
A New Project to Address Run-Time
Reconfigurable Hardware Systems

Jim Torresen and Dirk Koch

Department of Informatics, University of Oslo
P.O. Box 1080 Blindern, N-0316 Oslo, Norway

E-mail: {jimtoer,koch}@ifi.uio.no
Web: http://www.matnat.uio.no/forskning/prosjekter/crc/

Abstract. This paper introduces a new project named Context Switch-
ing Reconfigurable Hardware for Communication Systems (COSRECOS)
which was started autumn 2009. In this project, reconfigurable hardware
technology (Field Programmable Gate Arrays - FPGAs) will be applied
for designing high performance computing systems for embedded com-
munication systems. The overall goal of the project is to contribute in
making run-time reconfigurable systems more feasible in general. This
includes introducing architectures for reducing reconfiguration time as
well as undertaking tool development. Case studies by applications in
network and communication systems will be a part of the project. The
paper describes how we plan to address the challenge of changing hard-
ware configurations while a system is in operation.

1 Introduction

Before the introduction of multitasking operating systems around 1985, pro-
cessors would run one program at a time. The program would be uploaded at
startup and run until finished. There would be no swapping to other programs
during execution of a given program. With today’s multitasking operating sys-
tems, it would be the exception not performing multitasking for software. This
is in contrast to hardware which normally is static at run-time even though re-
configurable hardware is programmable at run-time. However, in this project –
called Context Switching Reconfigurable Hardware for Communication Systems
(COSRECOS) and funded by the Research Council of Norway, architectures
where the hardware configuration is dynamically changed (i.e. context switch-
ing) will be investigated. The main contributions of the project are expected to
be:

– Develop new architectures and tools to make run-time reconfiguration easier
to use.

– Develop platforms for fast and reliable reconfiguration.

– Undertake case studies with implementation of selected communication ap-
plications.

Dagstuhl Seminar Proceedings 10281
Dynamically Reconfigurable Architectures
http://drops.dagstuhl.de/opus/volltexte/2010/2894

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We regard that both architectures as well as tools would be needed to make
run-time reconfigurable hardware more applicable. The next section gives some
background information, followed by an overview of benefits and possible ap-
proaches in section 3. Finally, section 4 concludes the paper.

2 Background

Reconfigurable computing has grown to become an important and large field
of research. The present target technology is Field Programmable Gate Arrays
(FPGAs). The FPGA provides a massive parallel computational engine by the
distributed organization of its logic blocks. Each logic block consists of config-
urable combinational logic together with one or a few flip-flops. The configuration
of the function of each logic block and its connections to other blocks are given
by the configuration bitstream loaded from outside the device and stored in dis-
tributed RAM on the FPGA. It is substituting the configuration bitstream at
run-time we think of by context switching reconfigurable hardware – see details
below.

Reconfigurable systems are designed either by using commercial FPGAs or
by having new FPGA-like devices developed. A survey of can be found in [1]. The
approach of applying reconfigurable logic for data processing has been demon-
strated for a number of years ago in areas such as video transmission, image
recognition and various pattern-matching operations (handwriting recognition,
face identification) [2]. Another area of interest is wireless systems where tremen-
dous computational capabilities are needed to allow for high data rates in the
future [3]. Automotive electronic systems are expected to gain large benefit from
adaptive reconfigurable hardware [4].

A platform for network applications – called The Field-programmable Port
Extender (FPX) (see http://www.arl.wustl.edu/projects/fpx/), has been imple-
mented by a group led by professor Lockwood. It is a generic platform with
network interfaces that has been used in a wide variety of applications: route
Internet packets; compress, encrypt, and buffer data; transcode motion JPEG
images; and process multiple flows of video. By using FPGA hardware, rather
than a microprocessor, the packet processor can perform full processing of packet
payloads at Gigabit rates. The development of the FPX platform demonstrates a
valuable use of FPGA technology in routers and other network equipment. The
hardware of the system will evolve over time as packet processing algorithms
and protocols progress, as stated in [5].

For bus-based communication, an architecture called ReCoBus has been pro-
posed that efficiently supports the integration of dozens of partial modules into
a reconfigurable systems that can provide up to a few hundreds of resource slots
[6]. In addition, I/O bars have been proposed for dedicated high speed streaming
links between the static system and the reconfigurable modules [7].

We have been conducting research on several different application areas of
reconfigurable logic. An architecture for providing a fast (in the Gigabit range)
network security system (called Network Intrusion Detection Systems (NIDS))

2

has been proposed. The detection engine (rule matching) in the open source
network intrusion detection system Snort has been implemented [8]. Further,
stateful inspection is applied in NIDS in [9]. By checking the handshakes in a
communication session, it provides a more advanced network security tool than
firewalls.

We have demonstrated the benefits of undertaking data processing in re-
configurable logic for applications like string matching [10] and image filtering
[11]. An FPGA implemented processor architecture with adaptive resolution has
been introduced in [12]. This allows for a variable resolution in data variables at
run-time.

3 FPGA Based Architectures

This section includes a brief overview of how FPGAs can be applied in adap-
tive systems [13]. We can distinguish between three different degrees of FPGA
reconfiguration providing configurable computing:

– Static: The configuration within the FPGA is the same throughout the
lifetime of the system. This means no adaptivity at run-time.

– Upgrade: The configuration is changed from time to time for bug fixes or
functional upgrades. This represents rare reconfiguration.

– Run-time: A set of configurations (multi-context) are available which the
FPGA switch between at run-time. This could provide several benefits as
described below.

Most applications are implemented by applying the static approach – i.e.
no reconfiguration. However, upgrading of systems have recently become more
common. This allows the configuration to be upgraded when bugs are found or
when the functionality of the system is to be changed. In the future, automatic
dynamic products will probably arrive. These could autonomously upgrade the
hardware as the environment (or data) changes or when bugs are detected in the
system. One promising approach based on this idea is evolvable hardware [14].

The application areas for run-time reconfigurable systems are:

– Space/cost/power reduction
– Speeding up computation
– Incorporating new data/patterns realized in reconfigurable logic

If not all functions in a system are needed at the same time, we can sub-
stitute a part of the configuration at run-time as seen in Figure 1. Function
A contains the parts of the system that always need to be present. However,
part B and C are not needed concurrently and can be assigned to the same
resources (location) in the FPGA. An example of such an application can be
a multi-functional handheld device with e.g. mobile phone, MP3 player, radio
and camera. For most purposes, a user would normally not apply more than
one of these functions at a time. Thus, instead of having custom hardware for

3

each function, it could be efficient having a reconfigurable system where only
the active function is configured. This would allow for a smaller hardware device
which leads to reduced cost and for some systems reduced power consumption.
Such benefits are important in a competitive market.

Configuration
Data Memory

A

B

C

Fig. 1. Illustration of a run-time reconfiguration of FPGA.

The application area for run-time reconfiguration for computational speedup
is depicted in Figure 2. Swapping between successive configurations can give a
hardware system a considerable throughput compared to having a general static
FPGA configuration. If a task A can be partitioned into a set of separate sub-
tasks (A.1, A.2 and A.3 in the example in the figure) to be executed one after
the other, an FPGA configuration can be designed for each of them. Thus, each
configuration is optimized for one part of the computation. During run-time,
context switching is undertaken and the total execution time for the task in the
given example is reduced. The context switching time would have to be short
compared to the computation time, to reduce the overhead of switching between
the different configurations.

Since commercially available FPGAs do not yet provide configuration switch-
ing in one or a few clock cycles, download time is often the main obstacle against
effective run-time reconfiguration. There has been undertaken some work based
on run-time reconfiguration of FPGAs. The main experience seems to be that
FPGAs are requiring a (too) long reconfiguration time, and we regard this as the
key challenge when designing context switching systems. A task should be par-
titioned into coarse grained parts to reduce the overhead of switching between
different configurations [15]. Many devices require the complete configuration
bitstream to be downloaded in one operation. The download time then increases

4

Static

Context
switching

Task A

Task A.1 CSW Task A.2 Task A.3CSW

Time

Fig. 2. Illustration of a run-time reconfigurable FPGA compared to a static FPGA.

with the size of the device. The challenge with long download time is further
addressed in the next section.

3.1 Approaches and Methods

The project will focus on research for developing new architectures that can re-
duce the problems of applying commercial FPGA technology to run-time recon-
figurable computing. Rather than focusing on FPGA only as a tool for speeding
up computation – as in many research projects, we will also emphasize on switch-
ing configurations at run-time. That is, replacing parts of the user logic inside
the FPGA while other parts operate uninterrupted. By this approach, we would
like to have a focus on both reduced cost and power consumption as well as ad-
ditional computational speedup. However, some architectures would be limited
to one of these priorities. By developing new architectures and algorithms, we
will try to come up with systems making run-time reconfigurable hardware more
usable. Having several leading international research groups as collaborators in
this project will be a great strength for achieving these goals.

Challenges of run-time reconfiguration in FPGA to be addressed in the
project are as follows:

– Reducing the long time required for reconfiguration
– Avoiding the system from being inactive during reconfiguration (safe and

robust reconfiguration)
– Interfacing between modules belonging to different configurations
– Predictability (reliability and testability) of system operation

As introduced earlier, the main problem with switching configurations is the
long reconfiguration time. Overcoming this would be one of the main objectives
in the project. At the moment there seem to be three possible approaches; smaller
devices, virtual FPGA and partial reconfiguration.

5

Smaller Devices Since the full reconfiguration time is less for smaller devices,
reconfiguration time can be reduced by applying smaller devices. Moreover, by
applying context switching, we may be able to implement a full system in a
smaller device with the benefit of reduced cost and power consumption. The
drawback would be that the system would have to be inactive during reconfigu-
ration. In this project, we would like to include some analyzis on these aspects.

Fig. 3. Virtual FPGA.

Virtual FPGA Virtual FPGA is based on designing a multi-context “virtual”
FPGA inside an ordinary FPGA [16] – see Figure 3. We have earlier introduced
an architecture for context switching based on this idea that has been published
in [17, 18]. In these papers, we report about our design of an architecture for
switching between 16 different configurations in a single clock cycle. Such a
system would never achieve as high clock frequency as a leading edge processor.
However, by applying massive parallel processing, the execution time can still
be less [12]. We have published a number of papers where virtual FPGA is
combined with evolvable hardware [19–22, 13]. The developed architectures also
include a soft (MicroBlaze) or hard (PowerPC) processor core. Even though
a fast processing can be achieved, the context switching architecture requires
much reconfigurable resources (in that way, this architecture is prioritizing speed
before cost and power consumption). Therefore, there is still a large potential for
improving these systems and this would be one of the challenges in this project.

6

Partial Reconfiguration As FPGA devices are getting bigger, the configu-
ration bitstream becomes longer and programming time increases. Thus, run-
time reconfigurable designs would benefit from having only a limited part of
the FPGA being context switched by partial reconfiguration. This feature is
available in some FPGAs where a selected number of neighboring columns are
programmed. This requires detailed considerations for having no interruption at
context switching [23].

Another challenge is to limit the inter partition data transfer. That is, ef-
ficient communication between context switched tasks. While the first FPGAs
offering partial reconfiguration required complete columns of the device being
programmed, the more recent ones – including Xilinx Virtex-4/5, require only
a part of each column being programmed. This makes interfacing between tasks
and having uninterrupted operation easier since some rows can be used for per-
manent configurations. The smallest Virtex-5 device (LX30) consists of 4 rows
while the largest (LX330) consists of 12 rows. Further, there have been intro-
duced tools like PlanAhead that make partial reconfiguration easier. It is possible
to reconfigure the Virtex devices internally using the Internal Configuration Ac-
cess Port (ICAP). This will be applied in this project where research will be
undertaken on efficient data routing and data storing between context switch-
ing tasks [24]. We have already undertaken various successful work with partial
reconfiguration including change of look-up table content [25] and internal re-
configuration with ICAP by use of PlanAhead [26].

Platform and Tools The work at the moment on reconfigurable systems are
usually based on problem specific coding. Thus, a goal of this project is to come
up with a tool and some general platforms that could make context switching
systems more accessible for a larger number of users. That is, develop a general
tool and architectures that can be applied by others in future run-time adaptable
systems.

If the context switching is not deterministic, an operating system may be
needed to schedule hardware tasks [27]. However, for many of the applications,
it would be possible with a deterministic context switching. This would be our
first approach since online scheduling of tasks including control of reconfigurable
logic fragmentation would be much more difficult. However, to have more general
computing platforms, this would become more necessary. We believe a general
computing platform will make reconfigurable technology more accessible than
it is today, and make it into a viable complement to processor technology. The
success of multitasking in software is probably much because of the introduction
of widely used operating systems like Windows and Linux. If an equivalent could
be found across FPGA vendor technologies by e.g. virtual FPGA, it would prob-
ably be an important step towards more widely use of run-time reconfigurable
hardware.

A part of the research will be on analyzing HW/SW partitioning and how
this can be undertaken in the most efficient way. Much research related to com-
munication technology is either related to implementing software or hardware.

7

However, few projects are concerned about the integration of application soft-
ware, low level software and hardware. In the industry on the other hand, much
focus is given to this integration. Thus, we would in this project like to address
how hardware should be designed to most effectively execute the software to be
implemented. More details about the project can be found in [28].

4 Conclusion

This paper has described a new project focusing on context switching recon-
figurable hardware. It will target to make such technology more applicable by
introducing software as well as hardware architectures to make it more feasi-
ble. Challenges include addressing reconfiguration time and making the context
switching robust.

Acknowledgment

This work is supported in part by the Norwegian Research Council under grant
191156V30.

References

1. R. Hartenstein. A decade of reconfigurable computing: A visionary retrospective.
In Proc. of Int. Conference on Design Automation and Testing in Europe - and
Exhibit (DATE), 2000.

2. J. Villasenor and W.H. Mangione-Smith. Configurable computing. Scientific Amer-
ican, (6), 1997.

3. J.M. Rabaey. Silicon platforms for the next generation wireless systems - What
role does reconfigurable hardware play?. In R.W. Hartenstein et al., editors, 10th
International Conference on Field Programmable Logic and Applications (FPL-
2000), Lecture Notes in Computer Science, vol. 1896, pages 277–285. Springer-
Verlag, 2000.

4. J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, and J. Luka. Dy-
namic and partial fpga exploitation. Proceedings of the IEEE, 95(2):438–452, Feb
2007.

5. J.W. Lockwood. Evolvable internet hardware platforms. In Proc. of the Third
NASA/DoD Workshop on Evolvable Hardware, pages 271–279, 2001.

6. D. Koch, C. Beckhoff, and J. Teich. ReCoBus-builder - a novel tool and technique to
build statically and dynamically reconfigurable systems for FPGAs. In Proceedings
of Int. Conf. on Field-Programmable Logic and Applications.

7. D. Koch, C. Beckhoff, and J. Teich. Minimizing internal fragmentation by fine-
grained two-dimensional module placement for runtime reconfigurable systems. In
Proceedings of 17th IEEE Symp. on Field-Programmable Custom Comp. Machines
(FCCM.

8. S. Li, J. Torresen, and O. Soraasen. Exploiting reconfigurable hardware for network
security. In 11th Annual IEEE Symp. on Field Programmable Custom Computing
Machines (FCCM’03). IEEE, 2003.

8

9. S. Li, J. Torresen, and O. Soraasen. Exploiting stateful inspection of network
security in reconfigurable hardware. In Field-Programmable Logic and Applica-
tions: 13th International Conference on Field Programmable Logic and Applica-
tions (FPL-2003), Lecture Notes in Computer Science. Springer-Verlag, 2003.

10. G. Nilsen, J. Torresen, and O. Soraasen. A variable word-width content addressable
memory for fast string matching. In Proc. of 22nd Norchip Conference, pages 214–
217. IEEE, 2004.

11. J. Torresen, J. W. Bakke, and L. Sekanina. Efficient image filtering and information
reduction in reconfigurable logic. In Proc. of 22nd Norchip Conference, pages 63–
66. IEEE, 2004.

12. J. Torresen and J. Jakobsen. An FPGA implemented processor architecture with
adaptive resolution. In Proc. of 1st NASA/ESA Conference on Adaptive Hardware
and Systems (AHS-2006). IEEE, 2006.

13. J. Torresen and K. Glette. Improving flexibility in on-line evolvable systems by re-
configurable computing. In Evolvable Systems: From Biology to Hardware. Seventh
International Conference, ICES’07, volume 4684 of Lecture Notes in Computer Sci-
ence, pages 391–402. Springer-Verlag, 2007.

14. J. Torresen. An evolvable hardware tutorial. In Proc. of the 14th International
Conference on Field Programmable Logic and Applications (FPL 2004), pages 821–
830. Springer Verlag, LNCS 3203, 2004.

15. Y. Agarwal et al. Solving fracture mechanics problems using reconfigurable com-
puting. In Proc. of Int. Conf. on Reconfigurable Computing and FPGAs, ReCon-
Fig’04, 2004.

16. L. Sekanina and R. Ruzicka. Design of the special fast reconfigurable chip using
common FPGA. In Proc. of Design and Diagnostics of Electronic Circuits and
Systems - IEEE DDECS’2000, pages 161–168, 2000.

17. J. Torresen and K.A. Vinger. High performance computing by context switching
reconfigurable logic. In Proc. of the 16th European Simulation Multiconference,
pages 207–210. SCS Europe, June 2002.

18. K. A. Vinger and J. Torresen. Implementing evolution of FIR-filters efficiently in
an FPGA. In Proc. of the 2003 NASA/DoD Workshop on Evolvable Hardware,
2003.

19. K. Glette, J. Torresen, M. Yasunaga, and Y. Yamaguchi. A flexible on-chip evo-
lution system implemented on a Xilinx Virtex-II Pro device. In Proc. of Evolvable
Systems: From Biology to Hardware. Sixth International Conference, ICES 2005.
Volume 3637 of Lecture Notes in Computer Science, pages 66–75. Springer-Verlag,
2005.

20. K. Glette, J. Torresen, M. Yasunaga, and Y. Yamaguchi. On-chip evolution using
a soft processor core applied to image recognition. In Proc. of the First NASA
/ESA Conference on Adaptive Hardware and Systems (AHS 2006), pages 373–380.
IEEE Computer Society, 2006.

21. K. Glette, J. Torresen, and M. Yasunaga. An online EHW pattern recognition
system applied to face image recognition. In M. Giacobini et al., editor, Appli-
cations of Evolutionary Computing, EvoWorkshops2007: EvoCOMNET, EvoFIN,
EvoIASP, EvoInteraction, EvoMUSART, EvoSTOC, EvoTransLog, volume 4448
of Lecture Notes in Computer Science, pages 271–280. Springer-Verlag, 2007.

22. K. Glette, J. Torresen, and M. Yasunaga. Online evolution for a high-speed im-
age recognition system implemented on a Virtex-II Pro FPGA. In The Second
NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007). IEEE,
2007.

9

23. D. Lim and M. Peattie. Two flows for partial reconfiguration: module based or
small bit manipulation, Application Note 290. Xilinx, 2003.

24. N.P. Sedcole, P.Y.K. Cheung, G.A. Constantinides, and W. Luk. On-chip com-
munication in run-time assembled reconfigurable systems. In Proc. of IC-SAMOS.
IEEE, 2006.

25. H. Kawai, M. Yasunaga, K. Glette, and J. Torresen. An adaptive pattern recogni-
tion hardware with dynamic partial reconfiguration. 2008. In preparation.

26. G.A. Senland. Design of an Architecture for Evolvable Hardware based on Internal
Reconfiguration of an FPGA (in Norwegian). University of Oslo, 2008. Master
thesis.

27. C. Steiger, H. Walder, and M. Platzner. Operating systems for reconfigurable
embedded platforms: Online scheduling of real-time tasks. IEEE Trans. on Com-
puters, 53(11):1393–1407, Nov 2004.

28. D. Koch and J. Torrresen. Advances in component-based system design and partial
run-time reconfiguration. In Proc. of Dagstuhl Seminar 10281, Lecture Notes in
Computer Science, 2010.

10

