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Abstract
Quantitative properties of timed regular languages, such as information content (growth rate,
entropy) are explored. The approach suggested by the same authors is extended to languages of
timed automata with punctual (equalities) and non-punctual (non-equalities) transition guards.
Two size measures for such languages are identified: mean dimension and volumetric entropy.
The former is the linear growth rate of the dimension of the language; it is characterized as the
spectral radius of a max-plus matrix associated to the automaton. The latter is the exponential
growth rate of the volume of the language; it is characterized as the logarithm of the spectral
radius of a matrix integral operator on some Banach space associated to the automaton. Relation
of the two size measures to classical information-theoretic concepts is explored.
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1 Introduction

In a previous work [4, 3], we have formulated the problem of measuring the size (or information
content) of a timed regular language. There, we have associated with a language L the
volume V(Ln) of all its words of size n. This volume grows (or vanishes) exponentially as
n→∞, and its rate (i.e. limn logV(Ln)/n) is referred to as entropy H(L) of the language.
In [4, 3], we characterize this entropy as spectral radius of an integral operator and give some
methods to approximately compute it.

The volume-based definition of entropy has, however, some weaknesses when the automa-
ton contains “punctual” transitions guarded by clock constraints of the form x = c. Indeed, as
soon as a run of the automaton includes such a punctual transition, the volume corresponding
to this run becomes 0. Hence, the information content of such a run is disregarded. For
example, in the automaton on Fig. 1A, intuitively there are more runs on ba∗ than on a∗,
however, according to our previous definitions, the volume of all the runs starting by b is 0
(because they should cross a punctual edge), and they are disregarded.

Worse, if all the runs of some automaton include punctual transitions, the entropy becomes
log 0 = −∞ and does not adequately represent the information content.

In this paper, we address the problem of adequately measuring the language size/
information content of a timed language accepted by a timed automaton with punctual and
non-punctual transitions. Our solution is freely inspired by some ideas of symbolic dynamics
[9], and especially by Gromov’s mean dimension, see [10].

The first difficulty is conceptual: the language (up to n events) corresponding to a timed
automaton from a geometrical standpoint is a set of polyhedra in Rn. Without punctual
transitions, all these polyhedra are full-dimensional, and their cumulated volume is a good
aggregate measure of the language. Whenever we allow punctual transitions, the dimension
of polyhedra varies from 0 to n, and it becomes more difficult to find their total size. For
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q0
b, x = 3/x := 0

a, x ∈ [0; 5]/x := 0a, x ∈ [0; 3]/x := 0

q0
b, x ∈ [2, 5]/x := 0

c, x = 1/x := 0

a, x ∈ [4, 5]/x := 0 a, b, c, x = 3/x := 0

a, b, c, x ∈ [0, 10000]/x := 0

a, b, c, x ∈ [1; 11]/x := 0

a, b, c, x ∈ [2; 3]/x := 0

Figure 1 A. Is it reasonable not to go right? B. Three paths. Who will win?

example, in the automaton of Fig. 1B, the geometric set contains some (exponentially many)
n-dimensional rectangles of volume 1 corresponding to the words aΣ∗, some n−1-dimensional
rectangles of volume 10n−1, and some (n− 1)/2-dimensional rectangles of volume 3 · 100n−1.
A priori it is not clear how to sum up all these volumes. To address this difficulty, we measure
the size of a multidimensional polyhedral set S using a variant of ε-entropy from [7], which
corresponds to the amount of information (in bits) needed to specify any point of S with
precision ε.

Applying this approach to a regular timed language L, we show that a typical timed
word of Ln, whenever time is measured with precision ε, contains n(α log(1/ε) +H) bits of
information. Thus, the size (growth rate, information production rate) of L is characterized
by two numbers (α,H) referred to as mean dimension and v-entropy1. Roughly, Ln resembles
to an αn-dimensional subset of Σn × Rn of a volume 2nH.

The main result of this paper is a characterization of α and H of the language L accepted
by a timed automaton A which proceeds as follows. After pre-processing the automaton
(splitting its states in regions and removing unreachable states), we obtain a timed automaton
A′ and associate with it a max-plus matrix Φ (a kind of adjacency matrix of A′). The mean
dimension α(L) is the max-plus spectral radius of Φ. The eigenspace corresponding to this
spectral radius leads to identification of several critical sub-automata Ac, where all the paths
have the same mean dimension α. For each such subautomaton Ac, we build an integral
operator Ψc acting on a space of functions on the state space of Ac. The v-entropy is the
logarithm of the largest (among all the critical components) spectral radius of Ψc.

The paper is structured as follows. In Section 2, we introduce and illustrate the notion
of ε-entropy and define mean dimension and v-entropy of a timed language. In Section 3,
we make some assumptions on timed automata and describe how to preprocess them, and
characterize volumes and dimensions of polyhedra in a timed regular language. In Section 4,
we obtain the characterization of mean dimension as spectral radius of a natural max-plus
matrix Φ (Theorem 9). We also describe the construction of the “critical sub-automata”
Ac. In Section 5, we associate to each Ac a Banach space and a positive linear operator
Ψc on this space. We characterize v-entropy in terms of its spectral radius in Theorem 14.
We also discuss how this spectral radius can be computed in practice. In Section 6, we
give an information-theoretic interpretation of α and H in terms of ε-entropy, which can

1 “v” for volumetric.
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378 Two Size Measures for Timed Languages

be considered as correctness result for our algorithms. We conclude in Section 7, where we
discuss related work and perspectives.

2 Timed languages and their size measures

2.1 Some geometric terminology
A convex polyhedron P ⊂ Rd is a bounded finite intersection of half-spaces. If it is a
subset of some k-dimensional affine subspace, but not of any k − 1-dimensional one, we
say that dimP = k. A polyhedral set P is a finite union of convex polyhedra. It can be
decomposed into polyhedral components Pm of various dimensions m from 0 to dimP . Such
a decomposition could be non-unique, but we will always use a greedy algorithm: find
maximal polyhedral subset of maximal dimension - this is the first component. Remove it
from P , and repeat the procedure.

The notions above easily extend to subsets of S × Rd, with S a finite set. Given
such a subset P , we denote its component corresponding to an s ∈ S by Ps, that is
Ps = {x|(s, x) ∈ P} ⊂ Rd. We call a subset P polyhedral, if every component Ps is a
polyhedral set. The dimension of a polyhedral set P is the maximum of dimensions of its
components. Ps can be further decomposed into subcomponents of different dimensions Pms ,
with m ≤ d.

In this paper, we will use the well-known ∞-metric on Rd defined as follows:

d(x,x′) = max
i
|xi − x′i|,

balls in this metric are cubes. It can be naturally extended to S × Rd:

d((s,x), (s′,x′)) =
{
d(x,x′), if s = s′;
∞, otherwise.

2.2 Size of multidimensional sets
The key to measuring such multidimensional sets is provided by Kolmogorov and
Tikhomirov’s theory of ε-capacity and ε-entropy [7]. We will use a “diametric” variant
of the notion of ε-entropy, following [11]. Given a compact metric space X, and a ε > 0, we
define the ε-entropy of X as logarithm of the minimum cardinality of a partition of X into
(Borel) subsets of a diameter ≤ ε. The ε-entropy can be seen as the amount of information
(in bits) that is necessary to represent an arbitrary point in X with precision ε.

In particular, for an m-dimensional polyhedron P of a volume V , the minimum cardinality
of an ε-partition is close to V/εm, thus its logarithm is

hε(P ) ≈ log V −m log ε.

For a disjoint union of finitely many polyhedra Pi of dimension mi and volume Vi, its
ε-partition has a size close to

∑
i Vi/ε

mi , (for small ε) and its logarithm can be considered
again as information content. Fig. 2 illustrates this simple fact.

This justifies the following:

I Definition 1. Formal ε-entropy of a finite disjoint family of polyhedra Pi of dimension mi

and volume Vi is defined as:
hε(P ) = log

∑
i

Vi/ε
mi .
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ε

Figure 2 Adding meters to square meters: two polyhedra and their minimal ε-partitions.

2.3 Timed languages and their polyhedra
Given a finite alphabet Σ, a timed word is a sequence t1a1t2a2 . . . tnan with events ai ∈ Σ
and delays ti ∈ [0;∞). A timed language is just a set of timed words. We will use a
natural geometrical interpretation of timed words and languages. Thus a timed word
w = t1a1t2a2 . . . tnan can be seen as a couple of a discrete word η(w) = a1a2 . . . an (called
untiming of w) and a point θ(w) = (t1, t2, . . . , tn) ∈ Rn called its timing, or equivalently as a
point in Σn ×Rn. Similarly, we associate with a timed language L and a natural n, a subset
Ln ⊂ Σn × Rn.

For L a timed regular language, all the geometrical sets described above are polyhedral.
In this paper, we will explore dimensionality and volume characteristics of L, such as

dim(Ln), the dimension of the set of n-event timed words in L, and V(Lmn ), the volume of
the m-dimensional component of this set (clearly, it can be non zero only for m ≤ dim(Ln)).

2.4 Main definitions
The precise aim of this article is to explore the asymptotic behavior of

dim(Ln) as n→∞ (we will show that it is linear);
V(Lmn ) as n→∞ and m ≈ dim(Ln) (we will show that it is exponential).

We will characterize this behavior by two rates (which are just real numbers):

I Definition 2. Two size measures of a timed regular language are defined as follows:
Mean dimension α(L) = limn→∞ dim(Ln)/n;
v-entropy H(L) = limn→∞ log max{V(Lmn ) | αn− d < m < αn+ d}/n (with a constant
d specified below).

The definition of α(L) is very natural, it says that Ln has dimension ≈ αn. The definition
of H(L) saying that the volume of Lmn is approximately 2nH for dimension m close to its
maximal possible value, also seems plausible, the only possible doubt is related to the choice
of m. We will justify these definitions by Theorem 18, which relates α and H to the formal
ε-entropy hε(Ln).

2.5 Example
To illustrate the notions above, consider again the timed language of the automaton of
the Fig. 1B. Here we have the choice to explore three different areas of the automaton,
depending on the choice of the first symbol between a, b and c, yielding the following
language: LB = [4; 5]a([2; 3]Σ)∗ + [2; 5]b(3Σ[0; 10000]Σ)∗ + 1c([1; 11]Σ)∗. The first branch
produces 3n−1 copies of the n-dimensional rectangle [4; 5]× [2; 3]n−1, the second the same
number of rectangles [2; 5]× ({3} × [0; 10000])(n−1)/2 of dimension (n+ 1)/2 (we suppose n
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p q

a, x ∈ [0; 1]/x := 0

a, y ∈ [0; 1]/y := 0

b, x = 0/y := 0b, y = 0/x := 0

q0 q2

q1

a, x ∈ [1; 2]/x := 0 a, y ∈ [1; 2]/y := 0

a, y = 1

Figure 3 Two interesting automata

odd). The third branch has as many n− 1-dimensional rectangles {1} × [1; 11]n−1. Clearly
dim(Ln) = n, thanks to the first branch. Hence, the mean dimension α(L) = 1. Consider
now the volumes:

V(Lnn) = 3n−1; V(L(n+1)/2
n ) = 300n−1 · 3; V(Ln−1

n ) = 30n−1.

According to Def. 2, v-entropy takes into account only the first and the third volumes (with
m ≈ αn = n, and not the second one). The third volume wins the race, hence the v-entropy
H(L) = log 30 ≈ 4.9.

In order to understand why the huge second volume has been disqualified, let us consider
the formal ε-entropy of Ln. The sum under logarithm would be:∑

i

Vi/ε
mi = 3n−1ε−n + 300n−1 · 3ε(1−n)/2 + 30n−1ε1−n

= ε−n
(

3n−1 + (300ε1/2)n−1 · 3ε+ 30n−1ε
)
.

It shows that for ε < 1
100 , the third term, coming from the sublanguage 1c([1; 11]Σ)∗ is

the preponderant one, despite the huge interval in [2; 5]b(3Σ[0; 10000]Σ)∗, which appears
only every 2 events. Only terms with dimension m close to the maximum αn can contribute.

In the example considered, we were able to compute mean dimension, v-entropy and
formal ε-entropy directly from definitions. To convince the reader that it is not always
possible, and advanced methods could be useful, we propose to consider the two automata
on Fig. 3. We believe that their size parameters (at least v-entropy) cannot be obtained
using elementary methods. We will use the automaton on the right of the figure as a running
example.

3 Good timed automata and their pre-processing

We will be able to compute α and H for a subclass of timed automata, and, before proceeding
we have to put the automaton in some normal form. The subclass and the normal form are
very close to those from [3], the main difference is that punctual transitions are allowed.

We consider the following variant of Alur and Dill’s timed automata (see [1] for original
definition). A timed automaton (TA) is a tuple A = (Q,Σ, C,∆, q0). Its elements are
respectively the set of locations, the alphabet, the set of clocks, the transition relation,
and the initial location (we do not need to specify accepting states since all the states are
accepting, neither do we need any invariants). A generic state of A is a pair (q,x) of a control
location and a vector of clock values. A generic element of ∆ is written as δ = (q, a, g, r, q′)
meaning a transition from q to q′ with label a, guard g and reset r. We spare the reader the
definitions of a run of A and of acceptance, but we are obliged to fix some notations. Given
an automaton A, we write L(A) or just L for its accepted language, Lp(x) for the language



Asarin and Degorre 381

accepted by the runs starting at (p,x); if we want to also specify the last state, we write
Lpq(x); finally, for the language accepted along some fixed path π = δ1 . . . δn in A, we write
Lπ(x). This notation will be freely combined with two indices for dimension, thus Lmpn(x) is
the m-dimensional component of the set of traces of n-event runs starting at p with clock
values x.

We say that a deterministic timed automaton with all accepting states and all guards
bounded by a constant M is good if the following Assumption holds:

A1. There exists a D ∈ N such that on every run segment of D transitions, every clock is
reset at least once.

We say that a good TA A = (Q,Σ, C, δ, q0) is in a region-split form if the following
properties hold:

B1. Each location and each transition of A is visited by some run starting at (q0, 0).
B2. For every location q ∈ Q, a unique clock region rq (called its entry region) exists, such

that the set of clock values with which q is entered is exactly rq. For the initial location
q0, its entry region is the singleton {0}.

B3. The guard g of every non-punctual transition δ = (q, a, g, r, q′) ∈ ∆ is just one clock
region.

B4. The guard g of every punctual transition δ = (q, a, g, r, q′) ∈ ∆ has a form xi = c.

Similarly to [3], it is easy to prove the following:

I Proposition 3. Given a good TA A, a region-split TA A′ accepting the same language can
be constructed.

3.1 Recurrent formulas
Given a region-split automaton A, and a path π = δ1 . . . δn in this automaton, the timed
language Lπ(x) corresponds to one convex polyhedron in Σn×Rn, we will denote its projection
on Rn by Pπ(x). We will compute this polyhedron, its dimension and volume by recurrence
on π, starting with an empty path and adding transitions at its beginning one by one.

For the base case (empty path ε), we put

Pε(x) = {x}, dimPε(x) = 0, V(Pε(x)) = 1.

Suppose that we know P = Pπ(x). The recurrent formulas for Pδπ(x), its dimension and
volume look differently for punctual and non-punctual δ. We summarize them in Table 1
and deduce the following result:

I Proposition 4. The dimension and the volume of Pπ(x) for π = δ1 . . . δn are as follows:

dimPπ(x) =
n∑
i=1

φδi
; (1)

VPπ(x) = (ψδ1 . . . ψδn
1)(x). (2)

Knowing the volume and the dimension for every path, we can in principle compute2 them

2 Iterated integrals in the chain of ψδ only lead to polynomials and can be easily computed symbolically.

FSTTCS 2010



382 Two Size Measures for Timed Languages

Punctual δ Non-punctual δ

δ (q, a, y = c, r, q′) (q, a, g, r, q′)
Pδπ(x) {c− y} × Pπ(r(x + c− y))

⋃
τ :x+τ∈g

{τ} × Pπ(r(x + τ))
dimPδπ(x) = dimPπ(x) + φδ

φδ 0 1
V(Pδπ(x)) = (ψδVPπ)(x)

(ψδv)(x) v(r(x + c− y))
∫

x+τ∈g
v(r(x + τ)) dτ

Table 1 Recurrence equations for polyhedra, dimensions, and volumes. ψδ is an operator
transforming functions to functions.

(for given n and m) for the whole language and its sublanguages, in particular

dim(Ln) = max
{

n∑
i=1

φδi
|δ1 . . . δn a path from (q0, 0)

}
; (3)

V(Lmn ) =
∑{

ψδ1 . . . ψδn
(1)|δ1 . . . δn a path from (q0, 0) s.t.

n∑
i=1

φδi
= m

}
. (4)

In two subsequent sections we will determine the asymptotical behavior of these quantities.

4 Max-plus and mean dimension

In this section, we show that dimLn is approximately linear wrt n and compute the rate of
this dependence. We also clean up the automaton removing the paths that do not give the
maximal dimension. The techniques used come from max-plus algebra (see [5]).

4.1 Recalling max-plus
Consider the set Rmax = R∪{−∞} endowed with two operations: max (“addition” denoted ⊕)
and + (“multiplication” denoted ⊗). Operations ⊕ and ⊗ are extended in a natural way to
vectors and matrices; An denotes the n-th max-plus power of a matrix A.

Similarly to usual linear algebra, for a matrix A we say that λ ∈ Rmax and x ∈ Rnmax are
respectively an eigenvalue and an eigenvector of A if A⊗ x = λ⊗ x. The highest eigenvalue
called spectral radius of A admits an interpretation in terms of paths in weighted graphs.
An n × n matrix A corresponds to a weighted graph G with vertices 1, . . . , n. Whenever
Aij > −∞, there is an edge (i, j) in the graph, its weight is Aij . For a path π in G, its
weight w(π) is the sum of weights of edges, and its mean weight is just w(π)/|π|. It is easy
to see that Anij is the maximal weight of a path of n edges from i to j.

As for the spectral radius α, it can be characterized as the maximum of mean weights
for all circuits in the graph G. All the circuits having the same mean weight α are called
critical. The critical subgraph Gcrit ⊂ G contains all the vertices and the edges of critical
circuits (see an example on Fig. 4). We will need the following well-known results on weights
of paths and powers of max-plus matrices:

I Proposition 5 (see [5]). Let A be a max-plus matrix, α(A) its spectral radius, Gcrit its
critical subgraph. Then,

α and Gcrit can be computed in O(n3) using Karp’s algorithm;
Gcrit is a union of several disjoint strongly connected graphs (critical components);
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A =



−∞ −∞ 1 1 −∞ −∞
2 1 −∞ −∞ −∞ 1
−∞ 0 −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞
−∞ 0 −∞ 1 1 −∞
−∞ −∞ −∞ −∞ 0 −∞


1 2

3

4 5

6

1 0

2

1 0

1
1

0

1

0

1

1

Figure 4 A matrix and a graph; critical edges represented in thick lines, α = 1.

for i and j in the same critical component, all the n-paths in Gcrit from i to j have the
same weight equal to the maximal weight in the original graph: = Anij, and close to αn:
more precisely for some constant d we have |Anij − αn| < d;
for arbitrary i and j only the upper bound holds: Anij < αn+ d.

We see that α is the optimal asymptotic mean weight, and that it is attained by any path in
(an SCC of) the critical graph. On the other hand, any path visiting often enough non-critical
edges has a lesser weight:

I Proposition 6. For any path π in a matrix of {−∞, 0, 1}n×n with m non-critical and k
critical edges, the following upper bound holds:

w(π) < d+ αk + βm,

with some constant β < α which depends only on the matrix A.

4.2 Matrix Φ
The theory described above applies almost directly to dimension of timed polyhedra. Indeed,
let us define a max-plus matrix Φ such that Φpq = max{φδ | δ from p to q}. In other words,

Φpq =


−∞ if there is no transition from p to q;

0 if there is a transition and all transitions are punctual;
1 if there is a non-punctual transition.

Then, the following is almost immediate from (3).

I Proposition 7. Φnpq is the dimension of Lpqn(x) (for any clock valuation x).

Thus, we can apply the general theory, compute the spectral radius α(Φ), the critical
subgraph and its SCC decomposition. This way, for any SCC c we obtain a critical sub-
automaton Ac whose control states are the ones corresponding to vertices of c and whose
transitions are those of A, going along critical edges, and having maximal dimension for each
such edge3. Applying Prop. 5 to Ac we obtain:

I Corollary 8. In each critical subautomaton Ac, for any n-path π from p to q , the dimension
of Pπ(x) does not depend on the choice of the path. It is close to αn: more precisely for
some constant d we have |dimPπ(x)− αn| < d.

And we deduce the main result of this section:

3 We do not define the initial state for Ac.
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I Theorem 9. For any good region-split automaton A, let α > −∞ be the spectral radius of
its matrix Φ. Then, for some constant d and all n, the language L of A satisfies:

|dimLn − αn| < d.

Thus α is the mean dimension of L. (In the degenerate case when α = −∞, the automaton
is acyclic and Ln is empty for n large enough.)

I Example 10. We consider the automaton on the right of Fig. 3 and put it in region-split
form. We call p0, p1 and p2 the region-split states corresponding to q0, q1 and q2 with
respective entry regions [y = 1 < x < 2], [0 = x < 1 < y] and [y = 1 < x < 2]. The only
critical cycle is then p0

1<x<2, x:=0−−−−−−−−→ p1
1<y<2, y:=0−−−−−−−−→ p2

y=1−−→ p0. As it yields two non-punctual
and one punctual transition, its mean dimension, the max-plus spectral radius of Φ, is 2

3 .
Therefore, in this example, α = 2

3 .

5 Functional analysis and v-entropy

Exploration of the asymptotic behavior of the volume goes along the same lines as for
dimension, but instead of a max-plus matrix, a matrix of integral operators is iterated. As a
result, while dimension’s asymptotics is linear, the volume evolves exponentially.

5.1 Recalling functional analysis
In order to characterize and compute the v-entropy H, we will use the approach introduced
in [3], based on functional analysis (see e.g. [12]) and in particular the theory4 of positive
linear operators on Banach spaces (see [8]). We will need the following result:

I Theorem 11 (see [8]). Given a positive linear bounded compact operator Θ with a spectral
radius ρ > 0, defined on a Banach space ordered by a generating cone 5, the following holds:

1. ρ is an eigenvalue;
2. there exists a non-negative eigenvector f ≥ 0 corresponding to this eigenvalue;
3. Gelfand’s formula holds: limn ||Θn||1/n = ρ.

5.2 Banach space and operator Ψ
Similarly to [3], and to the previous section, we will represent equation (4) as iteration of
some positive operator, and apply Theorem 11. However, we must take into account the
two parameters n and m of the volume V(Lmn ). Our solution is as follows: we will consider
the critical subgraph introduced above, and thus concentrate on the polyhedra of maximal
dimension m ≈ αn (which corresponds to the definition of v-entropy).

Given a good timed automaton in the region-split form, we first restrict to one critical
subautomaton Ac (we denote its state space by Qc). We define the Banach space Fc as the
set of continuous bounded functions on the set {(q,x)|q ∈ Qc,x ∈ rq}. The norm is defined
by ||f || = supq,x |f(q,x)|. An element f ∈ F can be seen as a vector of functions fq with
simplicial domains rq.

4 A generalisation of the classical Perron-Frobenius theory to infinite dimension.
5 The space F of continuous function considered below straightforwardly satisfies these properties.
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For any p, q ∈ Qc, we define an operator ψpq which maps functions over rq to functions
over rp as the sum of all the operators ψδ (defined in Table 1) for the transitions going from
p to q. Next we define an operator Ψc on F with the matrix (ψ)pq:

(Ψcf)(p,x) =
∑
q

(ψpqfq)(x).

The operator Ψc provides a simple form to formulas (4) restricted to critical paths and
maximal dimension. Let Lc (with subscripts and arguments interpreted in the standard way)
denote the language of the critical subautomaton Ac.

I Proposition 12. For any p, q ∈ Qc:

V(Lcpqn(x)) = (Ψn
c 1q)p(x),

where the function 1q equals one on the state q (more precisely, on {q} × rq), and zero
elsewhere.

5.3 Characterization of v-entropy
In Prop. 12, we have characterized the volume of Lcpqn(x) in terms of nth iteration of the
matrix integral operator Ψc. On the other hand, this operator almost satisfies the hypotheses
of Theorem 11:

I Proposition 13. Ψc is a bounded linear positive operator. ΨD+1
c is compact with D as in

Assumption A1.

This allows to prove, using Theorem 11:

I Theorem 14. Let A be a good region-split TA, Ac its critical subautomaton, Ψc the operator
described above for Ac, and ρc the spectral radius of this operator. Then the following holds:

for any σ > 0, and n big enough, for any state (q,x) of Ac, the upper bound:

V(Lcqn(x)) < (ρc + σ)n;

and for some state q of Ac, some open set O inside rq and some γ > 0, for all x ∈ O,
for all n, the lower bound:

V(Lcqn(x)) > γρnc .

The theorem says that in a critical Ac, the volume grows roughly as ρnc , or, in exponential
form, as 2n log ρc . We can deduce now the required characterization of the v-entropy of the
whole language of A.

I Theorem 15. Let A be a good region-split TA. Then its v-entropy H is the maximum of
log ρc over all its critical subautomata Ac.

I Example 16. On the only critical component of the automaton on the right of Fig. 3
(containing only the three transitions of the critical cycle we mentioned earlier in Ex. 10),
the operators ψpq (defining Ψc) have the following expressions:

(ψp0p1f)(x, y) =
∫ 2−x

τ=0
f(0, y + τ)dτ ;

(ψp1p2f)(x, y) =
∫ 2−y

τ=0
f(x+ τ, 0)dτ ;

(ψp2p0f)(x, y) = f(x+ 1, 1).
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A close examination shows that the integral system Ψcf = λf can be rewritten using only
one real variable, then differentiated twice and finally solved symbolically as a linear ordinary
differential equation. Doing so, we find that the λ having the highest absolute value such
that the system still has non-trivial solutions is

( 2
π

)2/3. Therefore H = 2
3 log 2

π .

5.4 Algorithmic aspects
Practical computation of the spectral radius of an operator Ψ represented by a matrix of
integral operators is a nontrivial task. However, the two methods proposed in [3] can be
applied almost without change. We refer the reader to [3, 2], and only sketch the two
methods:

The first one applies to the subclass of “1 1/2 clocks” automata such that all the regions
rq are of dimension 0 or 1 (it means that all the clocks but one should be reset when
taking a transition). For such an automaton it is possible to transform the integral
eigenvalue equation Ψv = λv to a system of linear ordinary differential equations (indeed,
unknown functions vq are functions of scalar arguments), solve it symbolically and thus
obtain a closed-form equation on the largest eigenvalue ρ.
The second (numerical) method uses iterations of operator Ψ. It is based on the following
fact on positive operators from [8]:
I Proposition 17. Let vn = Ψn1, and α = minq,x vn+1(q,x)

vn(q,x) ; β = maxq,x vn+1(q,x)
vn(q,x) .

Then α ≤ ρ(Ψ) ≤ β.
The bounds α and β can be obtained by a straightforward symbolic computation.

6 Size versus information

I Theorem 18. Let L be a timed language of a good automaton, α and H its mean dimension
and v-entropy. If α > 0 and H > −∞, then the formal ε-entropy of Ln satisfies the inequality,
for all η > 0, for ε small enough and n large enough:

n(−α log ε+H− η) ≤ hε(Ln) ≤ n(−α log ε+H+ η).

The second term of this inequality is logarithm of
∑
m V(Lmn )ε−m where the sum is

computed over all the dimensions m. The first and third terms are close to the logarithm of
the similar sum computed only for terms with m ≈ αn. The proof of the upper bound in
Theorem 18 is based on technical estimates showing that contribution of terms with m < αn

in the sum can be reasonably upper bounded.

7 Conclusions

This paper reports progress achieved recently in the information-theoretical studies of timed
regular languages, especially with punctual transitions. Two components of information
content have been identified and characterized: one represents the dimensionality, another the
volume. Both are characterized by spectral radii of linear operators, matrices of both operators
reproduce the structure of the automaton, but they are still very different in nature (one is
max-plus and finite-dimensional, other is a classical integral operator). Our understanding of
the role of punctual transitions in timed languages has substantially improved. As ongoing
and future work we are interested in relating these results to other information measures,
such as Kolmogorov complexity, and topological entropy, in the spirit of symbolic dynamics.
Our work went in parallel and in interaction with the MSc thesis [6] supervised by one
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of us and exploring in depth symbolic dynamics of timed automata. These two research
lines would eventually merge. On the other hand, we believe that improved measures of
information content for a larger class of timed languages introduced here are more suitable
for eventual implementation and applications.
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