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Abstract
Motivated by economic thought, a recent research agenda has suggested the algorithmic study
of combinatorial optimization problems under functions which satisfy the property of decreasing
marginal cost. A natural first step to model such functions is to consider submodular functions.
However, many fundamental problems have turned out to be extremely hard to approximate
under general submodular functions, thus indicating the need for a systematic study of subclasses
of submodular functions that are practically motivated and yield good approximation ratios.
In this paper, we introduce and study an important subclass of submodular functions, which
we call discounted price functions. These functions are succinctly representable and generalize
linear(additive) price functions. We study the following fundamental combinatorial optimization
problems: edge cover, spanning tree, perfect matching and s− t path. We give both upper and
lower bound for the approximability of these problems.
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1 Introduction

In the algorithmic theory of combinatorial optimization, much of the attention has been
focused on problems where one wishes to optimize an additive function under some com-
binatorial constraints. In these problems we are given a ground set E of elements and a
collection Ω of subsets of the ground set (Ω ⊆ 2E) that is usually defined implicitly by some
combinatorial property (such as the set of all spanning trees in a graph). We are also given a
cost for each element in E and the price of a subset S ∈ Ω is defined to be the sum of costs
of the elements in S. The objective is to find a subset in Ω with a minimum price.

However, additive price functions do not always model the complex dependencies of the
prices in a real-world setting. It is widely believed in economics that price structure satisfies
the decreasing marginal cost property. Intuitevly, it says that the price of adding an element
to a larger set is less than adding it to a smaller set. Largely motivated by this, in recent
years, a research agenda that has emerged out [9, 10, 11, 12, 20] is to study combinatorial
optimization problems under submodular functions. Submodular functions form a very broad
class of functions and mathematically capture the property of decreasing marginal cost. A
function f : 2E → R+ is said to be submodular if and only if for any two subsets S and
T ⊆ E such that S ⊆ T , the following holds: f(T ∪ i) − f(T ) ≤ f(S ∪ i) − f(S) for all
elements i ∈ E − T .

Unfortunately, many of the fundamental optimization problems have turned out to
be extremely hard under submodular functions [9, 10, 11, 12, 20]. Thus, from a practical
standpoint, the applicability of these results is not very well-founded as the class of submodular
functions might be much more general than real-world functions. Moreover, the class of
submodular functions is defined over an exponentially large domain and thus requires
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exponential time to write down the function explicitly. This may not be the case in real-world
applications.

In this paper, we wish to explore functions that lie between the additive functions and the
general submodular functions, and that are also succinctly representable. In particular, we
study discounted price functions in which we are given an additive function c and a discount
function d : R+ → R+ that is a concave curve. The price of any subset S is defined to be
d(c(S)). It is not difficult to see that dicounted price functions form a subclass of submodular
functions. Discounted price functions have strong theoretical motivation as well. A common
technique (due to [10]) for designing optimal algorithms under general submodular functions
is to first approximate submodular functions by ellipsoid functions. These ellipsoid functions
form a special class of discounted price functions.

We study discounted price functions in a multi-agent setting. This is motivated by the
observation that often in a real-world scenario there are multiple agents, with different price
functions, each of whom can build different parts of the required combinatorial structure. For
instance, in the case of spanning tree, it might be more cost effective to buy only a subset of
the edges of the final tree from a particular agent. For additive functions, it is easy to see
that having multiple agents doesn’t change the complexity of the original problem. However,
this is not the case for more general price functions.

Discounted Price Model
We define a function d : R+ → R+ to be a discounted price function if it satisfies the following
properties: (1) d(0) = 0; (2) d is increasing; (3) d(x) ≤ x for all x; (4) d is concave.

We study combinatorial problems in the following general setting. We are given a set of
elements E, and a collection Ω of its subsets. We are also given a set A of k agents where
each agent a ∈ A specifies a cost function ca : E → R+ where ca(e) indicates her cost for
the element e. Each agent also declares a discounted price function da. If an agent a is
assigned a set T of elements, then her total price is specified by da(

∑
e∈T ca(e)). This is called

her discounted price. For the ease of notation we will use da(T ) to denote da(
∑

e∈T ca(e)).
The objective is to select a subset S from Ω and a partition S1, S2, ..., Sk of S, such that∑

a∈A da(Sa) is minimized.
We study the following four problems over an undirected graph G = (V,E).

Discounted Edge Cover: In this problem, Ω is chosen to be the collection of edge
covers.
Discounted Spanning Tree: In this problem, Ω is the collection of spanning trees of
the graph.
Discounted Perfect Matching: In this problem, we assume the graph has an even
number of vertices. Ω is chosen to be the collection of perfect matchings of the graph.
Discounted s − t Path: In this problem, we are given two fixed vertices s and t. Ω
consists of all paths connecting s and t.

Our Results
In section 2.1, we show that the discounted edge cover and spanning tree problems are hard
to approximate within a factor of (1− o(1)) logn unless P = NP. In section 2.2 and 2.3, we
amplify this result to show that s− t path and matching are hard to approximate within
any polylog factor.

On the algorithmic front, in section 3.1 and 3.2, we show that our results are tight
by giving logn-approximate algorithms for the discounted edge cover and spanning tree
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438 Combinatorial Problems with Discounted Price

problems. In section 3.3, we describe simple O(n)-approximate algorithms for discounted
s− t and perfect matching. We leave the design of sublinear approximation algorithms for
these two problems as an open question.

Related work

The classical versions of edge cover, spanning tree, perfect matching and s− t path are well
studied and polynomial time algorithms are known for all these problems, see [18, 14, 3, 7, 6, 4].
These have served as part of the most fundamental combinatorial optimization models in the
development of computer science and operations research.

Recently, Svitkina and Fleischer [20] generalized the linear(additive) cost settings of some
combinatorial optimization problems such as sparsest cut, load balancing and knapsack to a
submodular cost setting. They gave

√
n/ logn upper and lower bounds for all these problems.

[11] also studied combinatorial optimization problems in the single agent setting.
Multi-agent setting was first introduced in [9]. In their model of combinatorial problems

with multi-agent submodular cost functions they gave Ω(n) lower bounds for the problems
of submodular spanning tree and perfect matching, and gave a Ω(n2/3) lower bound for
submodular s− t path where the submodular functions are given by value oracles. They also
gave the matching upper bounds for all these problems. We remark that the lower bounds
presented in [20, 9] are information theoretic and not computational.

Similar generalization from additive objective functions to the more general submodular
functions was applied to maximization problems in [8, 15, 2]. The multi-agent generalization
of maximization problems which corresponds to combinatorial auction has been extensively
studied both in computer science and economics [5, 17] and tight information theoretic lower
bounds are known for these problems, see [16].

2 Hardness of Approximation

In this section we present hardness of approximation results for the four problems defined
earlier. Unlike some of the previous work on combinatorial optimization [9, 20] over non-linear
cost functions, the bounds presented here are not information theoretic but are contingent
on P 6= NP. In section 2.1, we show that all our problems are hard to approximate within
factor logn. In section 2.2 and 2.3, we amplify the hardness of approximation for discounted
s− t path and perfect matching to O(logc n) for any constant c.

Recall that in each of the problems we are given a graph G = (V,E) over n vertices. We
are also given a set A of k agents each of whom specifies a cost ca : E → R+. Here ca(e) is
the cost for building edge e for agent a. Each agent also specifies a discounted price function
given by da : R+ → R+. The objective is to build a specified combinatorial structure using
the edges in E, and allocate these edges among the agents such that the sum of discounted
prices for the agents is minimized.

2.1 Basic Reduction

To show the logarithmic hardness of approximation for the problems stated earlier we consider
the following general problem and use a reduction from set cover to establish its hardness.

Discounted Reverse Auction: We are given a a set E of n items and a set A of agents
each of whom specifies a function ca : E → R+. Here ca(e) is the cost for procuring item e

from agent a. Each agent also specifies a discounted price function given by da : R+ → R+.
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The task is to find a partition P = {P1 · · ·Pk} of E such that
∑

a∈A da(
∑

e∈Pa
ca(e)) is

minimized.

I Lemma 1. It is hard to approximate the discounted reverse auction problem within factor
(1− o(1)) logn unless P = NP.

Proof. We reduce set cover to the discounted reverse auction problem to prove this result.
Consider an instance I = (U,C,w) of set cover where we wish to cover all elements in
the universe U using sets from C and minimize the sum of weights under the weight
function w : C → R+. We define an instance, I ′ of our discounted reverse auction problem
corresponding to I in the following way. Let U be the set of items. For every set S ∈ C
define an agent aS , whose cost function ca assigns the value w(S) for every element s ∈ S
and sets the cost of all other elements in U to be infinity. The discounted price function for
the agent is shown in figure 1. Here the slope of the second segment is small enough.

Figure 1 Discount function for agent corresponding to set S

Consider a solution for I ′ where we procure at least one item from agent aS ; then we can
buy all elements in S from aS without a significant increase in our payment. So the cost of
the optimal solution to I can be as close to the price of the optimal solution for I ′ as we
want. By [1, 19], set cover is hard to approximate beyond a factor of logn unless P = NP.
Therefore the discounted reverse auction problem can not be approximated within factor
(1− o(1)) logn unless P = NP. J

This reduction can be extended to other combinatorial problems in this setting to give
logarithmic hardness of approximation for many combinatorial problems. This can be
achieved by considering an instance of the problem where we have just one combinatorial
object and our task is to allocate it optimally among the agents. For example, for the
discounted spanning tree problem we consider the instance when the input graph is itself
a tree and we have to optimally allocate its edges among the agents to minimize the total
price. Thus, we have the following:

I Theorem 2. It is hard to approximate discounted edge cover, spanning tree, perfect
matching and s− t path within factor of (1− o(1)) logn on a graph with n vertices unless
P = NP.

2.2 Amplification: Hardness for Discounted s− t Path
In this section we consider the discounted s− t path problem between two given vertices s
and t. We show that unless P = NP, this problem is hard to approximate within a factor
of O(logc n) for any fixed constant c. The proof is based on amplification of the result of
theorem 2. This is done by repeatedly applying a transformation σ on the given family of
problem instances, which amplifies the approximation factor on every application. Each
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application of σ also increases the size of the graph but only by a polynomial(in n) factor.
We now describe the transformation formally.

Consider the following instance (G,A,U): We are given a graph G = (V,E), vertices s,t
and a set A of agents. We are also given a collection U = {Ua}a∈A. Here Ua ⊆ E specifies
the set of edges that can be assigned to agent a, i.e., ca(e) = 1 for all e ∈ Ua and ca(e) = +∞
otherwise. The discounted price function da is such that da(x) = x for all x ≤ 1 and 1 for
all 1 < x < +∞. Observe that under this assumption, for any set S of edges, da(S) has
value 1 if S ⊆ Ua and ∞ otherwise. We may assume that the sets Ua for a ∈ A are pairwise
disjoint, by replacing a single edge that can be assigned to multiple agents by parallel edges
and assigning them to each of the agents. In future discussion, we will use F to denote the
family of instances {(G,A,U)}.

We define the transformation σ : F → F that takes an instance I = (G,A,U) in F , and
generates another instance I⊗ = (G⊗,A×A,U⊗) as follows. The graph G⊗ = (V ⊗, E⊗) is
constructed from G by replacing each edge (u, v) ∈ E with a copy of the graph G such that
s coincides with u and t coincides with v. Thus any edge e ∈ E can be identified with a
subgraph Ge, of G⊗ that is isomorphic to G. Each e′ ∈ Ge has a cost ca(e) for each agent a
and we define ρ(e′) = e and define γ(e′) to be the edge corresponding to e′ in G under this
isomorphism. There are |A|2 agents in the new instance who are indexed by A × A. We
define the elements of U⊗ as U⊗(a1,a2) = {e′ | ρ(e′) ∈ Ua1 and γ(e′) ∈ Ua2}.

Note that |E⊗| = |E|2, i.e. the size of instance I⊗ is bounded by a polynomial in the
size of I. We define σ(F) = {σ(I) | ∀I ∈ F}. In lemma 3, we show that we can amplify that
hardness result from theorem 2 by applying the transformation σ repeatedly.

I Lemma 3. If H = σr(F) is a family of instances for the s− t path problem that is hard
to approximate to a factor better than α, then σ(H) is hard to approximate within a factor
O(α2).

Proof. Let I = (G, s, t,A,U) be an instance in H. Let us begin by making some observations
about the structure of an optimal solution for σ(I) = (G⊗,A,U⊗).

I Claim 1. If there is a s− t path of price β in G, then there is a s− t path in G⊗ of price
at most β2.

Proof of claim 1. Let P = e1, e2 . . . et be a path of price β in G. We can construct a s− t
path in G⊗ by considering the set of graphs Ge1 . . . Get and picking the edges corresponding
to the edges in P in each of these copies. It can be verified that this gives us a valid path
that has price β2. J

Next we note that the converse is also true.

I Claim 2. If there is a s− t path of price β2 in G⊗ then there is a s− t path in G of price
at most β.

Proof of claim 2. Let P be a path of price β2 in G⊗. Let Ge1 . . . Get be the copies of G that
have non-empty intersection with P . Two cases may arise. Either the set of edges {e1 . . . et}
belong to at most β distinct agents in A or they belong to more than β agents in A. Note
that the set of edges {e1 . . . et} form a path in G, and in the first case this path has price at
most β. In the second case, the price of edges in P ∩Gei must be less than β for some copy
Gei of graph G. These edges also form a s− t path in G of price at most β. Thus in both
cases we can find a path of price at most β in G. J
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Using the observations above, if the price of the optimal solution to I is OPT , then the
price of the optimal solution to σ(I) is OPT 2. Furthermore, if we can approximate the
optimal solution to σ(I) to within a factor of o(α2) then we can approximate the optimal
solution for I to better than o(α), using the construction in claim 2. This yields the desired
contradiction. J

By theorem 2, F is hard to approximate within a factor of logn. Using this as the base
case and applying lemma 3 repeatedly we have the following theorem.

I Theorem 4. The discounted shortest s− t path problem is hard to approximate within a
factor of O(logc n) for any fixed constant c > 0.

2.3 Reduction: Hardness for Discounted Perfect Matching
In this section we consider the discounted perfect matching problem. We show that unless
P = NP, this problem is hard to approximate within a factor of O(logc n) for any fixed
constant c. The proof is based on a factor preserving reduction from the s− t path problem.
We now describe our reduction:

I Lemma 5. Let A be a β-approximate algorithm for the perfect matching problem, then we
can get a β-approximation for the s− t path problem using A as a subroutine.

Proof. Suppose we are given a graph G = (V,E). Construct an auxiliary graph G∗ in the
following way: Replace every vertex v ∈ V by v′ and v′′ and add an edge connecting them.
The price of this edge is zero for every agent. We replace each edge uv ∈ E with the gadgets
shown in figure 2.

Figure 2 Gadgets

On this graph G∗, use the algorithm A to get the minimum weight matching. Let M
be the matching returned. We can interpret M as a s − t path in G in the following way.
Let g(uv) be the edges in G∗ corresponding to the edge uv for the gadget shown in figure 2.
Observe that either one or two edges of every such gadget must belong to M . Let S be the
set of edges in G such that two edges in their corresponding gadget belong to M . One can
check that every vertex in V is incident with zero or two edges from S, whereas s and t are
each incident with exactly one edge in S. Therefore S consists of an s− t path PS and some
other circuits. Now the circuits in S must have cost zero. This is because if a circuit has
positive cost then the cost of the matching can be reduced further by pairing up the vertices
in the circuit as shown in figure 3.

J

Note that the reduction defined in lemma 5 defines a cost preserving bijection between
s− t paths in G to perfect matchings in G∗. Thus, using theorem 4 we have :

I Theorem 6. The discounted perfect matching problem is hard to approximate within a
factor of O(logc n) for any fixed constant c > 0.

FSTTCS 2010



442 Combinatorial Problems with Discounted Price

Figure 3 Circuits not involving edges in S should have zero costs

3 Algorithms for Discounted Combinatorial Optimization

In this section, we present approximation algorithms for the four problems defined earlier.

3.1 Discounted Edge Cover
We will establish a factor O(logn) algorithm for the discounted edge cover problem.

Given a discounted edge cover instance, we construct a set cover instance such that: 1)
An optimal edge cover corresponds to a set cover with the same cost and 2) A set cover
corresponds to an edge cover with a smaller price. For the set cover instance, we apply the
greedy algorithm from [13] to get a set cover whose cost is within logn of the optimal cost.
The corresponding edge cover gives a logn approximation of the optimum edge cover. We
remark that we will have exponentially many sets in the set cover instance that we construct
for our problem. To apply the greedy algorithm, we need to show that in each step, the set
with the lowest average cost can be found in polynomial time.

Now we state our algorithm formally. Consider a set cover instance where we have to
cover the set of vertices, V , with k2n subsets which are indexed by (a, S) ∈ A × 2V . The
cost of the set (a, S), denoted by cost(a, S), is defined as the minimum discounted price of
an edge cover for the vertices in S that can be built by agent a. For the instance of set cover
described above, we apply the greedy algorithm [13] to get a set cover S. Let Ua be the set
of vertices covered by sets of the form (a, S) ∈ S. Let Ca be agent a’s optimal discounted
edge cover of the vertices in Ua. We output {Ca : a ∈ A} as our solution.

The correctness of the algorithm follows from the observation that each Ca is a cover of
Ua thus their union must form an edge cover for V .

Now we show that the running time of the algorithm is polynomial in k and n. Given Ua,
Ca can be found in polynomial time. Thus our algorithm can be implemented in polynomial
time, if we can implement the greedy algorithm on our set cover instance efficiently.

Recall that the greedy algorithm from [13] covers the ground set iteratively. Let Q be
the set of covered elements at the beginning of a phase. The average cost of a set (a, S) is
defined as αa(S) = cost(a, S)/|S −Q|. In every iteration the algorithm picks the set with
the smallest average cost until all the vertices are covered. To show that this algorithm can
be implemented efficiently, we only need to show the following lemma.

I Lemma 7. For any Q ⊂ V , we can find min{cost(a, S)/|S − Q| : (a, S) ∈ A × 2V } in
polynomial time.

Proof. We can iterate over all choices of agent a ∈ A, thus the problem boils down to finding
min{cost(a, S)/|S −Q| : S ⊆ V } for each a ∈ A.

For each integer d, if we can find min{cost(a, S) : |S −Q| = d} in polynomial time, then
we are done since then we can just search over all the possible sizes of S −Q. Unfortunately,
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it is NP-hard to compute min{cost(a, S) : |S −Q| = d} for all integer d. We will use claim 3
to circumvent this problem.
I Claim 3. For any graph G = (V,E) and Q ⊆ V and for any positive integer d, we can find
the set (a, S) minimizing cost(a, S) such that |S −Q| is at least d, in polynomial time.

Proof. To find the desired set we construct a graph G′ = (V ′, E′) as follows: Add a set
X ∪ Y to the set of vertices in G, where |X| = |Q| and |Y | = |V | − |Q| − d. Match every
vertex in X to a vertex in Q with an edge of cost 0. Connect each vertex in Y to each
vertex in V by an edge of very large cost. Set the cost of each edge e ∈ E as ca(e). Find the
minimum cost edge cover in G′. Let S∗ be the set of vertices not adjacent to X ∪ Y in such
a cover. It is easy to verify that S∗ is the desired set. J

By claim 3 above we can generate a collection of subsets {Si ⊆ V : 1 ≤ i ≤ n}, such that
(a, Si) has the lowest value of cost(a, S) among all sets S which satisfy |S −Q| ≥ i.
I Claim 4. min{cost(a, S)/|S −Q| : S ⊆ V } = min{cost(a, Si)/|Si −Q| : 1 ≤ i ≤ n}.

Proof. Let S∗ be the set that has the minimum average cost with respect to agent a.
Suppose |S∗ − Q| = d. By our choice of Sd, we have |Sd − Q| ≥ d = |S∗ − Q| and
cost(a, Sd) ≤ cost(a, S∗). Therefore we have cost(a, Sd)/|Sd − Q| ≤ cost(a, S∗)/|S∗ − Q|,
hence they must be equal. J

By iterating over all a ∈ A, we can find min{cost(a, S)/|S − Q| : (a, S) ∈ A × 2V } in
polynomial time. J

Next we show that the approximation factor of our algorithm is logn. Let OPTEC

and OPTS denote the costs of the optimal solutions for the discounted edge cover instance
and the corresponding set cover instance respectively. Let {Ca : a ∈ A} be the edge cover
reported by our algorithm. For all a ∈ A let Oa be the set of vertices covered by agent a in
the optimal edge cover. The sets {(a,Oa) : a ∈ A} form a solution for the set cover instance.
Therefore OPTS ≤ OPTEC .

Since we use the greedy set cover algorithm to approximate OPTS , we have∑
a∈A

da(Ca) ≤ (logn)OPTS ≤ (logn)OPTEC

Thus we have the following theorem.

I Theorem 8. There is a polynomial time algorithm which finds a O(logn)-approximate
solution to the discounted edge cover problem for any graph over n vertices.

3.2 Discounted Spanning Tree
In this section, we study the discounted spanning tree problem and establish an O(logn)
approximation algorithm for this problem.

Let us first consider a simple O(log2 n)-approximation algorithm. Observe that a spanning
tree is an edge cover with the connectivity requirement. If we apply the greedy edge cover
algorithm in section 3.1, there is no guarantee that we will end up with a connected edge
cover. We may get a collection of connected components. We can subsequently contract
these components and run the greedy edge cover algorithm again on the contracted graph.
We repeat this until there is only one connected component. By this method, we will get a
connected edge cover containing a spanning tree.
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Now we will analyze the above algorithm. Let OPTST be the price of the minimum
discounted spanning tree. After each execution of the greedy edge cover algorithm, there is
no isolated vertex, hence the contraction decreases the number of vertices by at least a a
factor of half, therefore we will have to run the greedy edge cover algorithm at most O(logn)
times. Let OPT r

EC be the price of the minimum edge cover for the graph obtained after
the rth contraction and let Cr be the edge cover that we produce for this iteration. Using
theorem 8, the price of Cr is at most (logn)OPT r

EC . It is easy to see that OPT r
EC is at most

OPTST for every r. Hence the price of Cr is bounded by logn ·OPTST . Since there are at
most O(logn) iterations, the price of the spanning tree produced by the above algorithm is
bounded by O(log2 n)OPTST .

We observe that two main steps in the above algorithm are greedy edge cover and
contraction. Intuitively, they are used to satisfy the covering and connectivity requirements
respectively. The algorithm proceeds by alternately invoking these subroutines. Based on this
observation, our idea to get an O(logn) approximation algorithm is to apply the following
greedy algorithm: rather than apply contraction after each complete execution of the greedy
edge cover, we interleave contraction with the iterations of the greedy edge cover algorithm.
After each iteration, we modify the graph to coerce our algorithm to get a connected edge
cover at the end.

Now we describe our greedy algorithm. For every agent a and subset of vertices S we
define cost(a, S) as the cost of the optimal edge cover for S. We define the average cost
of a set (a, S) as αS

a = cost(a, S)/|S|. The algorithm proceeds in phases and each phase
has two steps, search and contraction. In the rth phase, during the search step we find
the set (ar, Sr) with the lowest average cost and set the potential of each vertex v ∈ Sr as
p(v) = αSr

ar
. The search step is followed by a contraction step, where we modify the graph by

contracting every connected component in the induced subgraph of agent ar’s optimal edge
cover for the set Sr. After this we begin the next phase. The algorithm terminates when we
have contracted the original graph to a single vertex. For every agent, we find the set of all
edges assigned to her across all the search steps declare this as her bundle of assigned edges.
Finally remove unnecessary edges from the set of assigned edges to get a spanning tree.

It is easy to see that we get a connected edge cover at the end of the algorithm, which
proves the correctness of the algorithm. To analyze the running time, we observe that there
can be at most n phases and by Lemma 7, each phase can be implemented in polynomial
time. Hence the algorithm runs in polynomial time.

Next, we prove that the approximation factor of the algorithm is O(logn). Let OPTST be
the price of the optimal solution of the discounted spanning tree instance and let {Ta : a ∈ A}
be our solution. Let V ′ be the set of contracted vertices we produced during the algorithm.
Number the elements of V and V ′ in the order in which they were covered by the algorithm,
resolving ties arbitrarily. Suppose V = {v1, ..., vn} and V ′ = {z1, ..., zn′}. Obviously, n′ ≤ n.

It is easy to verify that
∑

a da(Ta) ≤
∑

i p(vi) +
∑

j p(zj). Therefore we only need to
bound the potentials of the vertices in V ∪ V ′.
I Claim 5. p(vi) ≤ OP TST

n−i+1 for any i ∈ {1 · · ·n} and p(zj) ≤ OP TST

n′−j for any j ∈ {1 · · ·n′}.

Proof. For i ∈ {1 · · ·n}, suppose vi is covered in phase r. Let Gr be the underlying graph
at the beginning of phase r. Since vi, vi+1, ..., vn are not covered before phase r, Gr contains
at least n− i+ 1 vertices. Since the optimal spanning tree can cover the vertices in Gr by a
price of OPTST , by our greedy choice, p(vi) ≤ OPTST /(n− i+ 1).

Similarly, let 1 ≤ j ≤ n′ and assume zj is covered in phase r. Since we should be able
to produce zj+1, zj+2, ..., zn′ from contraction on vertices of Gr, there are at least n′ − r
vertices in Gr. Therefore we have p(zj) ≤ OPTST /(n′ − j). J
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From the above claim, we have∑
a

da(Ta) ≤
∑

1≤i≤n

OPTST

n− i+ 1 +
∑

1≤j≤n′

OPTST

n′ − j
≤ (logn+ logn′)OPTST ≤ O(logn)OPTST

Therefore we have the following theorem:

I Theorem 9. There is a polynomial time algorithm which finds an O(logn)-approximate
solution to the discounted spanning tree problem for any graph with n vertices.

3.3 Discounted s− t Path and Perfect Matching
In sections 2.2 and 2.3 we showed that unlike edge cover and spanning tree, no polylog-
approximate algorithm is likely to exist for discounted s− t path and perfect matching.

Now we describe a simple n-approximate algorithm for discounted s− t path problem.
For each edge e, define we = mina∈A da(ca(e)) and for each s− t path P , define its weight
w(P ) =

∑
e∈P we. Use Dijkstra’s algorithm to find a path P0 with the minimum weight

and output it as the solution. Allocate the edges in P0 as follows: for each edge e ∈ P , we
allocate e to the agent a such that da(ca(e)) = we, with ties broken arbitrarily.

For the analysis, let us define Sa to be the set of edges allocated to agent a in our solution.
Since da is concave, we have da(Sa) ≤

∑
e∈Sa

da(ca(e)). Therefore, the total price of our
solution is bounded by

∑
a∈A

∑
e∈Sa

da(ca(e)) which is exactly w(P0). Let OPT be the path
chosen in the optimal solution (as an abuse of notation, we also use OPT to denote the optimal
value) and OPTa be the set of edges on the path allocated to agent a. By our choice of P0
and weight w, we have w(P0) ≤ w(OPT ) =

∑
a∈A

∑
e∈OP Ta

we ≤
∑

a∈A
∑

e∈OP Ta
da(ca(e)).

Since da is increasing, we have∑
e∈OP Ta

da(ca(e)) ≤ |OPTa| · da(OPTa) ≤ n · da(OPTa).

Therefore w(OPT ) ≤ n
∑

a∈A da(OPTa) = n ·OPT . This implies that our algorithm is an
n-approximate algorithm.

We apply the same idea for discounted perfect matching problem. Define the weight of
a perfect matching M as w(M) =

∑
e∈M we. Use Edmond’s algorithm to find a minimum

weight perfect matching M0 for this weight function. For every e ∈ M0, allocate it to the
agent a such that ca(e) = we. By a similar argument as above, we can show that this is a n
approximate algorithm.
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