
Model Checking Concurrent Programs with
Nondeterminism and Randomization
Rohit Chadha1, A. Prasad Sistla2, and Mahesh Viswanathan3

1 INRIA & LSV, ENS Cachan and CNRS, FRANCE
2 University of Illinois, Chicago, USA
3 University of Illinois, Urbana-Champaign, USA

Abstract
For concurrent probabilistic programs having process-level nondeterminism, it is often necessary
to restrict the class of schedulers that resolve nondeterminism to obtain sound and precise model
checking algorithms. In this paper, we introduce two classes of schedulers called view consis-
tent and locally Markovian schedulers and consider the model checking problem of concurrent,
probabilistic programs under these alternate semantics. Specifically, given a Büchi automaton
Spec, a threshold x ∈ [0, 1], and a concurrent program P, the model checking problem asks if the
measure of computations of P that satisfy Spec is at least x, under all view consistent (or locally
Markovian) schedulers. We give precise complexity results for the model checking problem (for
different classes of Büchi automata specifications) and contrast it with the complexity under the
standard semantics that considers all schedulers.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.364

1 Introduction

The use of randomization in concurrent or distributed systems is often key to achieving
certain objectives — it is used in distributed algorithms to break symmetry [22] and in
cryptographic protocols to achieve semantic security [19]. The formal analysis of such systems
has often modelled them as Markov Decision Processes [24], that has both nondeterministic
and probabilistic transitions.

In Markov Decision Processes (MDPs), the probability of events depends on the way
the nondeterministic choices are resolved during a computation. It is customary to resolve
the nondeterminism by a scheduler or adversary, who chooses a probabilistic transition
from a state based on the past sequence of states visited during the computation. When
verifying MDPs, one considers the worst possible scenario — one checks that no matter
which scheduler is chosen, the probabilistic properties of the system hold. Model checking
algorithms based on such semantics for MDPs [5, 24] are known, and tools based on these
algorithms have been developed that have been used to analyze many examples [1].

Recently, many researchers have observed [13, 12, 6, 15, 11] that in a number of appli-
cations, taking such a pessimistic view and considering all possible schedulers, can yield
incorrect verification results. The problem arises when one considers a concurrent system
where individual processes exhibit both probabilistic and nondeterministic behavior. For such
systems, there are certain perfect information schedulers that will resolve local process-level
nondeterminism based on information that would not be available to the local process, and
there by exhibit behavior that is unreasonable. For example, consider the example presented
in [18] of two processes “Toss” and “Guess” that do not communicate with each other. The
process Toss tosses a fair coin, and Guess guesses (nondeterministically) what the outcome
of Toss’s coin toss was. Clearly, since Toss and Guess do not communicate, the probability
that Guess makes the right guess should be bounded by 1

2 . However under a scheduler that
© Rohit Chadha and A. Prasad Sistla and Mahesh Viswanathan;
licensed under Creative Commons License NC-ND

IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 364–375

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.364
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

R. Chadha and A. P. Sistla and M. Viswanathan 365

resolves Guess’s nondeterminism based on the result of Toss’s coin toss, the probability of a
correct guess can be as high as 1! (Additional examples can be found in [9].) Therefore, in
analyzing concurrent programs, in many cases, it is necessary to restrict attention to certain
“reasonable” schedulers that resolve local nondeterminism based only on information that is
locally visible to the process.

We call such schedulers to be view consistent. More precisely, a view consistent scheduler
is the composition of two schedulers — a global scheduler that picks the process to schedule,
and a local scheduler that chooses a probabilistic transition of the process. We assume that the
global scheduler can choose the process based on the entire computation thus far. However,
the local scheduler’s decision must only be based on the local view of the computation. In
other words, if σ and τ are computations such that the states as observable to process P are
identical at every step, then the local scheduler for P must pick the same transition after both
σ and τ . Observe that if the individual processes are purely probabilistic, then every scheduler
is view consistent; the difference arises only when there is local nondeterminism. A similar
class of schedulers called distributed schedulers has been considered in [18, 16, 17]. However,
there is a subtle difference between distributed schedulers and view consistent schedulers (see
Related Work) and the results presented here do not follow from those in [18, 16, 17]. In this
paper, we also consider another class of restricted schedulers that we call locally Markovian.
Locally Markovian schedulers are view consistent schedulers with the additional restriction
that the local scheduler’s decision only depends on the length of the computation and the
current local state, and not on the entire local view of the computation; note, that in a locally
Markovian scheduler, the global scheduler can still choose the process to execute based on
the entire history. Locally Markovian schedulers are the natural analog in the concurrent
case of Markovian schedulers that have been considered in other contexts [23, 4].

In this paper, we investigate the complexity of the verification problem for concurrent
programs. We assume that the correctness specification is given by a Büchi automaton Spec,
whose input alphabet consists of the states of the program P, and a threshold x ∈ [0, 1].
We say P |=vc

.x Spec (P |=lm
.x Spec), where . ∈ {>,≥}, if under all view consistent schedulers

(locally Markovian schedulers) the measure of computations of P accepted by Spec is .x.
Our results are summarized in Figure 1.

We show that the verification problem is in general undecidable, when we restrict to
either view consistent or locally Markovian schedulers. When the threshold is 0, both the
problems of checking P |=vc

>0 Spec and P |=lm
>0 Spec, remain undecidable even when Spec is

a deterministic Büchi automaton. For the case when x ∈ (0, 1), the problems of checking
P |=vc

>x Spec, P |=vc
≥x Spec, P |=lm

>x Spec, and P |=lm
≥x Spec, remain undecidable even when

Spec is a safety automaton.1

We then investigate the complexity of the verification problems left open by the above
undecidability results. Namely, we consider the problems of checking Spec that are determin-
istic or safety automata, when x = 1, and of checking safety properties when x = 0. We show
that many of these problems are indeed decidable, and we characterize their computational
complexity precisely. Specifically, we show that the problems of checking P |=vc

=1 Spec and
P |=lm

=1 Spec are PSPACE-complete, where Spec is a safety automaton; checking P |=lm
=1 Spec,

when Spec is deterministic, is EXPSPACE-complete; and checking P |=lm
>0 Spec, when Spec

is a safety automaton, is also EXPSPACE-complete. The decidability/complexity of check-

1 A safety automaton is a deterministic Büchi automaton such that all states are accepting except for a
unique rejecting state; all transitions from the rejecting state stay in the rejecting state. Every regular
safety property can be recognized by such an automaton, and hence the name.

FSTTCS 2010

366 Model Checking Nondeterministic, Randomized, Concurrent Programs

ing P |=vc
=1 Spec when Spec is deterministic, and checking P |=vc

>0 Spec when Spec is a
safety property, remain open. However, we show that these model checking problems for
view consistent schedulers are 2-EXPTIME-complete, for two special classes of programs.
The first class is that of programs P where all processes, except possibly one, are purely
probabilistic (i.e., have no local nondeterminism). The second class of programs are those
where each process has a set of global variables, and some local variables that are private to
the process. In addition, we restrict the program to be mutually exclusive, that requires that
in each global state exactly one process is enabled and we require the specification to be on
the shared state, that requires that the state of the specification depends only on the history
of global states visited.

We contrast the above complexity results with the complexity of the same verification
question when we consider all schedulers (not just view consistent or locally Markovian
schedulers). As previously observed [13], the complexity of verification with respect to perfect
information schedulers, is easier. We show that for safety specifications Spec and x = 1,
the verification problem is PSPACE-complete, just like in the case of view consistent and
locally Markovian schedulers. All the other verification problems, on the other hand, are
EXPTIME-complete. Note that, in contrast to the complexity results reported in [5] for
MDPs, the blowup in complexity when considering concurrent programs can be explained by
the state space explosion problem.

We conclude this introduction by comparing our model of concurrent programs under
view consistent schedulers to other probabilistic models for which model checking results
are known. Probabilistic automata on infinite strings [3], are a special case of programs
under locally Markovian schedulers (see Theorem 3.1 and Lemma 3.6). Partially Observable
MDPs [13] are a special case of programs where all, except possibly one, processes are purely
probabilistic (see discussion in Related Work). Finally, MDPs are equivalent to programs
where all processes are purely probabilistic. Thus, many of the commonly studied models
are special kinds of concurrent programs, and we exploit these connections to prove some
upper bounds using translations and embeddings in to these models. Our proofs of lower
bounds on the complexities are quite nontrivial and do not follow from any relationships to
the above models since our programs are given in a different notation.

The paper is organized as follows. Section 2 contains preliminaries, and definitions of
programs and schedulers. Section 3 contains the technical results and the conclusions are
presented in Section 4. Motivating examples and proofs of most of the theorems are given
in [9].

Related Work
Restricting the class of schedulers has been observed to be important in obtaining composi-
tional reasoning principles [14], and in correctly analyzing security protocols and distributed
algorithms [13, 12, 6, 15, 11]. The schedulers considered in these papers are very similar to
the class of view consistent schedulers that we consider. In [14], the processes are assumed
to run synchronously, and thus the scheduler is the composition of local schedulers that
resolve nondeterminism based on local views; there is no global scheduler. In [12, 6], the
nondeterministic choices are broken into tasks. A task scheduler chooses the task, and this
choice is assumed to be oblivious of the actual computation, and local scheduler picks the
actual transition within the task by looking at the local state. The task scheduler can be seen
as our global scheduler; however, the difference is that our global schedulers are not oblivious.
Finally, in [11], the authors don’t restrict attention to a specific class of scheduler but rather
develop a process calculus within which the schedulers can be specified. All these papers, are

R. Chadha and A. P. Sistla and M. Viswanathan 367

primarily interested in defining clean compositional semantics, and do not consider the model
checking problem per se. A closely related class of schedulers called distributed schedulers
is considered in [18, 16, 17], where the problem of model checking safety properties against
any threshold is shown to be undecidable. However, distributed schedulers are different
than view consistent schedulers that we consider here — in a distributed scheduler, a local
scheduler of process i is completely oblivious of steps in which process i did not get scheduled,
whereas in view consistent schedulers, it is aware that some other process was scheduled. This
difference is manifested in the fact that P |=>0 Spec for safety specifications is undecidable for
distributed schedulers [16, 17], whereas it is open for view consistent schedulers. Furthermore,
no decidability results are presented in [18, 16, 17].

As indicated in the introduction, the model checking problem and its complexity for
the related model of Partially Observable MDPs (POMDP) has been investigated in earlier
works [13, 20, 2, 10]. A POMDP P can be seen as a special case of a concurrent program
with two processes under view consistent semantics as follows. The POMDP itself is process
P1, and the second process (say P2) plays the role of “scheduling” the next transition of P1.
They share 3 variables: state that stores the partial state of P1 that is visible outside, trans
that is used by P2 to inform P1 what the next transition should be, and turn which is used by
the processes to alternate taking turns. In each “round”, P2 first picks P1’s next transition,
and then P1 “executes” that transition; observe, that P1 is a purely probabilistic process,
and all the nondeterminism has been deferred to P2. Under view consistent schedulers, the
two processes P1 and P2 are “equivalent” to the POMDP. Also decision problems for any
programs whose all, except possibly one processes are purely probabilistic, can in turn be
shown to be “equivalent” to a POMDP of size exponential in the length of the program (see
Lemma 3.9). This relationship is exploited by us to prove some upper bounds.

Similarly, the “equivalence" between decision problems on probabilistic automata on
infinite strings and decision problems on programs under “locally Markovian" schedulers is
exploited to obtain the undecidability results using the results of [2, 7]. This equivalence is
also exploited to obtain upper bounds for checking P |=lm

=1 Spec when Spec is deterministic,
and checking P |=lm

>0 Spec when Spec is a safety property.

2 Definitions

2.1 Preliminaries
The powerset of any set A will be denoted by 2A. Given any set Σ, Σ+ will denote the set
of nonempty finite words over Σ and Σω the set of infinite words over Σ. Given a word
α ∈ Σ+ ∪Σω, we will denote the length of α by length(α) (length of α is ω for α ∈ Σω). We
assume that the reader is familiar with basic measure theory. We will also assume familiarity
with finite automata on infinite strings and Partially Observable Markov Decision Processes
(POMDP).

2.1.1 Probabilistic Automata
We recall the definition of probabilistic Büchi automata (PBA)s [3]. Informally, a PBA is
like a deterministic Büchi automata except that the transition function from a state on a
given input is described as a probability distribution that determines the probability of the
next state. Formally, a PBA over a finite alphabet ∆ is a tuple B = (Q, qs, Qf , δ) where
Q is a finite set of states, qs ∈ Q is the initial state, Qf ⊆ Q is the set of accepting/final
states, and δ : Q×∆×Q→ [0, 1] is the transition relation such that for all q ∈ Q and a ∈ ∆,

FSTTCS 2010

368 Model Checking Nondeterministic, Randomized, Concurrent Programs

∑
q′∈Q δ(q, a, q′) = 1. For this paper, we assume that δ(q, a, q′) is a rational number for all

q, q′ ∈ Q and a ∈ ∆.
Intuitively, the PBA B starts in the initial state qs and if after reading a0, a1 . . . , ai

results in state q, it moves to state q′ with probability δ(q, ai+1, q
′) on symbol ai+1. Given a

word α ∈ ∆ω, B can be thought of as an infinite-state Markov chain which gives rise to the
standard σ-algebra defined using cylinders and the standard probability measure on Markov
chains [25, 21]. We denote this measure by µα,B. A run of B is an infinite sequence ρ ∈ Qω.
A run ρ is accepting if ρ satisfies the Büchi acceptance condition, i.e., ρ[i] ∈ Qf for infinitely
many i.

The set of accepting runs is measurable. Given α, the measure of the set of accepting
runs will be denoted by µaccB, α and is said to be the probability of accepting α. Given x ∈ [0, 1]
and . ∈ {>,=,≥}, we let L.x(B) = {α ∈ ∆ω | µaccB, α . x}.

We identify one useful syntactic restriction of PBAs, called finite probabilistic monitors
(FPM)s [7]. In a FPM, all the states are accepting except a special absorbing reject state
(a state qr is said to be absorbing if δ(qr, a, qr) = 1 for each input a ∈ ∆). By using a set
of Rabin pairs instead of a set of final states, we can define Probabilistic Rabin automata
(PRAs).

2.2 Programs
We will denote the set of Boolean expressions over Boolean variables V by BEXP(V). The
value of a Boolean expression BEXP under a truth assignment s : V → {0, 1} will be denoted
by [[Bexp]]s. We use 2V to denote the set of assignments on V . An update to variables in V
is a set of assignments of the form x := Bexp, such that each variable appears the left hand
side of at most one assignment in the set. An update A defines a function appA : 2V → 2V
as follows: if x := Bexp ∈ A then appA(s)(x) = [[Bexp]]s, and if x is not on the left hand side
of any assignment in A then appA(s)(x) = s(x). We say that s′ is obtained by applying the
update A to s if appA(s) = s′.

A probabilistic concurrent program P with n processes is a tuple (V, s0, (V1,P1), ..., (Vn,Pn)).
Here Vi is a finite set of Boolean variables that process i reads and writes to, with V = ∪ni=1Vi
being the set of program variables. s0 ∈ 2V is the initial state of the program, and Pi is
a finite set of transitions of process i defined as follows. Each transition τ of process Pi
is of the form (C, p1 : A1, p2 : A2, ..., pk : Ak) where C is a Boolean expression on Vi, and
(p1, ..., pk) is a sequence of nonzero rational probabilities that add up to 1 and A1, ..., Ak
are updates such that all the variables appearing (on the left hand side or right hand side
of an assignment) in Aj are in Vi. For any i, j, we say that processes i, j communicate if
Vi ∩ Vj 6= ∅. For any i, 1 ≤ i ≤ n, let Li = Vi − ∪j 6=iVj , namely, the set of variables of Pi
that are not visible to any other process. The variables in Li are said to be local variables of
process i. We will also assume, without loss of generality, that each process has at least one
variable — a process i without any variables can be modeled in our framework as a process
with one local variable whose value remains constant.

The states of P will be 2V . Let τ = (C, p1 : A1, p2 : A2, ..., pk : Ak) be a transition of a
process Pi. We say that τ is enabled in state s if C is satisfied in s. The process Pi is said
to be deterministic (or purely probabilistic) if for each state s, there is at most one transition
of Pi enabled in s. Assume that τ is enabled in s. If the transition τ is executed in state
s, then one of the updates A1, ..., Ak is chosen, with the probability distribution given by
p1, ..., pk and applied to the state s. Let ti be the state obtained by performing the update
Ai to the state s. We say that the probability that the next state is ti is pi when transition
τ is executed in state s. We assume that for each state s, there is some process Pi such that

R. Chadha and A. P. Sistla and M. Viswanathan 369

some transition of Pi is enabled in s. For any state s and process index i, 1 ≤ i ≤ n, we let
s|i denote the restriction of s to the variables in Vi. Intuitively, s|i denotes the part of the
state that is visible to process i, i.e., the local state.

A program is interpreted using schedulers which, depending on the history, resolve
nondeterminism by assigning which of the enabled actions is fired in a given state.
Classes of Schedulers. Let P be a program with n processes P1, . . .Pn. Let 2V be the
set of states of P and Trans be the set of transitions of P. A history is an element of
(2V)+. Given a history h = t0...tm, we define last(h) to be the state tm and length(h) to be
m+ 1. Given a process index i, 0 ≤ i ≤ n, we define h|i to be the word (t0|i)(t1|i)...(tm|i).
Intuitively, h|i denotes the view of process i in h.

A scheduler η : (2V)+ → Trans is a function that associates, with each history of a
program P, a transition τ of some process of P that is enabled in the last state of the history.
We say that a scheduler η is view consistent if the following property holds for every pair of
histories h, h′ and every process index 1 ≤ i ≤ n: if η(h), η(h′) are both transitions of process
i and h|i = h′|i then η(h) = η(h′). Intuitively, view consistency requires that the transition
of a process, chosen by the scheduler, should depend only on the view of the process; that
is, the nondeterminism within a process is resolved based purely on process’ view of the
computation history. Note that the above condition does not prevent the scheduler from
choosing transitions of different processes for h and h′.

We say that η is locally Markovian (or locally step dependent) if the following property
holds for every pair of histories h, h′ and every process i: if η(h), η(h′) are both transitions
of process i, length(h) = length(h′), and last(h)|i = last(h′)|i, then η(h) = η′(h). Note
that in this case, the transition scheduled should only depend on the length of the history
and the current local state of the process. Observe that every locally Markovian scheduler is
also view consistent.

Computations. In presence of a scheduler η, a program P with 2V as set of states can be
thought of as an infinite-state Markov chain which gives rise to the standard σ-algebra on
(2V)ω and the standard probability measure [25, 21]. We will denote this Markov chain as
MP,η and the standard probability measure generated as µMP,η . The set (2V)ω shall be
called the set of paths ofMP,η.

Let A be a Büchi automaton with 2V (the set of states of P) as its input alphabet. We
say that A accepts an infinite path ρ ∈ (2V)ω ofMP,η, if it accepts the infinite sequence ρ.
Let L(A) be the language accepted by A. Now L(A) is a measurable set in the space of paths
defined by MP,η and we call the measure of L(A), µMP,η(L(A)), to be the probability of
acceptance of MP,η. Given a rational number x and . ∈ {>,=,≥}, we shall write P, η |=.x A
if µMP,η (L(A)) . x. The automaton A will be henceforth called a specification automaton.

Predicate automaton. It is often useful to present the specification automaton A succinctly
in the following fashion. A predicate automaton Spec is a tuple (V,Q, qs, Qf ,→) where V
is a finite set of boolean variables, Q is a finite set of states, qs ∈ Q is the initial state,
Qf ⊆ Q is the set of final states and →⊆ Q × BEXP(V) × Q is a finite set of predicate
transitions. Given a predicate automaton Spec, we define a specification automaton [[Spec]]
as follows: [[Spec]] = (2V , Q, qs, Qf , δ) where (q, s, q′) ∈ δ iff there is a predicate transition
(q,Bexp, q′) ∈→ such that s satisfies Bexp. Please note given any specification (Büchi)
automaton A, there is a predicate automaton Spec such that [[Spec]] = A. Furthermore,
we will say that Spec is a deterministic predicate automaton (respectively safety) if [[Spec]]
is a deterministic automaton (respectively safety automaton). Whenever convenient, we
will often confuse Spec with [[Spec]]. Given any history h ∈ Σ∗ let Spec(h) be the state that

FSTTCS 2010

370 Model Checking Nondeterministic, Randomized, Concurrent Programs

ω-regular Spec Deterministic Spec Safety Spec
P |=vc

=1 Spec Undecidable ?b PSPACE-complete
P |=lm

=1 Spec Undecidable EXPSPACE-complete PSPACE-complete
P |==1 Spec EXPTIME-completea EXPTIME-complete PSPACE-complete
P |=vc

>0 Spec Undecidable Undecidable ?b

P |=lm
>0 Spec Undecidable Undecidable EXPSPACE-complete

P |=>0 Spec EXPTIME-completea EXPTIME-complete EXPTIME-complete
P |=vc

.x Spec Undecidable Undecidable Undecidable
P |=lm

.x Spec Undecidable Undecidable Undecidable
P |=.x Spec EXPTIME-completea EXPTIME-complete EXPTIME-complete

Figure 1 Summary of complexity results. For entries with superscript a, we assume that Spec is
given as a deterministic predicate Rabin automaton. For entries with superscript b, the problem
becomes 2-EXPTIME-complete if either (i) all but one processes of P are deterministic (purely
probabilistic), or (ii) if the processes communicate through global variables and are mutually
exclusive, and Spec is on the shared state.

[[Spec]] is in after reading h from its initial state.
Similar to the predicate automaton, we can define a predicate Rabin automaton, in which

instead of using a set of final states, we use a set of Rabin pairs. As in the case of predicate
automaton, a predicate Rabin automaton gives rise to a Rabin automaton.
Verification. Given a rational number x and . ∈ {≥,=, >}, we will write P |=.x Spec
if for every scheduler η, we have that P, η |=.x [[Spec]]. Similarly, we write P |=vc

.x Spec
(P |=lm

.x Spec, respectively) if for every view consistent scheduler η (locally Markovian
scheduler, respectively), P, η |=.x [[Spec]]. Thus, the verification problem we consider is one
where given P, Spec, rational number x ∈ [0, 1], and . ∈ {≥,=, >} as input, we want to
determine if P |=.x Spec (or P |=vc

.x Spec or P |=lm
.x Spec). The predicate automaton Spec is

often called the specification.

3 Complexity and decidability for general programs

In this section, we present results on the decidability and complexity of the verification
problems defined in Section 2. Our results are summarized in Figure 1. We will now state
the results. The missing proofs as well as all the proofs/results of all schedulers can be found
in [9].

3.1 Undecidability
We start by establishing the undecidability of the model checking problem for concurrent
programs in a variety of settings.

I Theorem 3.1. Given a program P and a predicate automaton Spec, the following problems
are undecidable.

(a) Determining if P |=vc
=1 Spec and P |=lm

=1 Spec.
(b) Determining if P |=vc

>0 Spec and P |=lm
>0 Spec, even when Spec is a deterministic specifica-

tion.
(c) Given a rational x ∈ (0, 1) and . ∈ {>,≥}, determining if P |=vc

.x Spec and P |=lm
.x Spec,

even when Spec is a safety specification.
The above undecidability results continue to hold even if P is restricted to be a program con-
sisting of two processes, one of which is purely nondeterministic (no probabilistic transitions)
and the other is purely probabilistic (no nondeterministic transitions).

R. Chadha and A. P. Sistla and M. Viswanathan 371

Theorem 3.1 is proved as follows: for part (a) we reduce the problem of checking if a given
PRA accepts every input with probability 1; for part (b) we reduce the problem of checking
if a given PBA accepts every input with probability > 0; and for part (c) we reduce the
problem of checking if a given FPM accepts every input with probability .x.

For a program P, the observations in Theorem 3.1, leave open the decidability of the
following questions.

(a) if Spec is a safety specification, check if P |=vc
=1 Spec (or check if P |=lm

=1 Spec)?
(b) if Spec is a safety specification, check if P |=vc

>0 Spec (or check if P |=lm
>0 Spec)?

(c) if Spec is a deterministic specification, check if P |=vc
=1 Spec (or check if P |=lm

=1 Spec)?
We address these questions in the forthcoming sections. The decidability of (a) is shown in
Theorem 3.2 in Section 3.2. The problems in (b) and (c) are also shown to be decidable for
locally Markovian schedulers, in Section 3.2; these problems remain open for the case of view
consistent schedulers. However, in Section 3.3, we show that these problems are decidable
for two special classes of programs.
I Remark. Distributed schedulers, introduced in [18] and further studied in [16, 17], are very
similar to view consistent schedulers that we consider here. However, there is one important,
subtle difference between them. In a view consistent scheduler, the local scheduler of process i
is aware of both the steps when process i was scheduled and those when it was not scheduled;
in distributed schedulers the local scheduler is only aware of the steps when it was scheduled.
Thus, the undecidability results presented here do not follow from [18, 16, 17]. Moreover,
in [16, 17], the problem of checking if P |=>0 Spec for safety specifications Spec under all
distributed schedulers is shown to be undecidable; however, that proof does not extend to
view consistent schedulers and this problem for view consistent schedulers (as stated in the
discussion above) is open.

3.2 Decidability results for locally Markovian semantics
We begin by establishing the decidability of checking if the measure of computations accepted
by a safety specification, under every scheduler in a class C, is 1. We, in fact, show that for
any of the three classes of schedulers that we consider, this problem is PSPACE-complete.

I Proposition 3.2. Given a program P and a safety specification Spec, the following problems
are PSPACE-complete: determining if P |=vc

=1 Spec, if P |=vc
=1 Spec and if P |=lm

=1 Spec.

We now establish that the problems of determining if P |=lm
>0 Spec when Spec is a safety

specification, and of determining if P |=lm
=1 Spec when Spec is deterministic are EXPSPACE-

complete. We begin by defining a special class of locally Markovian schedulers that we
call Spec-determined. These are schedulers that are required to choose the same transition
after equal length histories h and h′ that end in the same state, if the state reached by the
specification [[Spec]] after h (namely, Spec(h)) is the same as Spec(h′).

I Definition 3.3. Let P be a program with n processes, and let Σ be the set of states of P and
Trans be the set of transitions of P. Let Spec be a deterministic specification with Q as the
set of states. We say that a locally Markovian scheduler η : Σ+ → Trans is Spec-determined
if for any pair of histories h, h′ ∈ Σ+ such that length(h) = length(h′), Spec(h) = Spec(h′)
and last(h) = last(h′), we have that η(h) = η(h′).

The reason for considering Spec-determined schedulers is because we can show that
for the problems of verifying safety with non-zero probability and verifying deterministic
specifications with probability 1, we can restrict our attention to Spec-determined schedulers.
This is the content of the next proposition.

FSTTCS 2010

372 Model Checking Nondeterministic, Randomized, Concurrent Programs

I Proposition 3.4. For any program P and safety specification Spec, P |=lm
>0 Spec iff for any

Spec-determined locally Markovian scheduler η; P, η |=>0 Spec. For deterministic specification
Spec, P |=lm

=1 Spec iff for all Spec-determined locally Markovian schedulers η; P, η |==1 Spec.

We need one more definition.

I Definition 3.5. Let P be a program with n processes with V as the set of variables and
Trans as the set of transitions. Let Spec be a deterministic specification. We say a function
g : Q× 2V → Trans is Spec-determined and locally consistent if for all q ∈ Q and s ∈ 2V ,
g((q, s)) is enabled in s; and g((q1, s1)) = g((q2, s2)) whenever (q1, s1), (q2, s2) ∈ Q× 2V are
such that g(q1, s1), g(q2, s2) belong to the same process Pi and s1|i = s2|i. The set of Spec-
determined and locally consistent functions of program P shall be denoted as Loc(P, Spec).

Given a deterministic specification Spec, it is easy to see that there is a bijection between
the set of Spec-determined locally Markovian schedulers of a program P and (Loc(P, Spec))ω,
the set of infinite sequences over (Loc(P, Spec)). We call this function LocP,Spec. The key
technical idea exploited in our model checking algorithm is the following. Given a program
P and a specification Spec, one can construct a PBA B that accepts a word LocP,Spec(η) with
the same probability as the computation of P under scheduler η satisfies Spec.

I Lemma 3.6. Given a program P and a deterministic specification Spec, let ∆ be Loc(P, Spec),
the set of Spec-determined locally consistent functions. There is a PBA B on input alphabet
∆ such that the following hold–

The number of states of B is exponential in the size of P and Spec.
For any Spec-determined locally Markovian scheduler η, the probability that the computa-
tionMP,η satisfies Spec is the probability of LocP,Spec(η) being accepted by B.
B can be taken to be a FPM if Spec is a safety specification.

We have the following theorem.

I Theorem 3.7. Given a program P and a deterministic specification Spec the problem of
determining if P |=lm

=1 Spec is EXPSPACE-complete. If Spec is a safety specification, then
the problem of determining if P |=lm

>0 Spec is also EXPSPACE-complete.

We had shown in [7, 8] that given a PBA B, the problem of checking whether all words
are accepted with probability 1 is in PSPACE. We had also shown in [7] that given a
FPMM, the problem of checking whether all words are accepted with probability > 0 is in
PSPACE. In light of Lemma 3.6, this immediately implies that the problems of determining
whether a program satisfies a deterministic specification with probability 1 and whether a
program satisfies a safety specification with nonzero probability are decidable. However, note
that as the input alphabet constructed in Lemma 3.6 is doubly-exponential in the size of
the input, the straightforward application of the results in [7, 8] do not lead to inclusion
in EXPSPACE. The inclusion in EXPSPACE is achieved by a careful examination of
algorithms given in [7, 8] and running the algorithm without explicitly constructing the PBA.

3.3 Decidability results for view consistent semantics
Proposition 3.2 already establishes that checking whether every computation of a program P
generated by a view consistent scheduler satisfies a safety specification with probability 1 is
PSPACE-complete. We now consider the remaining questions, namely, checking whether
P |=vc

>0 Spec when Spec is a safety property, and checking whether P |=vc
=1 Spec when

Spec is a deterministic specification. While the decidability of these problems is open, we
prove decidability for special classes of programs P. First we show that these problems are
2-EXPTIME-complete when all processes of P, except possibly one, are deterministic.

R. Chadha and A. P. Sistla and M. Viswanathan 373

I Theorem 3.8. Given a program P and a deterministic specification Spec such that all
processes of P except one are deterministic, the problem of checking if P |=vc

=1 Spec is 2-
EXPTIME-complete. Given a safety specification Spec, the problem of checking if P |=vc

>0
Spec is also 2-EXPTIME-complete.

The main idea behind the proof of 2-EXPTIME membership is to reduce it to model
checking POMDPs. The following is proved in [9].

I Lemma 3.9. Given a program P and a deterministic specification (safety specification,
respectively) Spec such that all processes of P except one are deterministic, there is a POMDP
M and a subset Q of states ofM such that P |=vc

=1 Spec (P |=vc
>0 Spec, respectively) iff under

every observation based scheduler, the measure of paths ofM that visit Q infinitely often is
1 (> 0, respectively).

The second special class of programs that we consider are the following. Processes in a
program are said to communicate through global variables if every pair of processes share
the same set of variables. We say that processes in P are mutually exclusive if in every state
the transitions of only one process are enabled. A deterministic specification Spec is said to
be on the shared state if whenever (q,Bexp, q′) is a transition of Spec, Bexp evaluates to the
same value for any two program states in which the global variables take the same value.

I Theorem 3.10. Given a program P where the processes communicate through global
variables and are mutually exclusive, and a deterministic specification (safety specification,
respectively) Spec on the shared state, the problem of checking P |=vc

=1 Spec (P |=vc
>0 Spec,

respectively) is 2-EXPTIME-complete.

The proof of the 2-EXPTIME-decidability relies on showing that if there is a scheduler η
such that P, η |=<1 Spec (P, η |==0 Spec) for a deterministic specification on the shared state
(safety specification) then there is a “periodic” scheduler η′ that witnesses the same fact. The
model checking algorithm searches for such a periodic scheduler by reducing it to µ-calculus
model checking on a finite (doubly exponentially sized) bi-partite graph G. We illustrate the
construction of the graph G for the case when Spec is a deterministic specification.

Let P be a program where the processes communicate through global variables and are
mutually exclusive, and Spec be a deterministic specification on the shared state. We start
by some definitions. Assume that P has n processes, V is the set of shared variables and Vi is
the set of local variables of process i. It is easy to see that the set of states of P can be taken
to be 2V × 2V1 × . . .× 2Vn . We henceforth refer to this set as States(P). If Q is the set of
states of Spec then the set Q× States(P) is said to be the set of extended states and will be
referred to by EStates(Spec,P). An extended state es = (q, s) is said to be feasible if there is
a history h of P such that the measure of h is > 0, h(0) is the initial state of P, last(h) = s

and Spec(h) = q. Let πP : EStates(Spec,P)→ States(P) be the map πP((q, s)) = s. Given
es = (q, s) ∈ EStates(Spec,P) and a Spec-determined and locally consistent function g (see
Definition 3.5), let succg(es) = {(q′, s′) | (q, s, q′) is a transition of [[Spec]] & s′ is obtained
with nonzero probability when g((q, s)) is executed in s}.Given a set U ⊆ EStates(Spec,P),
let succg(U) = ∪es∈U succg(es).

A set of states S ⊆ States(P) is said to be closed if S = {v} × S1 × . . . × Sn for some
v ∈ 2V and Si ∈ 2Vi . A set U ⊆ EStates(Spec,P) is said to be an extended closed set if πP(U)
is closed. We show in [9] that for any extended closed set U , succg(U) can be partitioned into
a union of disconnected extended closed sets. Two extended closed sets U1 and U2 are said to
be disconnected if for each es1 ∈ U1 and es2 ∈ U2 and each process i, πP(es1)|i 6= πP(es2)|i.
We shall call these disconnected sets components of succg(U).

FSTTCS 2010

374 Model Checking Nondeterministic, Randomized, Concurrent Programs

The bi-partite graph G consists of 2 partitions, W1 and W2. The set W1 is the set of
extended closed sets. W2 is the set of pairs (U, g) where U is an extended closed set and
g a Spec-determined and locally consistent function. There is an edge from U ∈ W1 to
(U ′, g) ∈W2 iff U = U ′. There is an edge from (U, g) to U ′ iff U ′ is a component of succg(U).
We convert G into a Kripke structure by labeling each node of G by a special proposition F
or its negation ¬F as follows. A node U in W1 is labeled with F iff there is an extended
state es = (q, s) ∈ U such that q is a final state of Spec. Every other node of W1 and
each node of W2 is labeled by ¬F. We denote the resulting Kripke structure by G(Spec,P).
The 2-EXPTIME-decidability of checking if P |=vc

=1 Spec follows from the following lemma
shown in [9].

I Lemma 3.11. Given a program P where the processes communicate through global
variables and are mutually exclusive, and a deterministic specification Spec on the shared
state, let G(Spec,P) be the Kripke structure obtained as described above. There is a view
consistent scheduler η such thatMP,η satisfies the specification Spec with probability < 1 iff
there is a feasible extended state es such that the node {es} in G(Spec,P) satisfies the modal
µ-calculus formula f = νX(¬F ∧ ♦�X) where ♦ and � are the existential and universal
“nexttime” operators and νX is the greatest fixpoint operator.

4 Conclusions

Randomization and nondeterminism play an important role in concurrent processes, and
in this paper we showed that to get accurate verification results, one needs to consider
restricted classes of schedulers. Tight complexity bounds for verifying linear time properties
under restricted classes of schedulers were established. Our complexity results confirm
observations made in [13] that restricting the class of schedulers makes the verification
problem more difficult.

The global schedulers we consider can observe all the variables in the program. There may
be situations when we want to restrict the power of the global scheduler as well. However,
this is easily captured in our setting by adding a new process Pnew that can only see a part of
the state that is visible to the restricted global scheduler. This new process will execute odd
step (ensured by adding a new turn variable), and will pick the process to schedule based on
the partial state it sees.

View consistent and locally Markovian schedulers are just some of the classes that might
be useful in the concurrent setting. One natural class of schedulers we have not explicitly
mentioned in this paper are memoryless schedulers, where the choice made by the scheduler
depends only on the current state and not on the history. It is easy to see that the verification
problems are in co-NEXPTIME— guess the scheduler that violates the property, and
check that under the scheduler the system (which is now a finite state MDP) violates the
property. The verification problems are also likely to be co-NEXPTIME-hard based on
observations made in [13]; once again the blowup in complexity being explained by the state
space explosion problem. One restriction of the schedulers we consider here is that the local
scheduler for a process is “aware” of the fact that other processes were scheduled. This may
or may not be reasonable in some settings. In the future we would like to expand the current
investigations to other useful classes of schedulers.

Acknowledgements. The authors would like to thank anonymous referees for sending
pointers to [18, 16, 17]. A. Prasad Sistla was supported by NSF-0720525, NSF CCF-0916438,
NSF CNS-1035914 and Mahesh Viswanathan was supported by NSF CCF 0448178, NSF
CCF 1016989, and NSF CNS 1016791.

R. Chadha and A. P. Sistla and M. Viswanathan 375

References
1 PRISM — Probabilistic Symbolic Model Checker. http://www.prismmodelchecker.org.
2 C. Baier, N. Bertrand, and M. Größer. On decision problems for probabilistic Büchi au-

tomata. In Proceedings of FoSSaCS, pages 287–301, 2008.
3 C. Baier and M. Grö„er. Recognizing ω-regular languages with probabilistic automata. In

Proceedings of LICS, pages 137–146, 2005.
4 C. Baier, B. Haverkrot, H. Hermanns, and J.-P. Katoen. Efficient computation of time-

bounded reachability probabilisties in uniform continuous-time Markov decision processes.
In Proceedings of TACAS, pages 61–76, 2004.

5 A. Bianco and L. de Alfaro. Model checking of probabalistic and nondeterministic systems.
In Proceedings of FSTTCS, pages 499–513, 1995.

6 R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, P. Pereira, and R. Segala. Task-
Structured Probabilistic I/O Automata. In Workshop on Discrete Event Systems, 2006.

7 R. Chadha, A. P. Sistla, and M. Viswanathan. On the expressiveness and complexity of
randomization in finite state monitors. Journal of the ACM, 56(5), 2009.

8 R. Chadha, A. P. Sistla, and M. Viswanathan. Power of randomization in automata on
infinite strings. In Proceedings of CONCUR, pages 229–243, 2009.

9 R. Chadha, A. P. Sistla, and M. Viswanathan. Model checking concurrent programs with
nondeterminism and randomization. Technical Report LSV-10-15, LSV, ENS Cachan, 2010.

10 K. Chatterjee, L. Doyen, and T. Henzinger. Qualitative Analysis of Partially-observed
Markov Decision Processes. CoRR, abs/0909.1645, 2009.

11 K. Chatzikokolakis and C. Palamidessi. Making Random Choices Invisible to the Scheduler.
Information and Computation, 2010, to appear.

12 L. Cheung. Reconciling Nondeterministic and Probabilistic Choices. PhD thesis, Radboud
University of Nijmegen, 2006.

13 L. de Alfaro. The Verification of Probabilistic Systems under Memoryless Partial Informa-
tion Policies is Hard. In Proceedings of PROBMIV, 1999.

14 L. de Alfaro, T. Henzinger, and R. Jhala. Compositional methods for probabilistic systems.
In Proceedings of CONCUR, pages 351–365, 2001.

15 F.D. Garcia, P. van Rossum, and A. Sokolova. Probabilistic Anonymity and Admissible
Schedulers. CoRR, abs/0706.1019, 2007.

16 S. Giro. Undecidability results for distributed probabilistic systems. In Proceedings of
SBMF, pages 220–235, 2009.

17 S. Giro. On the automatic verification of Distributed Probabilistic Automata with Partial
Information. PhD thesis, Universidad Nacional de Córdoba, 2010.

18 S. Giro and P.R. D’Argenio. Quantitative model checking revisited: Neither decidable nor
approximable. In Proceedings of FORMATS, pages 179–194, 2007.

19 S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental poker keeping
secret all partial information. In Proceedings of STOC, pages 365–377, 1982.

20 M. Größer. Reduction Meth. for Prob. Model Checking. PhD thesis, TU Dresden, 2008.
21 J. Kemeny and J. Snell. Denumerable Markov Chains. Springer-Verlag, 1976.
22 N.A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
23 M.L. Puterman. Markov Decision Processes: Discrete Stocastic Dynamical Programming.

John Wiley & Sons, 1994.
24 J. M. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques for

Analyzing Concurrent and Probabilistic Systems. AMS, 2004.
25 M. Vardi. Automatic verification of probabilistic concurrent systems. In Proceedings of

FOCS, pages 327–338, 1985.

FSTTCS 2010

	Introduction
	Definitions
	Preliminaries
	Probabilistic Automata

	Programs

	 Complexity and decidability for general programs
	Undecidability
	Decidability results for locally Markovian semantics
	Decidability results for view consistent semantics

	Conclusions

