
10451 Abstracts Collection
Runtime Verification, Diagnosis, Planning and

Control for Autonomous Systems
— Dagstuhl Seminar —

Klaus Havelund1, Martin Leucker2, Martin Sachenbacher3, Oleg Sokolsky4 and
Brian C. Williams5

1 Jet Propulsion Laboratory/Caltech, US
Klaus.Havelund@jpl.nasa.gov

2 Universität Lübeck, DE
leucker@isp.uni-luebeck.de

3 TU München, DE
sachenba@in.tum.de

4 University of Pennsylvania, US
sokolsky@cis.upenn.edu

5 Massachusetts Institute of Technology, US
williams@mit.edu

Abstract. From November 7 to 12, 2010, the Dagstuhl Seminar 10451
“Runtime Verification, Diagnosis, Planning and Control for Autonomous
Systems” was held in Schloss Dagstuhl – Leibniz Center for Informatics.
During the seminar, 35 participants presented their current research and
discussed ongoing work and open problems. This document puts together
abstracts of the presentations given during the seminar, and provides
links to extended abstracts or full papers, if available.

Keywords. Runtime Verification, Model-based Diagnosis, Planning, Con-
trol, Autonomous Systems

10451 Executive Summary – Runtime Verification,
Diagnosis, Planning and Control for Autonomous Systems

From November 7 to 12, 2010, the Dagstuhl Seminar 10451 "Runtime Verifi-
cation, Diagnosis, Planning and Control for Autonomous Systems" was held in
Schloss Dagstuhl - Leibniz Center for Informatics. During the seminar, 35 par-
ticipants presented their current research and discussed ongoing work and open
problems. This executive summary provides an overview of the goals and topics
of the seminar.

Keywords: Runtime Verification, Model-based Diagnosis, Planning, Control,
Autonomous Systems

Dagstuhl Seminar Proceedings 10451
Runtime Verification, Diagnosis, Planning and Control for Autonomous Systems
http://drops.dagstuhl.de/opus/volltexte/2011/2948

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Klaus Havelund, Martin Leucker, Martin Sachenbacher, Oleg Sokolsky
and Brian C. Williams

Joint work of: Havelund, Klaus; Leucker, Martin, Sachenbacher, Martin; Sokol-
sky, Oleg; Williams, Brian C.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2011/2947

The trace server - bridging the gap between model
checking and run-time verification

Cyrille Artho (AIST - Tokyo, JP)

Traces generated by a software model checker can become very large, too large
to be held in main memory on the machine where the system under test is
analyzed. A way out of this problem is to store trace information off-line on a
separate server. This allows the model checker to fully utilize the memory on its
own machine.

However, the resulting change in the architecture has much bigger ramifica-
tions. By moving the trace analysis into its own module, it is now decoupled from
the state space exploration of the model checker. As a result, the model checker
can be seen as only driving the state space search, with run-time verification
algorithms performing the property checks on the trace server.

Keywords: Software model checking, execution trace, run-time verification

See also:
http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/2010-trace-server

Monitorability of omega-regular languages

Andreas Bauer (NICTA - Canberra, AU)

A presentation on the concepts, definitions, and open problems of monitoring
infinite-word languages, such as given by LTL formulae or Buechi automata.

Keywords: Monitorability, temporal logic, formal languages

Planning to Gather Information

Richard W. Dearden (University of Birmingham, GB)

Many information gathering tasks, such as sensor placement, dialogue, or field
science, can be represented as partially observable Markov decision processes
(POMDPs). This representation is very useful as it explicitly includes models of
noisy observations and allows reasoning over information states. However, these
problems are frequently too large to slove with standard POMDP techniques. In
this talk we briefly examine how the representation can be used and describe a
variety of approaches to solving these problems approximately.

http://drops.dagstuhl.de/opus/volltexte/2011/2947
http://babelfish.arc.nasa.gov/trac/jpf/wiki/summer-projects/2010-trace-server

Runtime Verification, Diagnosis, Planning and Control for Autonomous
Systems 3

Keywords: Planning, sensor placement, information gathering, uncertainty

Innovation in Mission Control: Challenges, Experience,
Questions

Alessandro Donati (ESA / ESOC - Darmstadt, DE)

Mature Innovative Technologies in Space Mission Operations are functionally
and economically instrumental for flying future Missions. The first part of the
presentation is about the challenges and approach followed to introduce innova-
tion in an operational environment, followed by an update of recent applications
supporting planning, scheduling, diagnostic and data management. Third and
central part is focusing on a list of open questions covering aspects like space do-
main constraints, quality, massive historical data and complexity. The questions
address all the audience of the workshop.

Keywords: Space mission operation, diagnostic monitoring, planning, schedul-
ing, autonomy, rover

Coordination Logic

Bernd Finkbeiner (Universität des Saarlandes, DE)

Coordination Logic (CL) is a new temporal logic that reasons about the interplay
between behavior and informedness in distributed systems. CL provides a logical
representation for the distributed realizability problem and extends the game-
based temporal logics, including the alternating-time temporal logics, strategy
logic, and game logic, with quantification over strategies under incomplete in-
formation. We show that the structure in CL that results from the nesting of
the quantifiers is sufficient to guarantee the decidability of the logic and at the
same time general enough to subsume and extend all previously known decidable
cases of the distributed realizability problem.

Joint work of: Bernd Finkbeiner, Sven Schewe

Diagnosis of Discrete Event Systems by SAT

Alban Grastien (NICTA - Canberra, AU)

This talk is about the use of SAT techniques to solve problems of diagnosis
of discrete event systems. The talk show how the diagnosis problem can be
translated in a sequence of diagnosis questions and how these questions can be
translated to a SAT problem. It also show some experimental results and some
open problems.

4 Klaus Havelund, Martin Leucker, Martin Sachenbacher, Oleg Sokolsky
and Brian C. Williams

Keywords: Diagnosis, DES, SAT

Should my Monitoring DSL be External or Internal?

Klaus Havelund (Jet Propulsion Laboratory/Caltech - Pasadena, US)

The Runtime Verification literature has produced a stream of monitoring log-
ics. These logics support the expression of properties over execution traces, and
include state machines, regular expressions, temporal logics and grammars, to
mention the most common. These logics/languages can be considered as Do-
main Specific Languages (DSLs), to use a popular terminology. They are usually
designed as external DSLs, meaning that they stand alone without much inte-
gration with an underlying implementation language. At best they sit on top of
such a programming language, allowing one to make calls to it. We have made
several experiments with such externals monitoring DSLs. They usually require
a serious effort to implement, making it hard to extend them with new features.
They are usually also limited in expressiveness. We shall illustrate how one can
define internal monitoring DSLs in the Scala programming language, with much
less effort and with much more powerful DSLs as result.

Keywords: Runtime verification, state machines, temporal logic, external DSL,
internal DSL, Scala

Joint work of: Klaus Havelund, Howard Barringer

Model-Programmed Diagnosis and Control

Michael W. Hofbaur (UMIT - Hall in Tirol, AT)

Model-based approaches for systems analysis, control design and control verifi-
cation are nowadays standard in control engineering. A control engineer builds,
or better crafts, a model of the artifact that is then used for simulation, control
law synthesis and verification. Control synthesis is often done in a human-guided
computer-aided control design process that builds upon the rich experience of
the control engineer. This human craftsmanship within the design process often
provides the sophisticated performance of the resulting control law. However, it
also detaches the resulting controller that is then given in its parameterization
and executional form from the original model and control-design specification.
Contrarily, model-based methods in AI often use a problem-specific solver to
directly operate on the model that describes the artifact and its operating envi-
ronment and the operational goal. Thus, a controller utilizes the model directly
to infer the appropriate control actions.

In mobile robotics one would find both approaches. AI based control schemes
typically operate at the supervisory control layer, e.g. for task- and path-planning.
Classic control schemes, on the other hand, are used within the lower-level control

Runtime Verification, Diagnosis, Planning and Control for Autonomous
Systems 5

layers that command the individual mechatronic components of the robot. The
stringent timing constraints of the lower-level control tasks in robotic artifacts
is often used to justify this separation between the ’intelligent’ part of the con-
troller and the straight-forward computational part that executes a pre-defined
control sequence (e.g. a dynamic filter) for the low-level control task.

A flexible, robust and fault-tolerant operation of a robot that considers op-
erational and fault modes within the robot’s mechatronic components, however,
stresses such an approach for the low-level controllers as it is difficult to pre-
compute the appropriate control laws for all possible operational and fault sce-
narios within the robot. It is thus desirable to include reasoning and AI-type
model-based approaches within the lower-level control layers of a robot as well.

In our talk, we will present such a control scheme for a re-configurable mo-
bile robot. The controller incorporates efficient on-line reasoning methods that
deduce the appropriate state/mode-estimators and control laws from a model,
thus we use the term model programmed to emphasize (a) the difference from
traditional model-based design schemes and (b) the fact that we program the
controller by specifying a model of the artifact and utilize on-line reasoning
schemes to perform control law deduction and controller-parameterization dur-
ing run-time of the robot. This provides an adaptive control scheme that enables
a robot to autonomously adapt to changing operational goals and overcome faults
or even failures.

Keywords: Model-based reasoning, model-based control, diagnosis, mobile
robotics

Verification of Hybrid Systems

Andreas Hofmann (MIT - Cambridge, US)

Hybrid system models incorporate both discrete and continuous state variables
and constraints, and can be used to represent a large class of systems that per-
form tasks in the real world. Autonomous ground vehicles, for example, have
mechanical, electrical, and control components that are best represented using
hybrid models. Our approach to verification of such systems begins with expres-
sion of test cases as Qualitative State Plans (QSPs). A key feature of a QSP is
that it represents the spatial and temporal plan goals and constraints in a flexible
manner. This allows a control policy to take advantage of flexibility to maximize
other characteristics, such as robustness or energy efficiency. For verification, it
means that there is a potentially rich set of trajectories that satisfy the require-
ments. We use Flow Tubes to represent these trajectory sets. A Flow Tube is
a complete representation of a trajectory set that supports analysis of a num-
ber of important properties, including computation of success probabilities. We
compute Flow Tubes based on the intersection of constraints represented by the
hybrid plant model, and by the QSP. This intersection is critical for evaluating
design alternatives.

6 Klaus Havelund, Martin Leucker, Martin Sachenbacher, Oleg Sokolsky
and Brian C. Williams

Keywords: Hybrid Systems, Verification, Flow Tubes

Joint work of: Andreas Hofmann, Brian C. Williams

Robotics, Temporal Logic and Hybrid Systems

Hadas Kress-Gazit (Cornell University, US)

These slides are a short and incomplete description of how formal methods such
as model checking, synthesis and abstractions are used to transform high-level
robot tasks into correct-by-construction controllers.

There are a few slides at the end that define hybrid systems and that list the
questions and methods the hybrid systems community has been looking at.

Runtime Verification

Martin Leucker (Universität Lübeck, DE)

Runtime Verification is a lightweight verification technique complementing model
checking and testing. In runtime verification, a finite prefix of a potentially in-
finite execution is checked incrementally against a given correctness property.
To this end, typically a monitor is synthesized from a high-level linear-time log-
ical specification. In this presentation, an overview on Runtime Verification is
given. Moreover, a uniform approach for synthesizing monitors checking cor-
rectness properties specified in a linear-time logic is provided. The merits of
the presented framework are shown by providing monitor synthesis approaches
for a variety of different logics such as LTL, the linear-time mu-calculus, LTL
with modulo constraints, S1S, and RLTL. Finally, we briefly sketch extensions of
runtime verification such as monitor-oriented programming, and monitor-based
runtime reflection and discuss their similarities and differences. We conclude by
presenting a preliminary taxonomy on runtime verification approaches

Keywords: Monitor, LTL, partial run

What’s Planning?

Derek Long (The University of Strathclyde - Glasgow, GB)

This talk is an overview of AI Planning and the current state of the art in
terms of expressivity of planners, the performance and capabilities of some of
the current systems and the approaches on which they are based.

Keywords: Planning

Runtime Verification, Diagnosis, Planning and Control for Autonomous
Systems 7

Universal Planning for Hybrid Domains

Daniele Magazzeni (The University of Strathclyde - Glasgow, GB)

Many realistic domains where planning is required are represented by hybrid
systems, i.e., systems containing both discrete and continuous variables. The
PDDL+ language allows one to model these domains, however the current tools
can generally handle only planning problems on hybrid systems with linear dy-
namics. Moreover, when a system presents a stochastic behaviour, it can be
modelled as a Markov Decision Process, and an effective policy is required. Uni-
versal planning can be used to find such a policy. In this talk, we present two
techniques to perform universal planning on hybrid nonlinear systems based on
model checking and classification, respectively. Both techniques make use of a
discretise and validate approach, which is also discussed in the talk, to handle the
continuous behaviour, which represents the key issue when dealing with hybrid
nonlinear systems.

Keywords: Universal planning, hybrid nonlinear systems, policy learning

A Framework for Runtime Enforcement Systems

Somayeh Malakuti (University of Twente, NL)

Although several RE systems have been proposed in the literature, they are
dedicated to specific programming languages, specific formalism and software
with specific process model. This reduces the applicability of these systems to
complex software and increases the effort to utilize these systems. For example,
if a runtime verification system only supports centralized software, it cannot
directly be applied to distributed software to verify system-wide properties of
the software; and a developer must develop workarounds to overcome this short-
coming. There are several other features that increase the applicability of RE
systems in practice. Examples are supporting libraries of verification, diagnosis
and recovery specifications, composing reusable specifications with each other
to form more complex specifications, arbitrary composition verification specifi-
cations with diagnosis and recovery specifications, etc. However, these features
are neglected by the existing RE systems. We propose a reference model to build
a framework for runtime enforcement systems. A prototype implementation of
this framework is provided in the Compose* aspect-oriented language. In this
talk I discuss this framework, Compose* and the extensions made to Compose*
to facilitate the implementation of the framework.

Keywords: Runtime Enforcement, Aspect-Oriented Framework, Separation and
Composition of Concerns

8 Klaus Havelund, Martin Leucker, Martin Sachenbacher, Oleg Sokolsky
and Brian C. Williams

Model-based Goal Formation: Closing a Gap Between the
Results of Acting and Deciding What to do Next

Robert A. Morris (NASA - Moffett Field, US)

Since the 1970s, Artificial Intelligence systems have sought to automate aspects
of the process of planning, analysis and discovery for the enterprise of science.
One of the earliest of these programs, DENDRAL, was motivated in part by a
design for a robot assistant to analyze Viking mission Mars soil samples to find
evidence for life.

More recently, the idea has emerged of a closed-loop architecture for an au-
tomated system that will continuously plan and execute measurements, evaluate
their results, and decide the next set of measurements. Such systems could be
used not only in the service of science (improving the predictive models of the
measured system) but also for societal service (for example, for disaster manage-
ment). To be effective, such a system must be efficient (have a rapid throughput),
produce high quality results, and deal with potentially large amounts of data.

Closing the gap between data analysis and goal (hypothesis) formation, and
from there to planning new actions, requires simultaneous reasoning with rich
domain models, as well as models of the process itself, for example, modeling
the robotic (or human-driven) device that will be executing the actions.

Forty years after DENDRAL, the exploration of space continues to be a fer-
tile area for technology innovation in Artificial Intelligence for the automation
of the continuous process of transforming collected data into plans for new data
collection. This presentation will survey the component technologies, method-
ologies and architectures currently being developed for closed loop measurement
systems for diverse applications including conducting Earth science, developing
noise-minimal trajectories for rotorcraft, and safeguarding autonomous explor-
ers.

Keywords: Planning, data analysis

Control and monitoring based on model checking of
knowledge properties

Doron A. Peled (Bar-Ilan University - Ramat-Gan, IL)

An approach for controlling distributed systems based on model checking of
knowledge properties is presented.

Keywords: Control, monitoring, concurrency, priorities, model-checking

Runtime Verification, Diagnosis, Planning and Control for Autonomous
Systems 9

Automatic Generation of Control and Diagnostics Code
for Distributed Embedded Systems

Gregory Provan (Univ. College Cork, IE)

Embedded code for control and diagnostics are typically generated indepen-
dently. This can lead to inconsistent code, which then results in sub-optimal per-
formance and many false-alarms. To avoid this problem, we describe a method-
ology to generate all types of embedded code from a single Integrated Reference
Model M . This approach enables us to guarantee consistency of embedded tools
using a correct-by-design approach, where we verify M and the code-generation
process (to ensure verified embedded code). In addition, it can avoid inconsis-
tency introduced by future system modifications, since we can update all em-
bedded code given updates to M through re-generation of the embedded code.

We describe our correct-by-design embedded code-generation methodology.
We use a single centralized component library as the basis for model synthesis.
We represent each component using a hybrid systems language that captures
both nominal and failure modes. We employ model transformations, given a
core meta-model for M , to generate target models for diagnostics and control.
To illustrate our approach, we demonstrate how to construct embeddable diag-
nostics and control code for sustainable building management applications.

We show how a library of components for lighting and Heating, Ventilation
and Air Conditioning (HVAC) can be employed to create models for systems that
simultaneously control, monitor and diagnose faults for integrated lighting and
HVAC systems. We are currently applying our approach to real-world buldings,
which we retrofit with wireless sensor/actuator networks running the embedded
code.

Sampling

Kanna Rajan (MBARI - Moss Landing, US)

We show the sampling problem in the ocean science domain and how they could
relate to Diagnosis and Run-time Verification. Sampling can be both continuous
and discrete. For the continuous case, the objective function is to record data of
multiple parameters (e.g temperature, salinity, chlorophyll fluorescence, oxygen,
nitrate etc) for either in-situ analysis or post-facto to characterize a dynamic
ocean field for reconstruction on shore for subsequent robotic adaptation. In the
discrete case, specific number of water samples have to be returned to shore for
analysis. Such lab analysis returns information on the field which can further
drive robotic exploration. Sampling continues to be a hard problem with com-
plex constraints given spatio-temporal variability in the coastal ocean, sensor
noise and point location of samples (as against a synoptic view). Poor to no
communication to shore especially when the robots are underwater contributes
to significant difficulty in realizing real-time monitoring and control.

10 Klaus Havelund, Martin Leucker, Martin Sachenbacher, Oleg Sokolsky
and Brian C. Williams

Keywords: Autonomy, robotic exploration, sampling

Stream Runtime Verification Revisited

Cesar Sanchez (IMDEA Software - Madrid, ES)

We revisit the notion of Stream Runtime Verification (SRV), a specification
formalism for runtime verification, first introduced in the runtime verification
language Lola. Most formalisms for runtime verification consist of adaptations
of existing specification languages for reactive systems, like LTL, mu-calculus -
or are defined in terms of rewriting or rule based operational semantics. In con-
trast, SRV es based on the definition of streams - like in datalog or synchronous
language - except that SRV drops the causality assumption, so values of streams
can depend on present and future values, and not only on past values.

We present here an extension of SRV to multiple domains beyond purely
Boolean specifications, like numerical values for computation of statistics or sets
for session based verification. The second extension we present is the general-
ization of clock variables to deal with nested time which allows the reasoning
about calls, returns and scopes. We finally present some positive and negative
decidability results.

Keywords: Runtime verification, streams, reactive systems, monitoring

Aspect-Oriented Instrumentation with GCC

Justin Seyster (SUNY - Stony Brook, US)

We present the InterAspect instrumentation framework for GCC, a widely used
compiler infrastructure. The addition of plug-in support in the latest release of
GCC makes it an attractive platform for runtime instrumentation, as GCC plug-
ins can directly add instrumentation by transforming the compiler’s intermediate
representation. Such transformations, however, require expert knowledge of GCC
internals.

InterAspect addresses this situation by allowing instrumentation plug-ins to
be developed using the familiar vocabulary of Aspect-Oriented Programming
pointcuts, join points, and advice functions. InterAspect also supports powerful
customized instrumentation, where specific information about each join point
in a pointcut, as well as results of static analysis, can be used to customize the
inserted instrumentation. We introduce the InterAspect API and present several
examples that illustrate how it can be applied to useful runtime verification
problems.

Joint work of: Justin Seyster, Ketan Dixit, Xiaowan Huang, Radu Grosu,
Klaus Havelund, Scott A. Smolka, Scott D. Stoller, Erez Zadok

Runtime Verification, Diagnosis, Planning and Control for Autonomous
Systems 11

See also:
http://www.fsl.cs.sunysb.edu/interaspect

Dynamic Plan Execution Applied to Fluid Coordination of
Human-Robot Teams

Julie Shah (MIT - Cambridge, US)

Collaboration between humans and robots is indispensible to our work in many
high-intensity domains, ranging from surgery to space exploration. To harness
the relative strengths of humans and robots, we must develop robots that seam-
lessly integrate with human group dynamics. Robots should preserve the essen-
tial qualities of a good human partner by robustly anticipating and adapting to
other team members and avoid constraining their human partners’ flexibility to
act. The robot partner must be capable of reasoning quickly online, and adapting
to the humans’ actions in a temporally fluid way.

In this talk, I present a capability named Chaski that enables a robot to work
with a human teammate under a flexible plan containing choices in the task
assignment and timing of activities. Chaski generalizes the state-of-the-art in
dynamic plan execution to provide a powerful framework for explicitly modeling
and efficiently reasoning on temporal information for human-robot interaction.
This capability is efficiently realized by an incremental algorithm that reasons on
perturbations over possible futures. Chaski enables a human and robot to work
together under different models of teamwork: as Equal Partners and as Leader &
Assistant. I develop models that distinguish these two styles of teamwork based
on the predictability of the partner.

Finally, I present recent work applying Chaski to perform multi-manipulator
coordination using two Barrett Whole Arm Manipulators, and describe ongoing
work to demonstrate temporally fluid human-robot teaming using the Mobile-
Dexterous-Social (MDS) robot.

Toward Patient Safety in Closed-Loop Medical Device
Systems

Oleg Sokolsky (University of Pennsylvania, US)

Closed-loop medical device systems hold the promise of improving patient safety
by delivering continuous reliable monitoring that human caregivers cannot al-
ways provide. However, parameters of patient dynamics vary widely, making
design of automatic controllers based on monitoring of vital sign streams diffi-
cult.

Full Paper:
http://repository.upenn.edu/cis_papers/427

http://www.fsl.cs.sunysb.edu/interaspect
http://repository.upenn.edu/cis_papers/427

12 Klaus Havelund, Martin Leucker, Martin Sachenbacher, Oleg Sokolsky
and Brian C. Williams

Integrating RV into Software Engineering/MDE

Volker Stolz (United Nations University - Macau, CN)

We give a short overview of our UML-based tool for model-driven development
of component-based systems. As Runtime Verification becomes more mature, it
should become part of the software development activity. In this talk we raise
the issue of modeling monitors, documenting them, and check their consistency
with regard to the overall model. They can then be used in code generation, test
case generation, or actively contribute behaviour to a specification.

Keywords: Runtime verification, model-driven development, UML, formal
methods

Online Verification and Control of Hybrid Autonomous
Systems in Dynamic Environments

Olaf Stursberg (Universität Kassel, DE)

Autonomous systems (AS) like mobile robots, UAVs, UGVs, or UUVs typically
operate in environments which are not completely known during the design time
of the control algorithms implemented on the systems. Thus, AS need to adapt
to the momentary situation during operation in the sense that a dynamic model
of the environment is updated based on measurements and that a strategy for
goal-attaining future behavior is computed using (probabilistic) model-based
predictions of the environment behavior.

To represent behavior, modular hybrid automata are used which enable to
encode continuous behavior (like the motion of a vehicle) as well as different
modes of operation (e.g. to distinguish between forward and backward motion,
or different types of ground contact). While the dynamics of the vehicle to be
controlled usually can be modeled a-priori, the environment model is (partially)
identified during operation from sensor data.

Within this context, the talk sketches two techniques for controller design:
The first can be termed ’model predictive verification’ and aims at analyzing if
a control trajectory (realizing, e.g., a path of a motion of a UGV) can be safely
executed in the sense that collision with dynamic objects in the environment of
the AS is avoided with a sufficiently high probability. The technique computes
stochastic reachable sets for all relevant objects over a prediction horizon and
determines by set intersection the probability of collision. If too high, the control
trajectory has to be rejected and recomputed.

The second technique considers the problem of computing the control tra-
jectory as the solution of an optimization problem that takes the constraints
into account which arise from the environment of the AS. This method, which
resembles the principle of ’model predictive control’, leads to mixed-integer pro-
gramming problems for which specific measures need to be considered to enable
the solution in real-time.

Runtime Verification, Diagnosis, Planning and Control for Autonomous
Systems 13

The approaches are illustrated for the example of the motion of a UGV in
an uncertain environment.

Keywords: Autonomous systems, control, reachability analysis, optimization

Pre- and Post-Deployment Runtime Verification to Guard
Against Concurrency Errors

Serdar Tasiran (Koc University - Istanbul, TR)

We present Goldilocks, a Java runtime that monitors program executions and
throws a DataRaceException when a data race is about to occur. This prevents
racy accesses from taking place, and allows race conditions to be handled before
they cause errors that may be difficult to diagnose later. The DataRaceExcep-
tion is a valuable debugging tool, and, if supported with reasonable compu-
tational overhead, can be an important safety feature for deployed programs.
Experiments by us and others on race-aware Java runtimes indicate that the
DataRaceException may be a viable mechanism to enforce the safety of execu-
tions of multithreaded Java programs.

An important benefit of DataRaceException is that executions in our runtime
are guaranteed to be race free and thus sequentially consistent as per the Java
Memory Model. This strong guarantee provides an easy-to-use, clean semantics
to programmers, and helps to rule out many concurrency-related possibilities
as the cause of errors. To support the DataRaceException, our runtime incor-
porates the novel Goldilocks algorithm for precise dynamic race detection. The
Goldilocks algorithm is general, intuitive, and can handle different synchroniza-
tion patterns uniformly.

Full Paper:
http://cacm.acm.org/magazines/2010/11/100635-goldilocks-a-race-aware-java-
runtime/fulltext

Embedded Control Software Synthesis

Ufuk Topcu (CalTech - Pasadena, US)

This talk focuses on our recent work on the synthesis of control protocols for
distributed embedded systems. Applications in autonomy, vehicle management,
and multi-target tracking are discussed. Receding horizon temporal logic plan-
ning and compositional synthesis have been introduced to improve the scalability
of synthesis.

Keywords: Embedded systems, control protocol synthesis, temporal logic plan-
ning

http://cacm.acm.org/magazines/2010/11/100635-goldilocks-a-race-aware-java-runtime/fulltext
http://cacm.acm.org/magazines/2010/11/100635-goldilocks-a-race-aware-java-runtime/fulltext

14 Klaus Havelund, Martin Leucker, Martin Sachenbacher, Oleg Sokolsky
and Brian C. Williams

Diagnosability analysis

Louise Trave-Massuyes (LAAS - Toulouse, FR)

Diagnosability analysis consists of assessing at design time the level at which a
system is expected to be diagnosable at runtime, i.e. which will be the precision of
the outputs of a diagnoser applied to the system during operation. This analysis
can be used by the designer to improve the design of the system, in particular
to tune the number and placement of monitors. The Model-Based Diagnosis
community has developed specific approaches for state-based systems and for
event-based systems in distinct and parallel tracks.

This paper establishes a model independent framework for defining diagnos-
ability, based on the notion of fault signature. The most classical diagnosability
approaches of each track are gathered into two categories named state-based sys-
tems (SBS) and event-based systems (EBS), and the framework is instantiated
into these two contexts. It is proved that the existing definitions of diagnosability
can be stated as a property of the system’s fault signatures, and a unified model
independent definition of diagnosability is established. These results bridge ex-
isting definitions of diagnosability, and open perspectives for hybrid model based
diagnosis.

Keywords: Model based diagnosis, diagnosability, event based systems, state
based systems

Static and Dynamic Models for Discrete Event Dynamic
Systems

Gerard Verfaillie (ONERA - Toulouse, FR)

In this talk, we will discuss how discrete event dynamic systems and associated
planning, diagnosis, and verification problems can be modeled using a combina-
tion of static and dynamic models. To support such a discussion we will present
the Parameterized Hybrid Constraint Automata framework we are currently
working on.

Keywords: Discrete Event Dynamic Systems, Planning, Scheduling

Joint work of: Gérard Verfaillie, Cédric Pralet

Debugging (and diagnosis) at runtime to improve
robustness and dependability

Franz Wotawa (TU Graz, AT)

Increasing robustness is especially important in case of autonomous mobile sys-
tems in order to achieve given mission goals even in case of hardware or software
faults, or other unexpected situation occurring at runtime.

Runtime Verification, Diagnosis, Planning and Control for Autonomous
Systems 15

Solving the underlying challenge only at design time seems to be not very
much realistic because handling all possible interactions of autonomous systems
with the real world can hardly be achieved. Hence, a smarter way for providing
robustness and adaptability has to be developed. In our research we focus on the
use of model-based reasoning to achieve increased robustness. In particular we
present a system that is able to monitor an autonomous robot where the control
system comprises interacting components. In case of anomalies the system is also
able to determine potential root causes and to repair the software via restarting
the necessary components. Because of restarting only necessary components the
overall availability of the whole system can be increased.

A second branch of model-based reasoning research we are discussing is de-
bugging, i.e., fault localization based on test cases. The idea behind is to repre-
sent programs as constraint systems in order to compute fault candidates. A fault
candidate is a set of statements that when assumed to work incorrectly explains
the detected misbehavior. Using this approach we are able to correctly identify
faults for smaller programs. A combination with fault based techniques, i.e., pro-
gram mutations, and runtime verification seems to be very promising. The latter
allows for introducing new knowledge to debugging, which supports distinguish-
ing competing diagnosis candidates. The proposed debugging approach can be
used not only a design time but also at runtime allowing to localize and correct
faults in programs.

Keywords: Debugging, model-based diagnosis, self-adaptive systems

	10451 Abstracts Collection Runtime Verification, Diagnosis, Planning and Control for Autonomous Systems — Dagstuhl Seminar —
	 Klaus Havelund, Martin Leucker, Martin Sachenbacher, Oleg Sokolsky and Brian C. Williams

