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Abstract

We give a new upper bound for the Group and Quasigroup Isomorphism problems when the

input structures are given explicitly by multiplication tables. We show that these problems can

be computed by polynomial size nondeterministic circuits of unbounded fan-in with O(log logn)
depth and O(log2 n) nondeterministic bits, where n is the number of group elements. This

improves the existing upper bound from [Wol94] for the problems. In the previous upper

bound the circuits have bounded fan-in but depth O(log2 n) and also O(log2 n) nondeterministic

bits. We then prove that the kind of circuits from our upper bound cannot compute the

Parity function. Since Parity is AC0 reducible to Graph Isomorphism, this implies that Graph

Isomorphism is strictly harder than Group or Quasigroup Isomorphism under the ordering

defined by AC0 reductions.

Keywords and phrases Complexity, Algorithms, Group Isomorphism Problem, Circuit Com-

plexity
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1 Introduction.

The input of the Group Isomorphism problem GroupIso consists of two groups G1 and G2 of

order n given by multiplication tables (n× n matrices of integers between 1 and n) and it is

asked whether the groups are isomorphic, that is, whether there is a bijection ϕ between

the elements of both groups satisfying for every pair of elements i, j, ϕ(ij) = ϕ(i)ϕ(j) (for

convenience, we represent in both groups the group operation by concatenation). A quasigroup

is an algebraic structure (Ω, ·) where the set Ω is closed under a binary operation · that

has the following property: for each pair of elements a, b, there exists unique elements cL
and cR such that cL · a = b and a · cR = b. In contrast to groups, a quasigroup is not

necessarily associative and does not need to have an identity. The Quasigroup Isomorphism

problem QGroupIso is defined as GroupIso but the input structures are multiplication tables

of quasigroups, also called Latin squares. GroupIso is trivially reducible to QGroupIso but a

reduction in the other direction is not known. The complexity of both problems has been

studied for more than three decades. Groups and quasigroups of order n have generator

sets of size bounded by logn. Because of this fact an isomorphism algorithm for GroupIso

or QGroupIso running in time nlogn+O(1) can be obtained by computing a generator set

of size logn in G1, mapping this set in every possible way to a set of elements in G2 and
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checking whether by extending the mapping to all the (quasi)group elements following the

multiplication tables of G1 and G2, an isomorphism is defined. This algorithm is attributed to

Tarjan in [Mil78]. A stronger result showing that GroupIso can be solved in space O(log2 n)
was given in [LSZ76]. The same result for the case of quasigroups was obtained later by Wolf

in [Wol94].

In spite of these facts, no deterministic polynomial time algorithm for these problems is

known although they seem far from being NP-complete1. The status of the problems is similar

to that of the better known Graph Isomorphism problem (GI). It is known that QGroupIso is

AC0 reducible to GI [Mil78], but the second one seems to be a harder problem. In this paper

we prove this intuition by showing without assumptions that an AC0 reduction in the other

direction is not possible. This is done in two steps: first we improve the existing upper bound

for QGroupIso to a class of polynomial size nondeterministic circuits of O(log logn) depth

(Section 3). Then in Section 4 we show that this circuit class cannot compute the Parity

function. It follows that GroupIso and QGroupIso cannot be hard under AC0 reductions for

any class that is powerful enough to compute Parity, like NC1 or L. This contrasts with the

hardness properties of GI [Tor04, Tor10]. It also implies that GI cannot be AC0 reducible to

GroupIso or to QGroupIso .

The upper bound is based on the bounded nondeterminism properties of the problems.

Observe that Tarjan’s algorithm can in fact be converted into a polynomial time nondeter-

ministic procedure for QGroupIso that uses only log2 n nondeterministic bits, by guessing

the mapping from the generator set in G1 to G2 instead of testing all possible 1-1 mappings,

and then extend this partial map to the whole quasigroup. This observation is mentioned

explicitly in [PY96, Wol94]. Papadimitriou and Yannakakis [PY96] show that the quasigroup

isomorphism problem is in β2P, a restricted version of NP, where on input of length n, a

polynomial time bounded Turing machine has access to O(log2 n) non-deterministic bits

(more detail is given in the preliminaries section). In [AT06] some evidence is given in-

dicating that QGroupIso is probably not complete for β2P. Wolf [Wol94] improved the

nondeterministic complexity of the problem by showing that QGroupIso ∈ β2NC2 the class

of problems computed by NC2 circuits having additionally O(log2 n) non-deterministic bits

on inputs of size n. As in the β2P upper bound, the circuit can guess the generators of both

quasigroups as well as a bijection between both generator sets. Wolf shows that checking

whether this partial bijection can be extended to an isomorphism, can be done by an NC2

circuit. We improve this upper bound to β2FOLL, the class of problems computable by

(uniform) families of polynomial size unbounded fan-in circuits with O(log logn) depth and

O(log2 n) nondeterministic bits, where n is the number of quasigroup elements. The proof

of this result is based on a special kind of generating sequences for the quasigroups called

cube generating sequences. The cube generating sequences provide a representation for the

structures that allow very quick isomorphism tests. Erdős and Rényi showed that groups

have many generating sequences of this kind. We extend in Section 3 their result to the more

general case of quasigroups.

The lower bound for β2FOLL circuits for the Parity function is proved in Section 4,

by first showing that computation by a few non-deterministic bits implies the existence

of a polynomial size deterministic circuit of depth O(log logn) that approximates Parity

non-trivially. The argument is completed by a routine application of the decision-tree version

of the Switching Lemma due to Razborov [Raz93] that rules out such approximations of

Parity.

1 In fact, we show in this paper, GroupIso and QGroupIso are not NP-complete under AC0 reductions.
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2 Preliminaries

2.1 Quasigroups

Given a set of elements from a quasigroup, a parenthesization specifies the sequence in which

to multiply the elements. A parenthesization can be represented as a binary tree with the

quasigroup elements at the leaves. The depth of a parenthesization is the depth of the

binary tree representing it. For a quasigroup G and a set of elements g1, . . . , gl ∈ Gl and a

parenthesization P we denote by P (g1, . . . , gl) the result of the multiplication of the elements

according to P . For our results we need the following elementary fact.

I Fact 1. Let P be any correct parenthesization for the multiplication of l elements

in G. Then for every i ∈ {1, . . . , l} for every b ∈ G and every fixed choice of el-

ements g1, . . . , gi−1, gi+1, . . . , gl ∈ Gl−1 there is a unique element gi ∈ G such that

P (g1, . . . , gi−1, gi, gi+1, . . . , gl) = b.

Proof. By induction on l. For the base case l = 2 the quasigroup axioms imply the result.

For l > 2 we consider the binary tree representing the parenthesization. We search for a

value of gi such that the equation P (g1, . . . , gi−1, gi, gi+1, . . . , gl) = b holds. The value of one

of the successors of the root is determined by the values of g1, . . . , gi−1, gi+1, . . . , gl. W.l.o.g.

let this be the left successor and denote its multiplication value by c. The value of the other

successor must then be equal to d, the unique element in G with c · d = b. By induction

hypothesis there is a unique value for qi such that the multiplication of the right subtree

equals d. J

2.2 Complexity Classes

For the standard complexity classes used in this paper, like L or the circuit classes ACi or

NCi we refer the reader to the standard books in complexity theory.

The complexity class FOLL, or FO(log logn), was introduced in [BKLM00] in order

to characterize the complexity of the group membership problem. FOLL is the class of

problems solvable by uniform polynomial size circuit families of unbounded fan-in and depth

O(log logn). Since the Parity function is not in FOLL, no problem in FOLL can be complete

under AC0-reductions for any class containing Parity, such as NC1 or L. Currently AC1 is

the best upper bound for FOLL and the class is not known to be contained even in NL.

For a circuit class C, βkC is the class of languages recognized by a (uniform) family

of C circuits with n input bits and O(logk n) nondeterministic bits. We say that such a

nondeterministic circuit accepts a string x if for some choice of the nondeterministic bits

the circuit with input x outputs a one. Classes of bounded nondeterminism have appeared

in different forms in the literature [KF84, DT90, PY96, GLM96]. As we show in this paper,

the circuit setting is well suited to argue about these classes.

3 Nondeterministic Circuit Complexity of QGroupIso

We show in this section that QGroupIso can be solved by a uniform family of nondeterministic

FOLL circuits with O(log2 n) nondeterministic bits: QGroupIso ∈ β2FOLL. This result

improves a series of upper bounds of this kind for the problem: Papadimitriou and Yannakakis

showed in [PY96] that QGroupIso ∈ β2P this was improved to β2NC2 by Wolf [Wol94] and

more recently by Wagner to β2SAC1 [Wag10].

F S T T C S 2 0 1 0
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In our proof the nondeterministic bits of the circuits are used in order to guess a special

kind of generator sequence for both quasigroups. We call these generators cube generating

sequences.

I Definition 2. A sequence of group elements g = (g0, g1, . . . , gk) together with a parenthe-

sization P for k elements is a cube generating sequence for quasigroup G if

G = {P (g0, g
ε1
1 , . . . , g

εk

k ) | εi ∈ {0, 1}}
The set {P (g0, g

ε1
1 , . . . , g

εk

k ) | εi ∈ {0, 1}} is the cube Cube(g, P ) generated by the sequence g

and the parenthesization P .

In a cube generating sequence, the generators are given in a fixed order. Erdős and

Renyi [ER65] proved that every group with n elements has cube generating sequences of size

O(logn). As a matter of fact there are many such short sequences. In the case of groups we

do not need to talk about parenthesizations since the operation is associative.

I Theorem 3. [ER65] Let G be a finite group with n elements. For any δ > 0 the probability

that a sequence of group elements of size k ≥ logn+ 2 log 1
δ + log logn+ 5 selected uniformly

at random is a cube generating sequence for G, is > 1− δ.

This result can be adapted to work also for quasigroups. For our purposes a simpler

existential version of the result suffices. However we need to make sure that the multiplications

of the generators can be be performed very fast in parallel and therefore we need a short

cube generating sequence with shallow parenthesization.

I Theorem 4. For a finite quasigroup G with n elements, there exists a cube generating

sequence g for G, together with a parenthesization P such that g has O(logn) elements and P

has depth O(log logn).

Proof. Let G be a quasigroup with n elements and for k > 0 let P be any fixed parenthesiza-

tion of k+ 1 elements. Let g0, . . . , gk be k+ 1 elements chosen in G uniformly at random and

independently of each other. For b ∈ G let Vk(b) be the number of representations of b of the

form b = P (g0, g
ε1
1 , . . . , g

εk

k ) with εi ∈ {0, 1}. For succinctness for ε = (ε1, . . . , εk) ∈ {0, 1}k
and g = (g0, . . . , gk) ∈ Gk+1 we represent P (g0, g

ε1
1 , . . . , g

εk

k ) by P (gε) (or even gε when the

parenthesization is clear).

For each b ∈ G, Vk(b) is a random variable. We estimate its expectation and its variance.

For a random sequence g = (g0, . . . , gk) ∈ Gk+1 consider the indicator variable

Xε(b) =
{

1 if gε = b

0 otherwise.

For random g, Pr[Xε(b) = 1] = 1
n . This is because Xε(b) = 1 if and only if gε = b and

this is true exactly when g0 is equal to the unique element x ∈ G satisfying the equation

b = P (x, gε1
1 , . . . , g

εk

k ) (Fact 1). Since g0 is chosen uniformly at random this probability is 1
n .

It follows:

E[Vk(b)] = E

 ∑
ε∈{0,1}k

Xε(b)

 =
∑

ε∈{0,1}k

E[Xε(b)] = 2k

n
.

For calculating the variance we observe that the random variables Xε(b) are pairwise

independent. For ε 6= ε′ ∈ {0, 1}k and for a random g ∈ Gk+1 and fixed b ∈ G we estimate

the probability Pr[gε = gε
′ = b]. We can suppose there is a position i with εi = 1 and

ε′i = 0. gε
′ = b if and only if g0 is equal to the unique element x ∈ G satisfying the equation

b = P (x, gε
′
1

1 , . . . , g
ε′k
k ). If this holds then gε = b if and only if gi is equal to the unique
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element y ∈ G satisfying b = P (x, gε1
1 , . . . , g

εi−1
i−1 , y, g

εi+1
i+1 , . . . , g

εk

k ). Since g0 and gi are chosen

independently, the probability that these two facts hold is then 1
n2 . Now we can estimate

the variance of Vk(b). Since Vk(b) is the sum of pairwise independent random variables its

variance is the sum of the the variances of the summands. Therefore:

V ar[Vk(b)] = V ar

 ∑
ε∈{0,1,}k

Xε(b)

 =
∑

ε∈{0,1}k

V ar[Xε(b)] = 2k
(

1
n
− 1
n2

)
<

2k

n

Let Nk be the number of elements in G not having any representation in the cube

generated by a random sequence g of size k+1. We show next that E[Nk] ≤ n2

2k . For this we

need to estimate the probability that for an element b ∈ G, Vk(b) = 0.

Pr[Vk(b) = 0] ≤ Pr

[ ∣∣∣∣Vk(b)− 2k

n

∣∣∣∣ ≥ 2k

n

]
≤ Var[Vk(b)]n2

22k <
n

2k

The second step follows by Chebyshev’s inequality. We can now estimate the expectation

for Nk.

E[Nk] =
∑
b∈G

Pr[Vk(b) = 0] ≤ n2

2k .

Considering k = d2 logne + 1 we have E[Nk] < 1, which means that there must be a

sequence g of size k + 1 that represents all the elements in G. Since this works for any

parenthesization we can fix P to be a balanced binary tree with k + 1 leaves and therefore

depth O(log logn).
J

Observe that for a quasigroup G, a fixed k and a fixed parenthesization P , the family of

functions obtained by choosing a sequence g of k + 1 elements in G uniformly at random

and mapping ε ∈ {0, 1}k to gε ∈ G (with parenthesization P ) is in fact a 2-universal family

of hash functions. As it can be seen in our previous proof, the argument does not need

fully independence while choosing the elements in G, but just pairwise independence. As

a consequence it is possible to obtain small cube generating sets for G deterministically.

However this would not bring any advantage to our nondeterministic algorithm, since

O(log2 n) nondeterministic bits are needed to guess the cube generating set of the second

input structure in a way that the isomorphism can be extended to all the elements in the

canonical way.

We can now prove our upper bound for QGroupIso .

I Theorem 5. The Quasigroup Isomorphism problem is in β2FOLL.

Proof. Let G,H be two quasigroups given as multiplication tables let g = (g1, . . . , gk)
and h = (h1, . . . , hk) be generating sequences of the same length, and P be a balanced

parenthesization with G = Cube(g, P ) and H = Cube(h, P ).
If we can prove that the function that maps gi to hi for i ∈ {1, . . . , k} can be extended

to an isomorphism between G and G′ then clearly both quasigroups are isomorphic. This is

true if and only if for every ε, ε′, ε′′ ∈ {0, 1}k gε = gε
′
gε
′′

if and only if hε = hε
′
hε
′′
. On the

other hand if the quasigroups are not isomorphic, the function mapping gi to hi would not

pass the mentioned isomorphism test.

F S T T C S 2 0 1 0
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This is the basis for the upper bound. O(log2 n) nondeterministic bits in the circuit

are used for guessing the cube generating sequences for G and H in the right order. The

isomorphism tests can be done then in the depth of the multiplications which is the depth of

the parenthesization P , that is O(log logn).

input: Quasigroups G,H on elements in {1, . . . , n} given as multiplication tables,

cube generating sequences g = (g0, g1, . . . , gk) for G and h = (h0, h1, . . . , hk) for H with

balanced parenthesization P .

1: { test G = Cube(g, P ) and H = Cube(h, P )}
2: for all a, b ∈ {1, . . . , n}
3: for all (ε1, . . . , εk) ∈ {0, 1}k
4: check whether a = g0g

ε1
1 . . . gεk

k and b = h0h
ε1
1 . . . hεk

k

5: if a or b was not generated by any ε then reject and halt.

6: { isomorphism test }
7: for all (ε1, . . . , εk) ∈ {0, 1}k
8: for all (η1, . . . , ηk) ∈ {0, 1}k
9: c← g0g

ε1
1 . . . gεk

k , d← g0g
η1
1 . . . gηk

k

10: c′ ← h0h
ε1
1 . . . hεk

k , d
′ ← h0h

η1
1 . . . hηk

k

11: for all (ν1, . . . , νk) ∈ {0, 1}k
12: if cd = g0g

ν1
1 . . . gνk

k ↔ c′d′ 6= h0h
ν1
1 . . . hνk

k then halt and reject.

13: halt and accept.

Since k ∈ O(logn), the number of performed ε-tests is bounded by a polynomial. Because

of the parenthesization P , every multiplication g = gε1
1 . . . gεk

k can be computed by a sub-circuit

of depth O(log logn) with unbounded fan-in. Each sub-circuit is organized as a pyramid. At

the bottom level it uses the multiplication tables to multiply pairs of elements gεi
i g

εi+1
i+1 . At

the next level it multiplies pairs of results of the previous level, and so on. The depth of the

sub-circuits is bounded by O(log logn) since k ∈ O(logn). J

The upper bound that we get for groups is the same one. For concrete group families it

is possible to get better bounds. We include as example the case of Abelian groups.

On the Complexity of Abelian Group Isomorphism

We consider here the easier case when the input structures are Abelian groups.

Clearly, testing the property whether G is Abelian can be done in AC0 by simply testing

whether a · b = b · a holds for all elements a, b in parallel. The isomorphism test is based on

the following well known fact.

I Fact 6. Two finite Abelian groups G and H with |G| = |H| = n are isomorphic iff the

number of elements of order m in G and H is the same, for all 1 ≤ m ≤ n.

A proof of this fact can be found for example in [Hal59]. The order of an element a is

the smallest integer i ≥ 0 such that ai = e. Hence, an isomorphism test simply computes the

orders for all elements using the power predicate. Barrington et.al. [BKLM00] considered

the complexity of the power predicate on Abelian groups.

I Lemma 7. ([BKLM00]) Let G be a finite group given by its multiplication table. For all

elements a and b in G and all i ≤ n, the predicate b = ai can be computed in FOLL ∩ L.
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In the isomorphism test, an FOLL circuit computes the order of all group elements. This

is a set of numbers in arbitrary order.

Given two multisets of numbers, the problem of pairwise comparing them is not in AC0,

since the Majority function reduces to this problem. It is known that Sorting, i.e. arranging n

n-bit numbers in ascending order, is in TC0. This suffices for an isomorphism test. When

given two sorted multisets of numbers, say e1 ≤ · · · ≤ en and e′1 ≤ · · · ≤ e′n, it can be tested

in AC0 whether they coincide. We conclude:

I Theorem 8. The Abelian Cayley-group isomorphism problem is in TC0( FOLL), and in L.

4 Computing Parity by Shallow Circuits with Limited
Non-Determinism

We prove in this section that FOLL circuits (in fact polynomial size circuits of depth

O
(
(log logn)k

)
) cannot compute the Parity function even with the help of poly-logarithmic

many nondeterministic bits.

I Theorem 9. Let C be a circuit of polynomial size and depth O
(
(log logn)k

)
, with access

to O
(
(logn)`

)
-many non-deterministic bits, where k, ` are arbitrary constant numbers. Then

C cannot compute the Parity function.

Proof. Let C be computing Parity and have depth d. Then for every possible setting of

the nondeterministic bits C outputs zero for inputs of even parity. On the other hand, by

averaging, there exists at least one setting θ of the non-deterministic bits for which C outputs

1 on at least 2n−1

2(log n)` many inputs of odd parity. Thus, the deterministic circuit Cθ obtained

from C by fixing its non-deterministic bits to θ approximates Parity well, i.e.

Pr
x

[
Cθ
(
x
)

= Parity(x)
]
≥ 1

2 + 1
2 · 2O((logn)`) .

However, Cθ has the same size and depth as C. The proof gets completed by showing

below, via Theorem 12, that such approximations to Parity are impossible.

J

In order to prove the desired inapproximability results, we use a version of the Switching

Lemma. Switching Lemmas were developed in a series of works by [FSS81, Ajtai83, Yao85,

Cai86, Has87] for proving lower bounds on the size of constant-depth circuits computing

Parity. We recall the following decision-tree version, due to Razborov [Raz93]. Let Rmn be

the space of all restrictions on n variables that leaves precisely m of them free. For any

restriction ρ, we denote by fρ the boolean function induced from f on variables left free by ρ.

I Lemma 10 (Switching Lemma, Razborov). Let f be a CNF (or DNF) formula with clause

width t on n variables. Let ρ be a random restriction in Rmn . Then, there exists a constant

γ > 0 such that the probability of fρ not having a decision tree of height at most s is less

than
(
γmt
n

)s
.

An immediate consequence of this lemma is the following corollary:

I Corollary 11. Let f be a function computed by a circuit of size S and depth d. Let

m = n/
(
(2γ)d(n1/(2d))d−1). Then

Pr
ρ∈Rm

n

[
h
(
fρ
)
> n1/2d

]
≤ S · 1

2Ω
(
n1/2d

)
where h

(
fρ
)

denotes the height of the best decision tree for fρ.

F S T T C S 2 0 1 0
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Proof. This can be shown by a simple inductive argument using the Switching Lemma.

Assume, as our inductive hypothesis, the following: let i ≥ 2 and ni = n/
(
(2γ)i(n1/(2d))i−1).

Let Gi be the set of gates in the ith layer of C and let Si be the number. Further, let

S≤i =
∑i
j=1 Sj . Our inductive hypothesis is the following:

Pr
ρ∈Rni

n

[
∃g ∈ Gi : h

(
fgρ
)
> n1/2d

]
≤ S≤i ·

1
2n1/2d

,

where fg is the function computed at gate g. Now, if the ith layer of the circuit has AND

(OR) gates then one can assume w.l.o.g that i+ 1th layer has OR (AND) gates. In this case,

assuming that each fgρ has a decision tree of height at most n1/2d, we represent fgρ as a DNF

of width at most n1/2d by using the small height decision tree. This collapses layers i and

i+ 1 and hence the output of every gate at layer i+ 1 is a DNF of width n1/2d under the

restriction ρ. We apply the Switching Lemma to each such DNF where n = ni, m = ni+1
and t = n1/2d. Clearly, the probability that any fixed such DNF under the next round of

restriction fails to have a decision tree of height at most n1/2d is at most 2−n1/2d

. Applying

the union bound to Si+1 such DNF’s (one for each gate at layer i+ 1) immediately completes

the induction.

J

Applying the above, we get the following inapproximability result (which is possibly

implicit in work of Cai[Cai86]):

I Theorem 12. Let C be any polynomial size circuit of depth d. Then,

Pr
x

[
C(x) = Parity(x)

]
≤ 1

2 + 1

2Ω
(
n1/2d

) .
Proof. Applying Corollary 11, we see that if we pick a random restriction that leaves m

variables free, where m = n/
(
(2γ)d(n1/(2d))d−1) with probability at least 1−Size(C) ·2−n1/2d

,

the circuit will have a decision tree of height at most n1/2d. Hence, with that much probability

the number of free variables m is more than the height of the decision tree. For each such

restriction, the restricted circuit computes the right answer (which is either Parity or its

complement, on the m free variables) with probability exactly a half. Hence, even assuming

that for all other restrictions we get perfect correlation,

Pr
x

[
C
(
x
)

= Parity(x)
]
≤ 1

2 + Pr
ρ∈Rm

n

[
h
(
Cρ
)
> n1/2d

]
≤ 1

2 + Size
(
C
)
· 1

2n1/2d
.

The proof is completed by observing that the size of the circuit, denoted by Size
(
C
)
, by

assumption is polynomial.

J

5 Discussion

Although no polynomial time algorithms for GroupIso or QGroupIso are known, we have

shown in this paper that the problems are not hard enough to encode the Parity function.

Therefore these problems cannot be hard under AC0 reductions for any complexity class

containing Parity, like L or NC1. This contrasts sharply with the hardness properties of other

isomorphism problems like Graph Isomorphism. In fact, our research started originally trying

to prove that QGroupIso is hard for NC1. At first sight it looks as if the difficulty in encoding
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the Parity function comes from the very structured way in which the input information

is presented in the the multiplication tables. The way of proving the result, however was

to show that the computation of QGroupIso can be divided in two faces, a first bounded

nondeterministic part and a very efficient checking part. We then gave an upper bound for

the checking part in terms of circuits with very restricted depth and showed that these circuits

cannot compute Parity even with the help of poly-log many nondeterministic bits. We observe

that this proof technique does not have anything to do with isomorphism problems and can

be applied to other problems whose computation have similar bounded guessing and checking

parts. For example the classes LOGNP0 and LOGSNP0 from [PY96] would fall in β2AC0

in our setting. The results in this paper imply that the problems in these classes cannot

be AC0 hard for Parity. Observe that for example the problem LOGCLIQUE, deciding if a

given graph with n vertices has a clique of size at least logn falls into this category. We find

this surprising. It would be interesting to study, maybe with other techniques, the existence

of longer hierarchies of natural problems defining different AC0 degrees.

So far all the upper bounds known for GroupIso hold also for QGroupIso . The question

of whether the problems are equivalent under some reduction remains open.

Acknowledgments. We thank the anonymous referees for helpful comments on the

manuscript.
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