
A Service-Oriented Operating System and an
Application Development Infrastructure for
Distributed Embedded Systems
Martin Lipphardt1, Nils Glombitza1, Jana Neumann2, Christian
Werner1, and Stefan Fischer1

1 Institute of Telematics, University of Lübeck, Germany
2 Institute of Information Systems, University of Lübeck, Germany

Abstract
The paradigm of service-orientation promises a significant ease of use in creating and managing
distributed software systems. A very important aspect here is that also application domain
experts and stakeholders, who are not necessarily skilled in computer programming, get a chance
to create, analyze, and adapt distributed applications. However, up to now, service-oriented
architectures have been mainly discussed in the context of complex business applications. In this
paper we will investigate how to transfer the benefits of a service-oriented architecture into the
field of embedded systems, so that this technology gets accessible to a much wider range of users.
As an example, we will demonstrate this scheme for sensor network applications. In order to
address the problem of limited device resources we will introduce a minimal operating system for
such devices. It organizes all pieces of code running on a sensor node in a service-oriented fashion
and also features the relocation of code to a different node at runtime. We will demonstrate that
it is possible to design a sensor network application from a set of already existing services in a
highly modular way by employing already existing technologies and standards.

Digital Object Identifier 10.4230/OASIcs.KiVS.2011.26

1 Introduction

Pervasive computing can be found in a large variety of application scenarios. Hence, many
different kinds of pervasive systems are realized by different classes of devices. Wireless
sensor networks (WSN) represent one particular pervasive scenario, which is characterarized
by the usage of resource constraint devices. A lot of effort was put into technical and
algorithmical problems in WSN, yet implementing a WSN application is still a tedious task.
Many parameters have to be considered like network density, traffic patterns and mobility
models. Additionally, possible environmental influences must be preconceived. Therefore,
besides profound programming abilities a lot of expert knowledge and understanding is
needed to design a functioning and robust sensor network application. This holds especially if
we consider the fact that actual users of sensor network technology are not usually skilled in
the field of computer science. Application scenarios for WSNs can be found in many different
fields stretching from military, science, logistics to health care, where each application has
its specific requirements and characteristics.

As state of the art for WSN application development we observe a development cycle
that can be subsumed to the graph given in Figure 1. A potential user of WSN technology
describes the problems with requirements, e.g., monitoring phenomena or tracking objects.
The user drafts the requirements and presents them to a WSN expert. Based on the
requirements the WSN expert creates a model of the application scenario. The size and
density of the network is determined. Mobility models are designed and the data rates are

© M. Lipphardt, N Glombitza, J. Neumann, C. Werner, and S. Fischer;
licensed under Creative Commons License NC-ND

17th GI/ITG Conference on Communication in Distributed Systems (KiVS’11).
Editors: Norbert Luttenberger, Hagen Peters; pp. 26–37

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.KiVS.2011.26
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


M. Lipphardt et al. 27

estimated. With consideration of environmental influences the scenario is evaluated in a
simulator. Based on the results, the WSN expert chooses different protocols and algorithms
and finally implements the WSN application. After the successful deployment of the sensor
network, the user receives data from the network and draws conclusions which may bring up
new aspects that might affect the requirements to the WSN. Again the user presents his new
requirements to the WSN expert.

WSN

User

WSN Expert

Requirements
e.g. monitoring
phenomena, 
object tracking, event
detection

Expertise
e.g. network density, data rates
traffic patterns, network models

Environment

Influences
e.g. radio
characteristics, 
topology
changes, node
context

Data & Conclusions
e.g. new aspects become
important

Figure 1 Current WSN application develop-
ment cycle

Observing this situation we see parallels
to the early days of software development
in the late 1950s. In these days, a lot of ex-
pertise was needed to deploy even programs
solving simple tasks. As a consequence the
usage of information technology was reserved
for the programmer himself. Since then a
lot of effort was put in the development of
new programming paradigms to enable ac-
tual target user groups to get access to new
information technologies. Up to now, the
main focus of sensor network research is on
mastering resource constraints and achieving
robustness in WSNs. Having overcome a lot
of technical barriers, we have the possibility

to make the wireless sensor network techology accessible for users. Our goal is to make the
development of a distributed sensor network application easier allowing non-WSN experts to
deploy a sensor network. With regard to the distributed nature of WSN applications and
the complexity of interactions between network topology and environmental influences, we
consider two aspects to be crucial for enabling users without WSN expertise to access WSN
technology: abstractions of application development and runtime modification of deployed
WSN applications.

An abstraction for application development makes the complexity of the sensor network
application more transparent to the user. It must enable the user to develop different
applications easily and in a minimum of time. Since a user with no WSN expertise cannot
predict the behavior of the WSN or the WSN application, there might be a lot of trial and
error during application development and deployment. Enabling the sensor nodes to change
their software during runtime can ease the process towards a successfull deployment and is
therefore inevitable.

In this work we introduce Surfer OS, a service-oriented minimal operating system for
embedded devices that allows an integration and replacement of services during runtime.
Additionally we present an infrastructure that offers a Service Repository and allows graph
based service composition and runtime adaptation of WSN applications for Surfer OS.

This work is structured as follows: The next section will give an overview over current
WSN operating systems, middlewares and frameworks with the focus on the development of
distributed WSN applications. In Section 3 we will present our basic idea for WSN application
design and introduce the interactions among the components of our infrastructure, namely
Surfer OS, the Service Repository and the Service Composition. Section 4 gives a detailed
description of Surfer OS and its implementation. Section 5 describes the Service Repository
and the data stored with each service. In Section 6 we give details about the application
development for Surfer OS with a graphical tool support. Furthermore, we show how the
process of Service Composition can be integrated into enterprise applications as well as

KiVS’11



28 Service-Orientation for Distributed Embedded Systems

business processes. In Section 7 we discuss the benefits and downsides of our presented
operating system and infrastructure. We conclude the paper with Section 8 summarizing our
contribution and giving an outlook on future work.

2 Related Work

The most widespread operating system used for sensor networks is TinyOS [6, 7]. Using a
component based programming model, TinyOS is more than an operating system. It is a
framework with a set of components that allows for building an application specific operating
system for embedded devices. Each component resembles a functionality and exposes one
or more interfaces. The fine grained component-based architecture allows the composition
of applications before the deployment of the sensor network. This makes the application
development for sensor networks more transparent.

An extension to TinyOS which allows modifications of the WSN application during runtime
is FlexCup [12]. FlexCup is able to dynamically exchange and link TinyOS components
on the sensor nodes for adapting applications to new needs. The five steps of the FlexCup
update process are storage of code and meta-data, symbol table merge, relocation table
replacement, reference patching, and installation and reboot of the application.

Dunkels et al. developed the Contiki [4] operating system for sensor nodes. With Contiki
it is possible to load and unload individual applications or services at runtime [3].

Mantis [1] is a WSN operating system that offers a comprehensive set of system application
programming interfaces (API) for I/O and system interaction. Providing this API Mantis
hides the complexity of scheduling and concurrent access to ressources claiming a shallow
learning curve for programmers with C knowledge. Mantis also allows binary code updates
on sensor nodes during the runtime of applications. Based on calls to a system call library
provided by the Mantis system kernel applications are updated and written to the EEPROM.
By resetting the node the software update process is completed and the new application is
executed.

Han et al. introduce SOS [5] a dynamic operating system for sensor nodes. SOS allows
the dynamic interaction of independent software modules. SOS uses position independent
code to achieve relocation and jump tables for application programs to access the operating
system kernel. Application programs can register function pointers at the operating system
for performing inter-process communication.

With Maté [8], a virtual machine is available for TinyOS. Maté abstracts from the
operating system allowing only a specific set of instructions. A module written with these
instructions can be easily integrated into a running application allowing a (re-)configuration
and adaptation of the application.

SensorWare [2] is a framework that uses Tcl scripts as abstraction for implementing
distributed applications. The scripts can be send into the WSN during runtime. They can
migrate within the network and replicate themselves.

The programming framework EnviroSuite [10] by Luo et al. proposes a new programming
paradigm called environmentally immersive programming. EinviroSuite offers languages
primitives that transparently map onto a library of algorithms for sensor networks allowing
the programmer to think diretcly in terms of environmental abstractions.

OASiS [11], a programming framework for service-oriented sensor networks, applies the
paradigm of service-orientation on top of TinyOS. In OASiS each activity is implemented as
seperate service. The goal is to simplify programming by providing an abstraction, where the
applications behavior is described as modular dataflow blocks between services in a specific



M. Lipphardt et al. 29

service graph.

3 Operating System and Infrastructure

The related work shows that supporting the application development and providing an
intuitive network abstraction to the application developer is an important issue. We observe
that on different levels from the basal operating system to high level frameworks much work is
spent to make the application development easier. Each of these approaches has its strengths
but none fulfills our needs to enable users without expertise to create and deploy a WSN
application sufficiently.

On operating system level, a lot of understanding of the distributed nature of sensor
networks and their constraints is needed. The component based approach of TinyOS allows a
composition of the application, but still the right protocols and algorithms for the deployment
must be known upfront. Approaches which are based on loadable binary code modules
enable the user to change the application during runtime. But often these approaches
such as [12] and [4] exploit specific platform characteristics or necessitate a restart of the
reprogrammed nodes what can be critical for keeping a consistent network state and is an
additional aggravation of the development process. Overall, an operating system alone does
not provide a sufficient abstraction for the application developer.

Middlewares and frameworks offer a more intuitive abstraction for the programmer. Using
a virtual machine like Maté allows for a platform independent and smooth integration of
modules into a running application since no restart of the application is needed. But the
programmer is bounded to a fixed subset of instructions offered by the virtual machine.
Additionally the programmer has to learn the specific syntax for the virtual machine.
Furthermore, such approaches are always tailored to a specific type of application constraining
the user to a specifc scenario. Frameworks as well as middlewares already offer a specific set
of algorithms and protocols. The developer has no chance to modify or optimize this layer to
his needs.

3.1 Overview

Figure 2 Components of the infrastructure for
WSN application development

In our approach, we want to offer the applica-
tion developer as much flexibility as possible
by providing an easy to use application de-
velopment support at the same time. The
fundament is the service-oriented paradigm,
which is commonly used in the field of dis-
tributed applications. In contrast to other
service-oriented approaches for WSNs we
consider all functionalities on a node down to
the hardware interfaces as services. Where
hardware interfaces are always present on
the nodes (non-migratable), all other ser-
vices need to migrate into the WSN and
onto the nodes. We deploy the nodes solely
with the non-migrateable services. This im-
plies that neither application logic nor any
protocols are present on the node right after
deployment. On demand, services representing a routing protocol or a localization algorithm

KiVS’11



30 Service-Orientation for Distributed Embedded Systems

or part of the application logic migrate successively into the WSN composing themselves to
a WSN application.

In order to realize this migration of the services and support an intuitive development of
an application, the presented infrastructure consists of three components shown in Figure 2:
a minimal operating system called Surfer OS, a Service Repository and an interface for
Service Compositon.

The Service Composition interface allows for an abstraction for composing services and
initiates the migration. The services themselves are stored in the Service Repository from
where they migrate into the WSN. The operating system on the nodes integrates the services
into the running application. In the following we will describe the requirements for each
component.

3.2 Operating System

For a successful sensor network deployment, the usage of adequate protocols and algorithms
for a specific scenario is crucial. Being not able to predetermine radio characteristic and all
network parameters such as data traffic patterns, topology changes or node mobility, the
user of WSN technology must be able to exchange all protocols or functionality from the
application logic down to the communication layer. In terms of the service-oriented paradigm
all functionalities offered by protocols and algorithms are encapsuled into different services.
The operating system must provide the possibility to add, remove or exchange services on
the nodes during the runtime of the deployed sensor network. As a consequence, right after
the deployment the nodes basically offer only two kinds of functionalities: (1) access to the
available hardware resources on the node via service calls and (2) management of services.

The access to the hardware resources is realized as very basic service calls. The operating
system must publish the access point to the radio interface, the sensors and other hardware
resources as services, since such functionality demands for special hardware I/O like, e.g., the
reading and writing on special registers. Higher level services such as a radio stack are present
as services providing a predetermined interface to other services but the implementation on
the node does not offer any higher functionality yet. The service that encapsules the radio
stack for sending a packet via the radio is not yet providing any routing layer. This service
in its initial version on the node directly accesses the hardware interface sending the “plain”
packet.

Managing the services means allowing the integration, removal and replacement of services.
The operating system must react on special service packets which are directly processed.
When adding the services, the provided functionality must be published on the nodes by the
operating system. The functionality must be made accessible in an intuitive way, e.g., via a
service and a function name. Every service contains a service type and a version number.
The service type is a numerical representation of the functionality provided by the service,
e.g., “routing”. The version number distinguishes between different implementations of the
service. Based on the type of a service and the version the operating system determines
whether to add the provided service, to replace a present service or to ignore the received
service. If a service of a specific type is already present, it is replaced if a different version of
this service type is received. Additionally, dependencies among services must be preserved
by the operating system in case of replacement of services. To realize these demands, we
implemented the operating system Surfer OS which is described in Section 4.



M. Lipphardt et al. 31

3.3 Service Repository
In order to compose WSN applications, the user of WSN technology needs a collection of
different services providing different functionalitites. Programmers with WSN expertise
develop a lot of different algorithms and protocols suited for different scenarios and appli-
cations. If these algorithms and protocols are implemented as services for Surfer OS, they
can be applied by a WSN user in his application. Therefore, we need a place where these
services can be uploaded, stored and accessed by a component which manages the service
migration. For this task we implemented a so called Service Repository. It acts as a container
for migrateable services where services can be up- and downloaded or managed by the service
programmers via an easy to use user interface.

In order to enable the service programmer as well as the service user to use the Service
Repository it must be accessable via an intuitive and easy to use user interface. This interface
has to provide the above mentioned functionalities namely: displaying all available services
including important service information, providing the possibility to insert new services and
upload the corresponding service code, and providing the possibility to change the service
information as well as the service code itself.

3.4 Service Composition
The third component of our approach addresses the process of Service Composition. This
component enables abstraction for the user of WSN technology for creating sensor network
applications by composing a set of services.

One important characteristic of a service-oriented approach for distributed applications
is its flexibility. Thus, the requirements to the design of the Service Composition component
are very versatile. If we consider how services can be composed, we identify two scenarios:
Services can be composed by a Human Composer or by a software performing the composition
to which we refer to as Automatic Composer.

The Human Composer is the developer of an application who is able to deploy a WSN
application even without expertise in this field. By selecting a set of services out of a
service repository, he can compose an application tailored to the demands of his individual
application scenario ad-hoc during runtime.

The composition of services can also be performed automatically by a software, the
Automatic Composer. Today sensor networks become more and more part of enterprise IT
systems or even flexible parts of business processes. Therefore, it must also be possible that
such systems can control the composition of services for the sensor network automatically.

The realization of the Service Composition component has to meet the requirements of
both scenarios: the Human Composer and the software based composition. Therefore, it
must provide an intuitive interface to the Human Composer and a standardized interface for
the composition of services by an external software.

4 Surfer OS

4.1 Concept and Architecture
As described in Section 3.2, the main task of our operating system Surfer OS is to provide
access to available hardware resources and to manage services, which compose the complete
WSN application including even lower layers such as the communication stack. The manage-
ment of services includes addition, removal and replacement of services. At the moment of
deployment of the sensor network, the nodes do not provide any further functionality.

KiVS’11



32 Service-Orientation for Distributed Embedded Systems

The central unit within Surfer OS that organizes the services is the ServiceManager. The
ServiceManager keeps a dynamic symbol table that maps a tuple consisting of a service type
and a function name onto a function pointer. This allows an intuitive usage of services by
accessing them via the service type and the function name. Initially, the ServiceManager
keeps the non-migratable services (dark-colored in Figure 3) representing the hardware
interfaces in the symbol table. This includes the access to the sensors, the radio, the
RS232, the memory, as well as scheduling as shown in Figure 3. Additionally, basal service
implementations representing the radio stack and the RS232 stack are provided using the
specific hardware interfaces.

ServiceManager

send

…

radio

…

memcpy

…

c_utils

add

…

radio_send

rs232_send

…

Function

task

hw_utils

ServiceType

RFModule

RFsend(…)
…

Scheduler

AddTask(…)
…

RadioStack

Send(…)
…

Beacon

Start(…)
Stop(…)
CleanUp(…)

RadioStack

Send(…)
…

non-migratable

services

migratable

services

Figure 3 The ServiceManager module with the
dynamic symbol table

Surfer OS identifies special service pack-
ets which are then processed by the Service-
Manager. With these packets a service can
migrate onto a node or the command for eras-
ing a service on a node can be transmitted.
If such a migratable service (light-colored
in Figure 3) is received, the ServiceManager
checks the service type and the version num-
ber. If a service of this type is not present,
the new service is included into the appli-
cation. The new functionalities are added
under the service type in the symbol table
of the ServiceManager such as the beacon
service in Figure 3. The ServiceManager
offers an interface where services themselves
can access other services and the hardware
via the services already registered in the symbol table. If a service of the same type but
with a different version number is already present, the present service is removed and the
new service is added. In this way even non-migratebale services can be replaced as shown in
Figure 3. In order to preserve dependencies such as registrations for callback, the registration
is provided by a subscription service. This service keeps a table with service type and callback
addresses. If a service is replaced, the previously registered callbacks for this service type
can be retrieved by the new service. This allows a seamless replacement of services that
are used by other services. Thus, we can even exchange, e.g., the services representing the
communication stack enabling us to exchange routing protocols during runtime.

4.2 Implementation
We implemented Surfer OS on the pacemate sensor node platform [9]. The pacemate platform
uses the Phillips LPC2136 microcontroller with 256 kbyte Flash memory and 32 kbyte
RAM. The microcontroller realizes a 32 Bit ARM architecture. The LPC2136 provides
in-application programming allowing for erasing and/or programming the Flash while the
application is running. The complete Flash or a single Flash sector can be erased in 400 ms.
Writing 256 bytes to the Flash takes 1 ms. Program code is executed from the Flash but can
also be executed directly in the RAM.

The Surfer OS is implemented in C. The ServiceManager keeps the addresses of functions
as function pointers. The services are compiled independently. For the migration of the
services onto a node we have to solve the problem of code relocation. We use a scheme that
provides a solution for the general problem of code relocation. This approach exploits the
partition of the ELF format into .TEXT, .DATA and .BSS segments that can be used on



M. Lipphardt et al. 33

every hardware platform that uses the ELF file format. After a service is received completely
and its code is relocated successfully, the ServiceManager accesses the new service via a
predefined interface.

The services follow a specific service template. Every service implements at least four
functions: ServiceInit(...), ServiceStart(), ServiceStop() and ServiceCleanUp(). The Service-
Init(...)-function performs the registration process of the service. The ServiceStart() and
ServiceStop() start or stop the actions of the service. The ServiceCleanUp() is executed when
the service is removed. The programmer of a service has to make sure that all registrations
and callbacks are removed in this function.

The ServiceInit(...)-function is invoked by the ServiceManager after the service is received.
The linker file ensures that this function is located at the very beginning of the programm code
in the .TEXT segment enabling the ServiceManager to find the entry point to this function.
A predefined signature allows the ServiceManager to pass arguments into the ServiceInit(...)-
function. In this way the function pointers to the interfaces of the ServiceManager are given
to the service. The service uses these interfaces to retrieve available functionality from other
services and register its own provided functions. If the registration of functions is completed,
the ServiceInit(...) returns the status to the ServiceManager. If the registration was successful,
the process is completed. The ServiceManager executes the ServiceStart()-function that is
now available in the symbol table. If the registration of functions failed, the ServiceManager
would remove the service from the symbol table and would free the allocated memory erasing
the service.

Since received services are written to the Flash memory, they are persistent even if the
node is turned off. If the node is rebooted, the present services can be integrated and
restarted. In this way, the software configuration of a node can be preserved, reused and
even analyzed in case of failures.

5 Service Repository

In Section 3.3 we introduced the Service Repository as a collection of services which are
provided by service programmers with WSN expertise and can be applied by the WSN
user. To meet the described requirements, we identify three main modules that compose the
Service Repository: a graphical User Interface, a Repository Service and a Machine Code
Modification Service.

The User Interface lists available services and visualizes complete information of services
such as service type, version, size and author. For the service programmer, it provides input
masks to upload implemented services. The user interface additionally offers the possibility
to change the service information in the database as well as in the stored service code. Using
the migration scheme described in Section 4.2 the services themselves are stored as machine
code for the target sensor node platform which is in our case the pacemate platform. We
realized the user interface as Web-based application.

The connection to the database is established by the Repository Service. This service
– realized as Web Service – encapsulates the upload of services into the database and makes
the stored data available. More precisely, it offers interfaces to store, delete, update and
display the content of the database.

The functionality to allow modifications of the machine code in order to update service type
and version is provided by the Machine Code Modification Service. If the user changes this
information via the input mask provided by the user interface, this modification service writes
the new information back into the machine code. This avoids unnecessary recompilations of

KiVS’11



34 Service-Orientation for Distributed Embedded Systems

the service code and guarantees consistency between the database entry and the according
service code.

6 Service Composition

The aim of our contribution is to make WSN technology available for users without any
WSN expertise. In Section 3.4 we described the requirements for the Service Composition
component. We identified two scenarios: either the Human Composer or the Automatic
Composer is controlling the composition process. We demanded that the composition
component of our presented infrastructure has to meet the requirements of both scenarios.
In order to fulfill these requirements, we have to divide the composition component into
two modules which are designed following the service-oriented architecture programming
paradigm. We need one module which controls the actual migration process (Migration
Control). As second module, we need the Migration Infrastructure consisting of the Repository
Service and the Migration Service (see Figure 4).

Migration Service

Repository Service

Sensor Network 

Gateway

Database

Composite Service

Service Migration Client

Migration Control Migration Infrastructure

Figure 4 Architecture of the implementa-
tion of the Service Composition component

The Migration Infrastructure is the basis of
the Service Composition component. While the
Repository Service (cf. Section 5) enables the ac-
cess to a set of Surfer OS services, the Migration
Service realizes the interface to the sensor net-
work. The controlling module of the migration
process retrieves services from the Repository
Service. Calling the Migration Service pushes
the services into the WSN and completes the
migration process outside the sensor network.
Analog to the functionality of pushing Surfer OS
services into the sensor network, the Migration
Service provides the removal of services from sen-
sor nodes. As the pushing process, the removal process is controlled by controlling modules
as well.

The Migration Control manages the migration process and offers the abstraction for
the user for the WSN application development. As part of our infrastructure we provide
a graphical user interface application allowing the Human Composer to select services of
a repository and to transfer them into the sensor network. In order to embed the service
migration process into enterprise IT systems using the Automatic Composer, such systems
have to provide the capability of controlling the migration. Based on the Repository Service
and the Migration Service and the fact that we use Web Services as communication backbone,
we are able to build other high level services on top using classical programming languages
like Java or C++ as well as business process modeling languages such as BPEL (Business
Process Execution Language, [13]). Especially embedding the migration process into business
processes, which are designed with a graphical tool support, enables non IT personnel to
easily compose Surfer OS services.

7 Discussion

7.1 Benefits
Having implemented all three components, the Surfer OS, the Service Repository and the
interface for Service Composition, we now have an infrastructure for quick and easy WSN



M. Lipphardt et al. 35

application development. Opposed the development cycle for WSN applications previously
shown in Figure 1, our approach realizes an application development process shown in
Figure 5.

The service-oriented approach and thus the loosely coupled services provide an abstraction
that is commonly used for distributed applications.

WSN

User

WSN Expert

Requirements

Expertise

Environment

Influences

IT 

Infrastructure

Data

Conclusions

Self-Organization
e.g. monitor conditions,
request and distribute
tasks among nodes

Figure 5 Realized WSN application devel-
opment process

A user of WSN technology can design
and adapt a sensor network application with
Surfer OS independently. Successively the user
migrates services representing application logic
as well as different protocols into the WSN and
onto the nodes composing his own application
for his specific requirements. The ability to add,
remove and replace services during runtime gives
the user a high degree of flexibility and indepen-
dence. Especially in contrast to approaches using
multi-hop over the air flashing and replacing the
whole software image on a sensor node, the ser-
vice based approach of Surfer OS produces less
network traffic if changes to an application be-

come necessary. The services themselves, especially those that demand for special WSN
knowledge, are provided by WSN experts who have the expertise in the challenges of dis-
tributed ad-hoc systems. Services can also be implemented by the user following the service
template. In order to compose a WSN application, the user can utilize the provided graphical
user interface for manually transfer needed services onto the nodes. Our presented infras-
tructure also allows for using even professional application design and integration tools such
as BPEL, which represent the WSN application as business processes. Using such tools eases
the integration of the sensor network into an existing IT infrastructure.

The services provided in the Service Repository can also implement selforganizing func-
tionality causing other services or data to migrate or replicate themselves automatically.
Even a stateful migration of services is possible by migrating the according .DATA segment
from the RAM and the dynamically allocated memory as well. Services providing self
organizing functionalities can be realized with Surfer OS. They enable the network to react
independently on topology changes or depleting energy or memory ressources extending the
lifetime of the sensor network application. Furthermore, such approaches again hide network
complexity from the user.

Additionally, there is no need for predicting and modeling radio characteristics in order
to specify a routing protocol or other topology dependent algorithms. The service-oriented
approach in Surfer OS that encapsules every functionality as a service allows the replacement
even of the radio stack including the replacement of routing protocols. Thus, the right
protocols can be chosen during the deployment till satisfactory results are achieved. In the
same manner the RS232 stack can be replaced if changed IT infrastructure demands for a
new data format.

During the development of different services we realized that the service-oriented approach
for applications respectively protocols offers even more benefits than just the composition of
applications. When implementing protocols, e.g, for routing or localization, we found out
that often some basic functionalities are many protocols in common. E.g., a lot of protocols
have to be aware of their current neighborhood size or even of the node ids. Therefore all
these protocols send so called hello beacons. In this way the nodes in the direct neighborhood

KiVS’11



36 Service-Orientation for Distributed Embedded Systems

are aware of the presence of this neighboring node. When using more than one of these
protocols within one application, each protocol performs its own beaconing. This results in a
waste of radio bandwidth. Additionally, when the node has already transmitted data packets,
there is no need for additional beacons, since the neighbors are already aware of the presence
of the node. We realized that even protocols can be subdivided into several services where
each service can focus on performing as efficiently as possible. In this way we can reduce the
needed resources. Memory can be saved since different services may use the functionality of
one service instead of providing their own functionality. In the same way, the communication
costs can be reduced since a needed action like a beacon is only performed once.

7.2 Downsides
Adding functionality to the network after deployment has its price. Tightly coupled systems
such as TinyOS can be optimized for a special application. Unneeded code modules can
be ommitted during the linking process of the application before deployment resulting in
a minimal code size. In order to support future application modifications by addition or
removal of services, Surfer OS must provide all basic functionalities of the sensor node.
Surfer OS must offer software interfaces to all hardware components on the node which
might be used by services that migrate onto the node during deployment even if a hardware
component stays unused during the deployment. This implies that the code size of the
Surfer OS itself cannot be optimized for special applications.

The integration of services and thus the relocation of code itself demands for some
additional information and program logic. Each service must provide relocation information
in order to make the code executable on the target node. Additionally, Surfer OS must
keep a dynamic symbol table and offer interfaces to the ServiceManager. For the reloca-
tion information of the integrated services and for the code for the ServiceManager and
symbol table additional memory is needed on the nodes. Due to this, a loosely coupled
Surfer OS application offers less potiential for optimization of code sizes than a tightly
coupled application.

Tightly coupled monolithic sensor network applications are usually flashed onto the nodes
before deployment with special programming tools that might include special programming
hardware. Right before deployment the batteries of the nodes can be fully charged. A
Surfer OS application is adapted after the nodes are already deployed. The Surfer OS
infrastructure can be connected to any arbitrary node within the network, allowing the
addition or removal of services in the whole network. This flexibility implies that services
have to be distributed throughout the network. Thus the modification of an application is
naturally accompanied by additional network traffic.

8 Conclusion and Future Work

As state of the art, it is a very tedious task to design and deploy a sensor network application.
Special skills in distributed application design and WSN expertise are inevitable. In this
work we presented a service-oriented minimal sensor node operating system called Surfer OS
and an application development infrastructure which allows an application design from a set
of existing services making wireless sensor networks accessible for a wider range of users.

In contrast to current monilithically designed applications the highly modular architecture
of the Surfer OS provides a high degree of flexibility allowing the user to constantly adapt
an application to his individual needs. The possibility to migrate stateful services allows for
new strategies to efficiently use the resources provide by the network. The presented solution



M. Lipphardt et al. 37

can be transferred into other areas of pervasive computing, where flexible applications on
resource constrained devices are needed. With our work we aim to ease the development
process of pervasive technology in various fields of application.

References
1 H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, J. Deng, and

R. Han. Mantis: System support for multimodal networks of in-situ sensors. In 2nd ACM
International Workshop on Wireless Sensor Networks and Applications (WSNA), pages
50–59, 2003.

2 Athanassios Boulis, Chih-Chieh Han, and Mani B. Srivastava. Design and implementation
of a framework for efficient and programmable sensor networks. In Proceedings of the 1st
international conference on Mobile systems, applications and services (MobiSys ’03), pages
187–200, New York, NY, USA, 2003. ACM.

3 Adam Dunkels, Niclas Finne, Joakim Eriksson, and Thiemo Voigt. Run-time dynamic
linking for reprogramming wireless sensor networks. In Proceedings of the 4th international
conference on Embedded networked sensor systems (SenSys ’06), pages 15–28, New York,
NY, USA, 2006. ACM.

4 Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki - a lightweight and flexible
operating system for tiny networked sensors. In Proceedings of the First IEEE Workshop
on Embedded Networked Sensors (Emnets-I), Tampa, Florida, USA, November 2004.

5 Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivastava. A dynamic
operating system for sensor nodes. In Proceedings of the 3rd international conference on
Mobile systems, applications, and services (MobiSys ’05), pages 163–176, New York, NY,
USA, 2005. ACM.

6 Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and Kristofer S. J.
Pister. System architecture directions for networked sensors. In Architectural Support for
Programming Languages and Operating Systems, pages 93–104, 2000.

7 P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer, and D. Culler. Tinyos: An operating system for sensor networks.
Ambient Intelligence, pages 115–148, 2005.

8 Philip Levis and David Culler. Maté: a tiny virtual machine for sensor networks. In
Proceedings of the 10th international conference on Architectural support for programming
languages and operating systems (ASPLOS-X), pages 85–95, New York, NY, USA, 2002.
ACM.

9 Martin Lipphardt, Horst Hellbrueck, Dennis Pfisterer, Stefan Ransom, and Stefan Fischer.
Practical experiences on mobile inter-body-area-networking. In Proceedings of the Second
International Conference on Body Area Networks (BodyNets’07), 2007.

10 Liqian Luo, Tarek F. Abdelzaher, Tian He, and John A. Stankovic. Envirosuite: An envi-
ronmentally immersive programming framework for sensor networks. Trans. on Embedded
Computing Sys., 5(3):543–576, 2006.

11 Xenofon Koutsoukos Sandeep Neema Manish Kushwaha, Isaac Amundson and Janos Szti-
panovits. Oasis: A programming framework for service-oriented sensor networks. In
IEEE/Create-Net COMSWARE 2007, January 2007.

12 Pedro José Marrón, Matthias Gauger, Andreas Lachenmann, Daniel Minder, Olga Saukh,
and Kurt Rothermel. Flexcup: A flexible and efficient code update mechanism for sensor
networks. In Proceedings of the Third European Workshop on Wireless Sensor Networks
(EWSN 2006, pages 212–227. Springer, 2006.

13 OASIS WS-BPEL Technical Committee. Webservices – Business Process Execution Lan-
guage Version 2.0, 2005.

KiVS’11


	Introduction
	Related Work
	Operating System and Infrastructure
	Overview
	Operating System
	Service Repository
	Service Composition

	Surfer OS
	Concept and Architecture
	Implementation

	Service Repository
	Service Composition
	Discussion
	Benefits
	Downsides

	Conclusion and Future Work

