
10451 Executive Summary
Runtime Verification, Diagnosis, Planning and

Control for Autonomous Systems
— Dagstuhl Seminar —

Klaus Havelund1, Martin Leucker2, Martin Sachenbacher3, Oleg Sokolsky4 and
Brian C. Williams5

1 Jet Propulsion Laboratory/Caltech, US
Klaus.Havelund@jpl.nasa.gov

2 Universität Lübeck, DE
leucker@isp.uni-luebeck.de

3 TU München, DE
sachenba@in.tum.de

4 University of Pennsylvania, US
sokolsky@cis.upenn.edu

5 Massachusetts Institute of Technology, US
williams@mit.edu

Abstract. From November 7 to 12, 2010, the Dagstuhl Seminar 10451
“Runtime Verification, Diagnosis, Planning and Control for Autonomous
Systems” was held in Schloss Dagstuhl – Leibniz Center for Informatics.
During the seminar, 35 participants presented their current research and
discussed ongoing work and open problems. This executive summary
provides an overview of the goals and topics of the seminar.

Keywords. Runtime Verification, Model-based Diagnosis, Planning, Con-
trol, Autonomous Systems

1 Introduction

Over the last decade and a half, a phase transition has occurred in the level of
processing power that is incorporated in embedded systems. Simultaneously, a
phase transition occurred in the scale of problems that can now be solved by
automated reasoning methods. This is leading to a revolution in a range of dis-
ciplines, including model-based planning and scheduling, verification, diagnosis,
and hybrid systems control: each discipline is applying automated reasoning to
increasingly complex real-world problems, and is incorporating real-time versions
of their respective methods on board embedded systems. These are employed in
order to elevate the level at which the embedded system is commanded, to verify
correctness of system behavior at runtime, to improve the reconfigurability of
the system, and to automatically recover from failure. The future trend is to
connect these computationally intensive systems into vast, networked embedded

Dagstuhl Seminar Proceedings 10451
Runtime Verification, Diagnosis, Planning and Control for Autonomous Systems
http://drops.dagstuhl.de/opus/volltexte/2011/2947

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Klaus Havelund, Martin Leucker, Martin Sachenbacher, Oleg Sokolsky
and Brian C. Williams

systems, such as nation-wide earth observing systems, coastal cabled observato-
ries, or smart power grids.

The objective of this seminar was to catalyze a new field of model-based
autonomous, embedded and robotic systems, with the salient characteristic that
these devices incorporate a significant level of the above-mentioned online rea-
soning, based on a system model. A common vision is emerging of systems that
combine varied forms of real-time reasoning on models within comprehensive
run-time architectures, and that are programmed using new forms of high-level
programming languages. However, while many of the appropriate languages and
modeling formalisms exist, as well as real-time reasoning algorithms for planning
and monitoring, these elements are currently spread amongst several disciplines.
This seminar therefore brought together researchers from four complementary
disciplines to work towards languages and architectures for model-based auton-
omy:

– Runtime Verification and Monitoring
– Model-based Diagnosis and Execution
– Continuous Planning and Dispatching
– Control of Hybrid Discrete/Continuous Systems

Each of those four areas contributed a different point of view to the problem:
Runtime verification is a field that has emerged from the formal methods/testing
community, and focuses on how to specify behavior of and monitor systems ex-
ecutions. Diagnosis focuses on determining what has gone wrong once an error
situation has been detected, requiring knowledge about the executing system.
Planning focuses on search-based re-configuration of the executing system, es-
sentially generating programs (plans) on the fly. Finally, control is concerned
with classical control theory, and in particular in the context of hybrid systems.

The meeting seeked to map out the necessary architectures, languages, for-
mal models, and underlying reasoning methods for predictable robust and au-
tonomous embedded systems. Discussions at the seminar aimed to identify re-
search needs of autonomous systems in terms of capabilities for monitoring,
verification, diagnosis, planning and control in the context of compelling appli-
cations. At the same time, participants were be able to discuss technical ap-
proaches that have emerged in various related research areas, and assess their
applicability to this emerging field.

2 Participants and Program

Including the organizers, 35 researchers from the United States, Europe, Aus-
tralia, and Japan participated in the seminar. Over the course of the week, 33
talks were given. As one of the main goals of the seminar was to more closely
bring together four communities – during the seminar, the acronym RvDPC
(Runtime verification, Diagnosis, Planning, and Control) was coined for this
combination –, the program was kicked off with tutorial talks on hybrid control,
runtime verification, model-based diagnosis, and planning. This overview was

Runtime Verification, Diagnosis, Planning and Control for Autonomous
Systems 3

then followed by a mix of technical presentations, panels, and breakout discus-
sions. Due to the large number of presentations, we grouped them into blocks
of 3-4 talks each, which were then wrapped up by micro-panel discussions; this
structure worked out quite well. To foster exchange among the communities
and avoid conference-style talks, each presenter was asked to point out open
problems, make connections with the other areas of RvDPC, and identify open
challenges for the communities.

In the following days, more room was given for discussions, and the partic-
ipants split into four “multi-community” groups that aimed to shed a light on
four different topics:

– Problem A as problem B: What are the similarities and differences between
the tasks carried out in each discipline? Are there common underlying tech-
niques that can be shared? How could one problem (for example, diagnosis)
benefit from results from another problem (for example, runtime verifica-
tion)?

– Modeling: Where do models (system models, specifications) come from and
how are they built? What kind of models do we need (continuous/discrete,
probabilistic/deterministic, temporal/static)? What modeling formalisms and
languages are currently used in each area, and how do they possibly overlap?

– What are models used for: How important is the concept of utility (frequently
used in planning)? How does run-time information affect this? What qualities
should a model have to support autonomous RvDPC? What is the right
balance between autonomy and decision support?

– Reasoning: Under what conditions should reasoning be done offline or online?
To what extent can problem decompositions be exploited? How important
are trade-offs between efficiency and optimality? Is it preferable to model
uncertainty explicitly or to use Monte-Carlo approaches?

As a result of these break-out sessions, a number of insights have emerged:

– In terms of autonomy, all the communities are involved in the migration
towards increased autonomy. Decision support is an important midway point.

– It was agreed that Timed Hybrid Automata (THA) are a common lan-
guage/model for discussion between all four of the communities. Possibilities
to construct such models include mining from empirical data, and extracting
models from design specifications.

– PDDL is a language for describing automata (only PDDL+ describes full
timed hybrid automata). What language is preferred for modeling THAs
depends on what kind of automaton needs to be constructed and the goals
of the reasoning. The choice of language depends on the cost of supporting
the reasoning process, which will be different in each of the four communities.

– Utility of both states and actions is very important in planning and plan
execution. The perceived utilities might change at run-time. In diagnosis and
runtime verification this was less likely to be the case. In runtime verification
it would be very hard to dynamically re-instrument code depending on run-
time effects. This could be of value but is not currently done. In planning it

4 Klaus Havelund, Martin Leucker, Martin Sachenbacher, Oleg Sokolsky
and Brian C. Williams

can be crucial to have something of value to return if the process is stopped
prematurely, so a notion of relative utility of partial solutions is necessary.

– In planning we often need to query models at run-time, to get accurate
information about variables that cannot be directly observed. This could
benefit from the instrumentation techniques of runtime verification to enable
more efficient query-answering.

– There are several ways in which the different areas might help each other.
Planning could use better instrumentation from runtime verification. Per-
haps planning could help solve sensor placement problems for diagnosis, and
might be able to synthesize monitors for runtime verification. It might be
possible to use runtime verification techniques to infer properties from diag-
noses (the kind of properties that would normally be inferred directly from
observation). There are many other such examples of potential synergies.

At the last day of the seminar, a longer discussion was devoted to possible
case studies that could be used to demonstrate the unification of RvDPC meth-
ods. We identified several demonstration platforms in three different application
areas: autonomous systems (smart cars in smart cities/grids, humanoid robots
in households, search-and-rescue scenarios, autonomous underwater vehicles),
building energy management, and process control. For each area, task groups
were formed to further work out these scenarios.

	10451 Executive Summary Runtime Verification, Diagnosis, Planning and Control for Autonomous Systems ? Dagstuhl Seminar ?

