automaton (UBA, cf. Fig. 1). A UBA is an extended
finite automaton U = {φ, Tφ} consisting of the set of macro states φ = {φi, φa, φb, φt} which
describe the four typical types of user activity (initialization in φi, generation of requests
in the active macro state φa, waiting for system reactions in the blocked macro state φb,
termination in φt) and the set Tφ of transitions between these macro states. The macro
states are further refined by means of (R)equest-, (D)elay- and (S)ystem-states, which are
introduced to model the generation of requests of a particular abstract request type, the

KiVS’11
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delay times between successive requests and/or system events, and waiting for a certain type
of system event to occur, correspondingly (cf. [1]).

Consider a simple UBA for an HTTP user as presented in Fig. 1. The user starts in the
S-state Si of the initialization macro state φi of the UBA and, after the Internet browser is
started completely, becomes active by changing its macro state to φa. To model the retrieval
of Web pages by the user, requests of abstract request type HttpRequest(serverName,
requestSize, replySize, numberOfEmbeddedObjects, inducedServerLoad, complexity)
are generated in the R-state RHttpRequest of φa. The values of request attributes can be
specified by the experimenter by means of constant values, traces of real measurements or
various distribution functions. We note that these requests are initially abstract, i.e. they
contain attributes (e.g., replySize, inducedServerLoad) which differ from the attributes
of real HTTP messages significantly or do even not exist in HTTP messages at all. Moreover,
one HttpRequest usually induces more than one real HTTP request to retrieve images, links
and script objects embedded in the page as well as objects linked from other servers (e.g.,
advertisement pop-ups and Web bugs). For example, during the execution of the UBA,
an abstract HttpRequest(WS, -1, 32000, 2, -1, -1) represents an instruction at our load
generator to invoke a Web page on the server WS which contains 2 embedded objects resulting
in the total reply size of 32000 byte (a value of -1 means that the corresponding parameter is
not used in this request). So, the UniLoG.HTTP adapter must issue the corresponding real
HTTP requests for the main object and for each of the two embedded objects of the page (cf.
Fig. 1).

In the simple UBA presented here, the user resides in the S-state SBlocked of the blocked
macro state φb until the page is retrieved completely (i.e. until the last embedded object
is fetched successfully or an error/status code is returned). There are, in general, other
possibilities to model this behaviour (e.g., to leave SBlocked immediately after the main object
of the page is loaded). After a user-dependent delay time (“think time”), modeled in the
D-state DOFF , the next page is accessed by the user (by following a link on the current page
or by entering a URL in the address line of the browser directly) and the corresponding
HttpRequest is generated in RHttpRequest. The UBA is executed until the S-state St of the
termination macro state φt is reached or the upper limit of the time interval T specified by
the experimenter for load generation is exceeded.

It should be noted, that the experimenter can specify advanced Web workload character-
istics by means of a UBA, which are not explicitly provided by the set of abstract request
parameters. For example, the user think time (which is an important property of Web traffic
to capture its bursty nature [4]) can be specified in D-states as interarrival time between
subsequent requests HttpRequest. Page popularity (defined as relative number of requests
made to individual pages on the server) can be specified, e.g., by means of a frequency or
Zipf-like distribution for the serverName parameter (in this case, containing the full URL of
the page to be referenced) of HttpRequest. Temporal locality of page requests (referring the
likelihood that, once a page has been requested, it will be requested again in the near future)
can be characterized by means of a distribution of stack distances [6] for the serverName
parameter (again, containing the full URL of the page to be referenced) of HttpRequest in
the request sequence to be generated by our load generator.

4 Allocation of Real HTTP Requests

The Unified Load Generator UniLoG, as presented in [1], incorporates a formal automata-
based load specification technique and exhibits a distributed architecture to provide a high
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degree of flexibility in generating traffic mixes of various structure and intensity for different
scenarios. The experimenter can define workload models in form of a UBA, and distribute
the parameterized UBA (PUBA) to the load generating nodes (load agents) involved in
the experiment, which can be controlled by the experimenter from one central point in the
network (management station, cf. Fig. 2). In each load agent, the generator component
(GAR) for the PUBA execution and one or many adapters (e.g. UniLoG.HTTP) for the
allocation of the corresponding real requests are installed.

Load Generator UniLoG
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Load Models

UBA-Model
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Figure 2 UniLoG architecture and the main components of the UniLoG.HTTP adapter (left).

The key components of the UniLoG.HTTP adapter are presented in the left part of Fig. 2.
The main adapter thread consumes abstract requests (ti, ri) which are generated by the
generator thread (GAR) in R-states of the current PUBA and inserted into the request queue
RQ. For each abstract request the adapter invokes the request mapper which is responsible for
the allocation of the correspondent real HTTP request from the pool. Each HTTP request in
the pool is represented by a tuple ei = (vi,1, vi,2, . . . , vi,p, v∗

i,1, v
∗
i,2, . . . , v

∗
i,r), i ∈ N, 1 ≤ i ≤ N .

In such a tuple, v∗
i,1, . . . , v

∗
i,r denote the values of r real request attributes required to

build a request which is conform to HTTP/1.1 (like HTTP request method requestMethod,
server name serverName and port serverPort, object name objectName, and the optional
data optData of length optLength sent with POST requests). vi,1, . . . , vi,p denote the
corresponding values of p abstract request parameters (defined in Sec. 3), which can be
measured manually by the experimenter or estimated by the adapter automatically (see
Sec. 5) and used to query the pool for real requests which match as good as possible the
current abstract request. Finally, N denotes the pool size, i.e. the number of its elements.

To allocate the best matching real request (ti, r∗
i ), the request mapper starts with the

abstract parameter a1 of the highest priority (the priority of the abstract request parameters
can be specified by the experimenter in PUBA) and creates a candidates list consisting of
requests from the pool which exhibit the minimal distance between a1 and vi,1, 1 ≤ i ≤ N .
In the next step, the abstract parameter a2 with the second highest priority is selected and
only the requests with the minimal distance between a2 and vi,2, 1 ≤ i ≤ N are kept on the
candidates list. In case of string parameters, especially for serverName, an exact match in
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place of the minimal distance candidates is required. This procedure is repeated until only
one candidate is left or all of the p abstract request parameters are processed. In case there
are more than one real requests left on the candidates list after the last step, one of them is
selected randomly.

The request allocation algorithm is flexible in the number and types of abstract request
parameters used for the pool query. Its complexity is determined by the number v of required
comparisons which yields to v = N · p for the worst case when all N real requests from the
pool match each of the p parameters of the current abstract request.

The allocated real request (ti, r∗
i ) is prepared for execution by creating a new request

thread and establishing the connection to the Web server, if needed. Thereafter, the adapter
thread waits until the specified request injection time ti is reached and resumes the request
thread for execution. HTTP status codes returned by the request thread represent the system
messages which are inserted by the adapter thread into the event queue EQ.

As a proof of the presented concept, the first prototype of the UniLoG.HTTP adapter for
Windows was developed in [14]. Meanwhile, this prototype has been significantly improved to
imitate the behaviour of a real browser more closely and, finally, it has been integrated in the
UniLoG load generator. UniLoG.HTTP makes use of the WinInet library for the management
of Web server connections as well as for the formation and injection of HTTP requests into
the network. The choice of WinInet is motivated by the fact that it is internally used by the
Internet Explorer (IE) browser itself and thus enables the adapter to imitate the behaviour
of this browser in a very realistic manner.

For this reason, we applied the same values for the User-Agent and Accept request header
fields as they are used by the IE 7.0 1 during our HttpOpenRequest calls for the formation
and injection of HTTP requests in the adapter. Furthermore, similar to [13], a series of
INTERNET_FLAGs (NO_CACHE_WRITE, RELOAD, PRAGMA_NO_CACHE, KEEP_CONNECTION) has been
specified in HttpOpenRequest calls in order to instruct the adapter to retrieve the requested
objects from the original server and not from the local cache or proxy, using, if possible, a
keep-alive connection. These measure should help to ensure that the adapter induces Web
traffic with characteristics as specified by the values of abstract request parameters in the
pool entries.

5 Estimation of Values for Abstract Request Parameters

It becomes apparent, that a sufficiently large pool of Web requests with properly estimated
values of their abstract parameters is required to take UniLoG.HTTP in operation. Furthermore,
the pool should be kept up-to-date to ensure that the characteristics of the Web traffic
induced by UniLoG.HTTP correspond to the values of abstract parameters specified in the
pool entries.

In the measurement approach applied in [15], a series of Firefox browser sessions were
traced with tcpdump and analyzed to extract various characteristics of worldwide top 500
popular web sites. In this way, all components of the requested page are considered, providing
very realistic Web server workload and traffic characteristics. However, this method leads
to a sufficient programming effort for combining a series of external tools to fully automate
the measurements, whereas the required measurement points can be accessed by us in the
UniLoG.HTTP source code directly. Furthermore, UniLoG.HTTP is aimed at imitating the

1 These values were extracted from the registry key HKLM/Software/Microsoft/Windows/
CurrentVersion/InternetSettings



A.W. Kolesnikov and B.E. Wolfinger 57

behaviour of the real browser to some extent and is not able yet to interpret all existing
types of embedded objects (e.g. JavaScript or CSS objects are loaded but not interpreted).
Therefore, we decided to integrate the parameter estimation function for our pool immediately
into the adapter and allowed it to be turned on and off by the experimenter. The values of
abstract parameters for each pool entry are estimated during the retrieval of the correspondent
Web page and its embedded objects from the server according to the following rules.

numberOfEmbeddedObjects (o) the adapter retrieves the main object of the requested page
specified by the concatenation of abstract serverName and real objectName parameters
and parses its content to recognize the embedded images, links, and script objects to
retrieve them by means of consequent requests from the same server. Objects linked from
other servers are not loaded and hence not considered in o at this moment.

replySize (s) is computed as the total amount of data (in kbyte) loaded by the adapter
during the InternetReadFile calls for the main page and all its embedded objects.

complexity class C ∈ {C1, . . . , C9} for the page is derived from its estimated values o and s
using class boundaries o1, o2 and s1, s2 which can be supplied by the experimenter for
the numberOfEmbeddedObjects and replySize parameters, correspondingly (cf. Fig. 3).

requestSize is calculated as the total amount of data (in byte) sent by the adapter to the
server considering requests for the main page, all its embedded objects and the optional
data for POST requests. The mean size of GET requests issued by the IE 7.0 browser
was estimated to 612 byte in [16].

inducedServerLoad class D ∈ {Immediately, Fast, Slow, Annoyingly slow} is derived
from the delay times di, i = 1, . . . , o, induced on the server by requests to the embedded
objects of the page. The delay time induced by the main object is not considered to
exclude the time spent for potential requests to the DNS server. Each di is estimated
as a difference between request execution time ai (cf. Fig. 3) and the server round trip
time (RTTs), estimated either from the TCP handshake in the beginning of the HTTP
session or by means of ICMP echo messages exchanged between our adapter and the
server. The total server delay d induced by the page is estimated as the sum of di in case
HTTP pipelining is not used (and di can, therefore, not “overlap” on the server) or by
the maximum of di, otherwise. Finally, the appropriate inducedServerLoad class D is
chosen considering the boundary values supplied by the experimenter for the server delay
time d.
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Figure 3 Formation of page complexity and inducedServerLoad classes.

A series of IE 7.0 browser sessions for a rather small sample of 61 exemplarily chosen
home pages were captured and analyzed in [16] using WireShark [17] to extract the values
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of abstract parameters according to the rules specified above. The IE 7.0 browser was
instrumentalized in a manner, that only the object types supported by the adapter were
loaded. The results exhibited only marginal difference from the parameter values estimated
by the adapter.

6 Construction of the Pool from Popular Web Sites

As already stated in Sec. 5, a sufficiently large, representative and stable pool is indispensable
for the generation of realistic and representative Web workloads with UniLoG. In this section,
we present the construction of a pool populated with home pages extracted from Alexa Web
statistics service [18] which ranks Web sites according to their popularity among a large
number of users. The representativeness of the Alexa’s sample is though restricted to a set
of users which were able to install the Alexa’s toolbar required to gather the statistics from
the users. A total of 1 million most popular sites available for daily download from Alexa’s
Web site seems to be large enough to construct a comprehensive pool for our load generator,
and the restriction to include only the home pages’ URLs in the ranking guarantees for some
degree of stability in the resulting pool (in respect of reachability of servers and validity of
the corresponding pool entries).

The pool was first populated by the top 1000 home pages from the Alexa ranking
downloaded from the Alexa Web site on 3 May, 2010, and the values of abstract request
parameters were initially set to zero for all pages. The values of real request attributes
serverName, serverPort, objectName, requestMethod, optLength and optData were set
to the host part of the particular page, 80, /, GET, 0 and NULL, correspondingly, as the
Web sites captured in the Alexa ranking are home pages provided by default on the TCP
port 80 by means of a GET request method, and no supplemental data is to be sent to the
corresponding Web server by means of POST requests.

Next, UniLoG.HTTP was instructed to traverse the pool, retrieve every page and update the
values of its abstract request parameters. For this reason, we used the simple UBA presented
in Sec. 3, where the values of the serverName attribute of every abstract HttpRequest to be
generated in the R-state RHttpRequest were specified (using the trace parameterization facility
of UniLoG) to be taken from the column in the pool file, which contains the unique host
names of Alexa’s home pages. In the adapter, each abstract HttpRequest induced a retrieval
of the corresponding Web page, whereby the values of its abstract request parameters were
estimated and, finally, stored back into the pool.

During the execution of the pool update procedure in May 2010 using the T-Online DSL
connection with a maximum of 6 Mbit/s downstream and 640 kbit/s upstream, a total of
979 pool entries were updated. 13 servers were unavailable due to the missing subdomain or
Web page to be loaded (as the Alexa ranking contains some pages used only for Webbugs or
user tracking). Another 8 sites caused an error during the download by the adapter due to
violations of the XHTML or W3C standards in their source code.

A total of 328 servers did not response to ICMP messages making the estimation of the
corresponding RTT impossible. The inducedServerLoad class for such servers could not
be specified ((-1) = n.a., cf. Fig. 4). The mean values of the abstract request attributes
replySize, numberObEmbeddedObjects, inducedServerLoad, and complexity among all
979 pool entries were estimated to 905.6 kbyte, 38, 2 (delay class “Slow”), and 5 (complexity
class C5), correspondingly. In this exemplarily pool update, we used the threshold values
o1 = 10 and o2 = 20 for numberObEmbeddedObjects as well as s1 = 50 kbyte and s2 = 150
kbyte for the replySize to define the complexity class boundaries. For a smaller sample
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of Web sites, which were used for testing the implementation of the pool update function
presented in Sec. 5, these threshold values provided complexity classes with nearly identical
number of servers in each class. Applying the same threshold values to Alexa’s top 1000
pages emerged that nearly a half of home pages were assigned to the complexity class C7,
i.e. these pages contain more than 20 objects and more than 150 kbyte of data (cf. Fig. 4).
We note that the experimenter can easily adjust the threshold values in order to obtain
complexity classes C1 - C9 which are suitable for the particular experiment (e.g., classes
with uniformly distributed number of servers).

inducedServerLoad d # servers

-1= n.a. (d < 0ms) 328

0 = Immediate (0ms ≤ d < 10ms) 159

1 = Fast (10ms ≤ d < 30ms) 66

2 = Slow (30ms ≤ d < 100ms) 120

3 = Annoyingly slow (d ≥ 100ms) 306

complexity(numberOfEmbeddedObjects o, replySize s [kbyte]) # servers

C1(o ≤ 10 ∩ s ≤ 50) 149

C2(o ≤ 10 ∩ 50 < s ≤ 150) 73

C3(10 < o ≤ 20 ∩ 50 < s ≤ 150) 65

C4(10 < o ≤ 20 ∩ s ≤ 50) 20

C5(o ≤ 10 ∩ s > 150) 26

C6(10 < o ≤ 20 ∩ s > 150) 93

C7(o > 20 ∩ s > 150) 504

C8(o > 20 ∩ 50 < s ≤ 150) 44

C9(o > 20 ∩ s ≤ 50) 5

n.a. (-1) 0

Figure 4 Number of servers in inducedServerLoad and complexity classes (cf. [16]).

In this way, the experimenter can create a comprehensive pool of representative Web
sites without a lot of effort and in short time. The execution of the pool update procedure
immediately before the actual experiment in the particular testbed is a very recommended
measure to ensure that the characteristics of Web workloads produced by UniLoG.HTTP
correspond to the parameter values specified in the pool.

7 Summary and Outlook

In this paper, we presented the application of the UniLoG approach to the realistic and
rather representative Web workload and traffic generation. Our approach provides different
levels of abstraction in the user behaviour models used for load generation. The presented
UniLoG.HTTP adapter is able to induce Web workloads with characteristics corresponding
to the values of abstract parameters of real Web sites from the pool, which is required and
provided by our solution. The construction of the sufficiently large, representaive and stable
pool of popular Web sites has been presented by us in Sec. 6. The authors hope to have made
the next step forward to the combination of Web traffic measurements and generation into a
single, coherent approach by this work. The formal load specification technique being used
in the UniLoG load generator provides for a very precise definition of timing and sequence
of resulting requests composing the load being generated, which is indispensable, e.g., to
reproduce experiments with a number of predetermined background loads. Moreover, the
approach presented in this work is applicable to other interfaces (i.e. TCP, IP, Ethernet) of
the protocol stack.

Future work can be directed at the provision of a set of predefined UBA-models for
different types and number of HTTP service users. Moreover, the existing adapter prototype
can be extended to support a larger set of types for embedded objects or to use a real Web
browser (via its remote control interface) for generation and injection of HTTP requests

KiVS’11
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instead of imitating its behaviour. From the point of view of the authors, these arguments
demonstrate the high degree of flexibility and good extensibility of the UniLoG approach and
support its usage for Web workload generation.
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