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Abstract
The maximum independent set problem (MaxIS) on general graphs is known to be NP-hard to
approximate within a factor of n1−ε, for any ε > 0. However, there are many “easy" classes of
graphs on which the problem can be solved in polynomial time. In this context, an interesting
question is that of computing the maximum independent set in a graph that can be expressed as
the union of a small number of graphs from an easy class. The (MaxIS) problem has been studied
on unions of interval graphs and chordal graphs. We study the (MaxIS) problem on unions of
perfect graphs (which generalize the above two classes). We present an O(

√
n)-approximation

algorithm when the input graph is the union of two perfect graphs. We also show that the
(MaxIS) problem on unions of two comparability graphs (a subclass of perfect graphs) cannot
be approximated within any constant factor.
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1 Introduction

It is well known that the classical maximum independent set problem (MaxIS) on general
graphs is computationally hard, even to approximate. Zuckerman [13] showed that for any
ε > 0, it is NP-hard to approximate the MaxIS problem within a factor of n1−ε, where n is
the number of vertices in the input graph. However, there are easy families of graphs for
which the MaxIS problem can be solved optimally in polynomial time, for example interval
graphs. In this context, it is interesting to consider the MaxIS problem on graphs which are
unions of a small number graphs from an easy family. In this paper, we study this problem
on perfect graphs and its subclass comparability graphs.

Formally, the input consists of a sequence of graphs G1 = (V,E1), G2 = (V,E2), . . . , Gt =
(V,Et) defined over the same vertex set V . A subset of vertices X ⊆ V is called a common
independent set (CIS), if X is an independent set in each graph Gi. Alternatively, a CIS is
an independent set in the union graph given by Ĝ = (V, Ê), where Ê = ∪ti=1Ei. The goal
is to find the maximum cardinality CIS. We call this the maximum common independent
set problem (MaxCIS). For a fixed constant k, the k-MaxCIS is the special case where the
number of input graphs is t = k. We consider restricted versions of the MaxCIS problem
wherein all the input graphs belong to a particular class (or family) of graphs C. This paper
deals with the MaxCIS problem on easy classes C, such as interval, chordal, comparability
and perfect graphs. We shall also consider the weighted versions of MaxIS and MaxCIS
problem, wherein the input includes a function p : V → R that assigns a profit (or weight)
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252 Finding Independent Sets in Unions of Perfect Graphs

p(u) to each vertex u and the goal is to find the maximum profit independent set and CIS,
respectively.

Motivated by applications in bioinformatics, scheduling and computational geometry,
the MaxCIS problem on interval graphs has been well-studied (see [1]). Bar-Yehuda et
al. [1] presented a 2t-approximation algorithm for the weighted MaxIS problem on the class
of t-interval graphs, which includes unions of t intervals graphs. Hermelin and Rawitz [9]
generalized their result by presenting a 2t-approximation algorithm for class of t-subtrees,
which includes both 2t-interval graphs and chordal graphs. Regarding unions of comparability
and perfect graphs, prior work deals with certain combinatorial aspects. It is well known that
any perfect graph G on n vertices has either an independent set of size

√
n or a clique of size√

n. Motivated by applications in computational geometry, Dumitrescu and Tóth [5] studied
the same issue on unions of comparability graphs and perfect graphs, from a combinatorial
perspective. They showed that if G is the union of two perfect graphs, then G has an
independent set of size n1/3 or a clique of size n1/3. They also provided counter-examples to
show that the above bound cannot be improved beyond n0.42 (see Theorem 5).

The above discussion shows that approximation algorithms are known for the weighted
MaxCIS problem on interval graphs and chordal graphs; both these classes are easy classes
for which the weighted MaxIS problem can be solved optimally in polynomial time [7, 6]. The
goal of this paper study the MaxCIS problem on comparability graphs and perfect graphs,
two other important easy classes for which the MaxIS problem can be solved optimally in
polynomial time [12, 8]. Perfect graphs generalize the other classes mentioned above and can
be thought of as the pinnacle among easy classes.

Our main result presents an O(
√
n)-approximation algorithm for the weighted 2-MaxCIS

problem on perfect graphs. The algorithm is obtained by considering a suitable LP formulation.
The LP is of exponential size. We solve it using a separation oracle and find the optimal LP
solution. We categorize the vertices into multiple groups based on the values assigned to
them by the above LP solution. Next, we find a suitably large independent set within each
group. The best among these independent sets is the output. We then argue that the output
independent set is a O(

√
n) approximation to the optimal solution.

Our next set of results provide some evidence that it may be difficult to significantly
improve the O(

√
n)-approximation ratio. This includes proving integrality gaps and hardness

results.
Let us first briefly discuss the integrality gap results. We show that the above LP has an

integrality gap of
√
n, even for the case where both the input graphs are comparability graphs

and all the weights are unit. We then consider a powerful strengthening of the LP, wherein
a variable x(u) is added for each vertex u, which indicates whether x(u) is selected in the
independent set or not. Then, for each clique C of Ĝ, we add the constraint

∑
u∈C x(u) ≤ 1.

Such an LP is also considered while designing the polynomial time algorithm for the MaxIS
problem on perfect graphs. In the case of MaxCIS, this LP is of exponential size and it
is not clear whether it can be solved in polynomial time; it seems difficult to construct
separation oracles (even approximate ones). Nevertheless, we show that even this strong LP
has an integrality gap of n0.16 (even for the unweighted case over comparability graphs). This
result is derived as a consequence of a combinatorial result regarding unions of comparability
graphs, due to Dumitrescu and Tóth [5] (discussed earlier).

On the hardness front, it is known that the 2-MaxCIS problem on linear forests is
APX-hard [1] (a linear forest is a graph in which each component is a path). Linear forests
are bipartite graphs, which are in turn comparability graphs. It follows that 2-MaxCIS
problem on comparability graphs cannot be approximated within a factor of (1 + ε), for some
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ε > 0. We show that the hardness gap produced by the above APX-hardness can be amplified
(for the case of comparability graphs). We do this via the well-known approach of considering
powers of graphs. The same graph powering technique is used to amplify hardness gap
for the MaxIS (or the maximum clique problem). However, the standard graph product
typically used for this purpose (see [10]) does not serve in our scenario. The reason is that,
in our scenario, we need a graph product under which, if G is the union of two comparability
graphs, then Gr is also the union of two comparability graphs. The standard graph product
mentioned above may not satisfy this property. So, we consider a different graph product
and obtain the amplification. (Dumitrescu and Tóth [5] also use a similar graph product
for proving a combinatorial result on comparability graphs (see Theorem 5)). Using this
approach, we prove that if NP 6= P, then the 2-MaxCIS problem on comparability graphs
cannot be approximated within any constant factor. Via a simple extension of this result, we
also show that if NP 6⊆ DTIME[nO(logn)], then the above problem cannot be approximated
within a factor of 2

√
logn. Here, a challenging open problem is to show that it is NP-hard to

approximate within a factor of nε, for some ε > 0.

2 Preliminaries

In this section, we discuss some concepts and notations used in the paper. We also briefly
discuss some known algorithmic results about perfect graphs and their special cases.

Notation: For two graphs G1 = (V,E1) and G2 = (V,E2), let G1 ⊕ G2 denote their
union graph. Let G = (V,E) be a graph. For a subset of vertices X ⊆ V , let G[X] denote
the subgraph induced by X in G. Let p : V → R be a weight or profit function that assigns
a profit or weight p(u) to each vertex u ∈ V . For a subset of vertices X ⊆ V , we use p(X) to
denote the sum of profits over X (p(X) =

∑
u∈X p(u)).

Basic Graph Parameters: Let G = (V,E) be a graph. We shall use the following
notations to refer to some basic graph properties: (i) Independence number α(G): cardinality
of the maximum independent set in G; (ii) Clique number ω(G): cardinality of the maximum
clique in G; (iii) Chromatic number χ(G): minimum number of colors needed to color the
vertices of G so that no two adjacent vertices of G receive the same color.

Comparability Graphs: Comparability graphs capture the comparability relationships
among elements of a partial ordered set. In this paper, we shall use directed acyclic graphs
(DAG) to define them. Consider a DAG D = (V,E′). We say that a vertex u is an ancestor
of a vertex v, if there is a path from u to v. A pair of vertices u and v are said to be
comparable, if either u is an ancestor of v or v is an ancestor of u; otherwise, they are said
to be incomparable. Construct a graph G = (V,E); add an edge between every pair of
comparable vertices. The graph G is said to be the comparability graph of D. Alternatively,
G can be obtained by taking the transitive closure of D and ignoring the directionality of the
edges. A graph is said to be a comparability graph, if it is the comparability graph of some
DAG. McConnell and Spinrad [11] present a linear time algorithm for testing whether an
input graph is a comparability graph; moreover, if the graph is a comparability graph, then
their algorithm also outputs a DAG representation (or transitive orientation) in linear time.

Perfect Graphs: Notice that for any graph G, χ(G) ≥ ω(G). A graph G = (V,E) is
said to be perfect, if for every induced subgraph H, χ(H) = ω(H). Chudnovsky et al. [4, 3]
proved that whether an input graph is perfect can be tested in polynomial time.
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254 Finding Independent Sets in Unions of Perfect Graphs

3 Weighted 2-MaxCIS Problem on Perfect Graphs

In this section, we present a O(
√
n) approximation algorithm for the 2-MaxCIS problem on

perfect graphs.
In our approximation algorithm, we will need a polynomial procedure for the tasks of

finding maximum weight independent sets and cliques in perfect graphs. Grötschel et al. [8]
present polynomial time algorithms for performing both the tasks.

I Theorem 1 ([8]). The weighted MaxIS and weighted MaxClique problems can be solved
in polynomial time for perfect graphs.

Let G1 = (V,E1) and G2 = (V,E2) be the two input perfect graphs over a vertex set
V of size n and let Ĝ = (V, Ê) = G1 ⊕G2 be their union. Let the input profit function be
p : V → R, where p(u) is the profit of a vertex u ∈ V .

Our approximation algorithm is based on a crucial lemma discussed next. Consider a
subset X ⊆ V . Let ω1(X) = ω(G1[X]) and ω2(X) = ω(G2[X]), be the size of the maximum
cliques in the graph induced by X in G1 and G2, respectively. The lemma below presents
a polynomial time algorithm for finding an independent set I contained in X and having
reasonably large profit. The idea behind the lemma is as follows. Suppose Ĥ is the union of
two perfect graphs H1 and H2 over a vertex set of size m. Then, H1 and H2 can be colored
in ω(H1) colors and ω(H2) colors, respectively. Therefore, their union Ĥ can be colored
using ω(H1)ω(H2) colors. Hence, Ĥ must have an independent set of size m/(ω(H1)ω(H2)).
The lemma generalizes this idea to the weighted case and applies it to subgraphs. More
importantly, it gives a polynomial time procedure for finding such a good independent
set. Dumitrescu and Tóth [5] use a similar argument in the context of proving a certain
combinatorial property about unions of perfect graphs.

I Lemma 2. Let X ⊆ V . There exists a subset I ⊆ X such that I is an independent set of
Ĝ and

p(I) ≥ p(X)
ω1(X)ω2(X) .

Moreover, such a set can be found in polynomial time.

Proof. Since G1 is perfect, G1[X] is also perfect (by definition). Thus, G1[X] can be colored
using ω1(X) colors. This means that X can be partitioned into ω1(X) many subsets (i.e.,
color classes), which are all independent in G1[X]. One of these independent sets must have
profit at least p(X)/ω1(X). Apply the algorithm given in Theorem 1 and find the maximum
profit independent set of G1[X]; let this be I ′. We have p(I ′) ≥ p(X)/ω1(X). We shall
now focus on G2[I ′]. The graph G2[X] can be colored with ω2(X) colors and so, G2[I ′] can
also be colored using ω2(X) colors. It follows that G2[I ′] has an independent set having
profit at least p(I ′)/ω2(X). Apply the algorithm given in Theorem 1 and find the maximum
profit independent set of G2[I ′]; let this be I. We have p(I) ≥ p(I ′)/ω2(X). It follows that
p(I) ≥ p(X)/(ω1(X)ω2(X)). Notice that I is an independent set in both G1 and G2, and
hence, it is an independent set in Ĝ. J

Our O(
√
n)-approximation uses the LP rounding approach. We start the description of

the algorithm by first discussing our LP formulation.
Linear Program: Let C1 and C2 be the set of all cliques of G1 and G2, respectively.

Notice that any independent set of Ĝ can pick at most one vertex from any clique C ∈ C1
(or any C ∈ C2). We shall express these constraints in the linear program. For each vertex
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u ∈ V , add a variable x(u) that indicates whether u is included in the independent set or
not. The LP is shown next:

max
∑
u∈V

p(u)x(u) subject to∑
u∈C

x(u) ≤ 1 for all C ∈ C1∑
u∈C

x(u) ≤ 1 for all C ∈ C2

0 ≤ x(u) ≤ 1 for all u ∈ V

The above LP may have exponentially many constraints, since |C1| and |C2| could be
exponential in n. Nevertheless, we can solve it using a separation oracle. Recall that a
separation oracle is a procedure which takes as input a fractional assignment x : V → [0, 1]
and decides whether x is a feasible solution to the LP; moreover, if x is not a feasible solution,
the procedure should output a constraint violated by x. In our case, we can perform the
above task in polynomial time using the algorithm given in Theorem 1. Taking x to be the
weight or profit function, find the maximum profit clique in G1 and G2, using the above
algorithm. If both these cliques have profit at most 1, then we know that x is a feasible
solution. Otherwise, the constraint corresponding to the clique having profit greater than 1
is violated. Therefore, we can construct the required separation oracle. Given such an oracle,
the ellipsoid method can solve the LP and find the optimal fraction solution (see [8]).

Let x : V → [0, 1] be the optimal fractional solution to the LP. For a subset of vertices
X ⊆ V , let LP∗(X) =

∑
u∈X p(u)x(u). Let LP∗ = LP∗(V ) denote the profit of the LP

solution. Let Pmax = maxu∈V p(u) be the maximum profit.
Rounding Algorithm: We now describe our rounding scheme. First, partition the

vertex set V in to SML and LRG, where SML = {u : 0 ≤ x(u) ≤ 1/
√
n} and LRG = {u :

1/
√
n ≤ x(u) ≤ 1}. Thus, LP∗ = LP∗(SML) + LP∗(LRG).
As we shall see, it is easy to handle the set SML. So, let us ignore SML for now, and

focus on LRG. We geometrically divide the interval [(1/
√
n), 1] into ` = (logn)/2 ranges

and classify the vertices u in LRG based on the range into which x(u) falls. Namely, for
0 ≤ i < `, define

Ui = {u : (1/
√
n)2i ≤ x(u) ≤ (1/

√
n)2i+1}.

Thus, U0, U1, . . . , U`−1 forms a partition of LRG.
The rounding algorithm is as follows. For 0 ≤ j < `, apply the algorithm given in

Lemma 2 on the set Uj (taking X = Uj) and find an independent set Ij of Ĝ such that

p(Ij) ≥
p(Uj)

ω1(Uj)ω2(Uj)
. (1)

Then, among these ` independent sets, choose the one having the maximum profit. Let I∗ be
the chosen set. Finally, consider the following two options: (i) the singleton set containing
the vertex having the maximum profit Pmax; (ii) the set I∗. Between these options, output
the one having the maximum profit. Let Ialg be the set output by the above rounding scheme.

Analysis: We shall now analyze the rounding scheme. The goal is to show that our
algorithm has an approximation ratio of O(

√
n). The following lemma presents the main

claim of the analysis.

I Lemma 3. LP∗(LRG) ≤ (4
√
n)p(I∗).
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We shall prove the lemma shortly. Let us complete the analysis assuming the lemma.
Recall that LP∗ = LP∗(SML)+LP∗(LRG). Observe that LP∗(SML) ≤

√
nPmax and p(Ialg) ≥

Pmax. Hence, LP∗(SML) ≤
√
n · p(Ialg). The lemma implies that LP∗(LRG) ≤ (4

√
n)p(Ialg).

It follows that LP∗ ≤ (5
√
n)p(Ialg). Thus, our algorithm has O(

√
n) approximation ratio.

We now proceed to prove the lemma. The claim given below is useful for this purpose.

I Lemma 4. For any 0 ≤ j < `, LP∗(Uj) ≤ 2(
√
n/2j)p(Ij).

Proof. Let β = (1/
√
n)2j . Write U = Uj and I = Ij . Our goal is to show that LP∗(U) ≤

2(1/β)p(I). Let ωmin = min{ω1(U), ω2(U)} and let ωmax = max{ω1(U), ω2(U)}.
Equation 1 shows that

p(I) ≥ p(U)
ωminωmax

. (2)

Let us now derive a bound on LP∗(U). By the definition of U , we have that β ≤ x(u) ≤ 2β.
Therefore, LP∗(U) ≤ (2β)p(U). There exists a subset C ⊆ U which is a clique in G1[X] or
G2[X] such that |C| = ωmax. The LP contains a constraint corresponding to this clique and
hence,

∑
u∈C x(u) ≤ 1. Since every u ∈ U satisfies x(u) ≥ β, we have that βωmax ≤ 1. Thus,

β ≤ (1/ωmax). Putting together, we get that

LP∗(U) ≤ 2p(U)
ωmax

. (3)

Equations 2 and 3 imply that LP∗(U) ≤ 2ωminp(I). Recall that βωmax ≤ 1. Thus,
ωmax ≤ (1/β) and hence, ωmin ≤ (1/β). We have proved the lemma. J
Proof of Lemma 3: We have LP∗ =

∑`−1
j=0 LP∗(Uj). Lemma 4 shows that for all Uj ,

LP∗(Uj) ≤ 2(
√
n/2j)p(I∗). Therefore,

LP∗ ≤ (2
√
n)p(I∗)

`−1∑
j=0

(1/2j) ≤ (4
√
n)p(I∗).

J
Our algorithm and analysis can easily be extended to the case of weighted k-MaxCIS

problem on perfect graphs, for a constant k. For this problem, we get an algorithm with an
approximation ratio of O(n(k−1)/k).

4 Integrality Gaps

Here, we show that the LP considered in the previous section has an integrality gap of√
n, even when the input graphs are unions of two comparability graphs and the input is

unweighted. Then, we consider a strengthening of the LP and show that it has an integrality
gap of n0.16.

Fix any square number n. We shall construct a graph G = (V,E) on n vertices such
that G is the union of two comparability graphs and the LP has an integrality gap of

√
n on

G. Let k =
√
n. Let A = {1, 2, . . . , k} and V = A × A. We will describe G by presenting

two DAGs D1 = (V,E1) and D2 = (V,E2). The DAG D1 is as follows. Consider a pair of
vertices u = 〈a1, a2〉 and v = 〈b1, b2〉 belonging to V , where a1, a2, b1, b2 ∈ A. Add an edge
from u to v, if b1 ≥ a1 + 1. The DAG D2 is constructed in a similar fashion. Add an edge
from a vertex u = 〈a1, a2〉 to a vertex v = 〈b1, b2〉, if b2 ≥ a2 + 1. The two DAGs can be
visualized by considering a k × k grid of vertices. In D1, an edge is drawn from a vertex u
to all the vertices appearing in rows below the row of u; in D2, an edge is drawn from a
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vertex u to all the vertices appearing in columns to the right of column of u. It is easy to
see that D1 and D2 are acyclic. Let G1 and G2 be the comparability graphs of D1 and D2,
respectively. Take G to be the union of G1 and G2. Notice that G is the complete graph
on n vertices and so, α(G) = 1. On the other hand, ω(G1) = k and ω(G2) = k. So, we
get a feasible LP solution by setting x(u) = 1/k, for all u ∈ V . This LP solution has profit
n/k =

√
n. We conclude that the LP has an integrality gap of

√
n on G.

We now describe a strengthening of the previous LP and exhibit integrality gap. The
drawback with the previous LP is that it adds one constraint for each clique of G1 and
one constraint for each clique of G2. A natural idea is to add a constraint for each clique
of the union graph G. Namely, for each clique C of G, add a constraint

∑
u∈C x(u) ≤ 1.

Notice that this LP does not have any integrality gap on the graph instances of the previous
construction. Nevertheless, we show that even this strengthened LP has an integrality gap of
n0.16. For this, we use a combinatorial result proved by Dumitrescu and Tóth [5].

I Theorem 5 ([5]). There exists an infinite family of graphs {G} such that each graph G is
the union of two comparability graphs and ω(G) ≤ n0.42 and α(G) ≤ n0.42, where n is the
number of vertices in G.

The integrality gap for the strengthened LP follows immediately from the above theorem.
Consider any graph G = (V,E) given by this theorem. For all u ∈ V , set x(u) = 1/n0.42.
Notice that this is feasible solution to the strengthened LP. Its profit is n/n0.42 = n0.58. On
the other hand, the maximum independent set of G is of size at most n0.42. It follows that
the LP has an integrality gap of n0.16.

5 2-MaxCIS : Hardness Results

Bar-Yehuda et al. [1] show that the 2-MaxCIS problem is APX-hard on linear forests (a
linear forest is a graph in which each component is a path). They proved this result by
showing that any 3-regular graph can be expressed as the union of two linear forests. Linear
forests are bipartite graphs, which are in turn comparability graphs. It follows that the
2-MaxCIS problem on comparability graphs in APX-hard. This means that there exists an
ε > 0 such that it is NP-hard to approximate the problem within a factor of (1 + ε). The
above APX-hardness proof can be transformed into a hardness gap, as stated in the theorem
below. A similar claim for the MaxIS problem on 3-regular graphs is implicit in the work
of Chlebík and Chlebíková [2]. We can derive the theorem below by combining their result
with that that of Bar-Yehuda et al.

I Theorem 6. There exists a polynomial time algorithm and a constant ε > 0 with the
following property. The algorithm takes as input a boolean formula ϕ and outputs two
comparability graphs G1 and G2, and a number k such that

ϕ ∈ SAT =⇒ α(Ĝ) ≥ (1 + ε)k
ϕ 6∈ SAT =⇒ α(Ĝ) ≤ k,

where Ĝ = G1 ⊕G2.

We next amplify the gap produced by Theorem 6 and show that the MaxCIS problem on
comparability graphs cannot be approximated within any constant factor. We shall perform
the amplification by using the well-known approach of taking graph powers. Towards that
goal, we define a graph power satisfying two important properties: (i) if G is the union
of two comparability graphs, then Gr is also the union of two comparability graphs; (ii)
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258 Finding Independent Sets in Unions of Perfect Graphs

α(Gr) = [α(G)]r. Dumitrescu and Tóth [5] also use a similar graph product for proving a
combinatorial result (Theorem 5) on comparability graphs.

The graph power is described next. Let G = (V,E) be any graph and let r be any integer.
Construct a graph G̃ = (Ṽ , Ẽ) as follows. The vertex set Ṽ is given by Ṽ = V × V × · · ·V ,
where the cartesian product is taken r times. The edges of G̃ are described next. We add an
edge between two vertices ũ = 〈u1, u2, . . . , ur〉 and ṽ = 〈v1, v2, . . . , vr〉, if (uj , vj) ∈ E, where
j is the smallest number such that uj 6= vj . We define the graph power Gr to be the graph
G̃ constructed above. The above graph powering has the following properties.

I Lemma 7. Consider any integer r.
For any graph G, α(Gr) = [α(G)]r.
If G is a comparability graph then Gr is also a comparability graph.
Let Ĝ = G1 ⊕G2 be the union of two graphs G1 and G2. Then, Ĝr = Gr1 ⊕Gr2.

Proof. Consider the first claim. Let α(G) = k and let I be an independent set of G of size
k. Let I ′ = I × I × · · · I, where the cartesian product is taken r times. I ′ is an independent
set in Gr and it is of size kr. Thus, α(Gr) ≥ kr. To see the reverse direction, consider an
independent set I ′ of Gr. For 1 ≤ j ≤ r, define

Uj = {〈u1, u2, . . . , uj〉 : there exists uj+1, uj+2 . . . , ur such that 〈u1, u2, . . . , ur〉 ∈ I ′}.

By induction on j, we shall show that for all 1 ≤ j ≤ r, |Uj | ≤ kj . For the base case of j = 0,
the set U1 is an independent set in G and hence, |U1| ≤ k. To prove the induction step,
consider the set Uj+1. Pick any 〈u1, u2, . . . , uj〉 ∈ Uj . The set {u : 〈u1, u2, . . . , uj , u〉 ∈ Uj+1}
is an independent set in G and so, its cardinality is at most k. By induction |Uj | ≤ kj and
hence, |Uj+1| ≤ kj+1. It follows that I ′ = Ur has cardinality at most kr.

Consider the second claim. Let G = (V,E) be the comparability graph of some DAG
D = (V,E′). Without loss of generality assume that D is transitively closed (i.e., if (a, b) ∈ E′
and (b, c) ∈ E′ then (a, c) ∈ E′). We shall define a directed graph version of our graph
power and show that G is the comparability graph of Dr. Construct a directed graph
D̃ = (Ṽ , Ẽ) as follows. Define Ṽ = V × V × · · ·V , where the cartesian product is taken
r times. Add an edge from a vertex ũ = 〈u1, u2, . . . , ur〉 to the vertex ṽ = 〈v1, v2, . . . , vr〉,
if (uj , vj) ∈ E′, where j is the smallest number such that uj 6= vj . Let Dr = D̃. We first
claim that the graph D̃ constructed above is transitively closed. To see this, consider three
vertices x̃ = 〈x1, x2, . . . , xr〉, ỹ = 〈y1, y2, . . . , yr〉 and z̃ = 〈z1, z2, . . . , zr〉 such that (x̃, ỹ) ∈ Ẽ
and (ỹ, z̃) ∈ Ẽ. Let j1 and j2 be the smallest integers such that xj1 6= yj1 and yj2 6= zj2 ,
respectively. Consider the three cases of j1 < j2, j2 < j1 and j1 = j2. In the first case, j1
is the smallest number such that xj1 6= zj1 . For this index j1, we have that (xj1 , yj1) ∈ E′
and yj1 = zj1 , and hence, (xj1 , zj1) ∈ E′. It follows that (x̃, z̃) ∈ Ẽ. The second case is
handled in a similar fashion. For the third case, let j = j1 = j2. Notice that (xj , yj) ∈ E′
and (yj , zj) ∈ E′ and hence, (xj , zj) ∈ E′ (since D′ is transitively closed). It follows that
(x̃, z̃) ∈ Ẽ. We have shown that D̃ is transitively closed. This also shows that D̃ is acyclic.
We can now easily argue that G is the comparability graph of D̃.

The third claim is easy to see. J
Using the graph power and Lemma 7, we next argue that it is NP-hard to approximate

the 2-MaxCIS problem on comparability graphs within any constant factor. Theorem 6
provides an algorithm that produces a gap of (1 + ε). We can amplify the gap by graph
powering, as described next. Fix any constant r. Let the algorithm given by Theorem 6 be
denoted as A. Consider an algorithm B that takes as input a formula ϕ and outputs graphs
Gr1 and Gr2, where G1 and G2 are the graphs output by A on input ϕ. Lemma 7 shows that
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Gr1 and Gr2 are comparability graphs. The same lemma shows that α(G′) = [α(Ĝ)]r, where
G′ = Gr1 ⊕Gr2 and Ĝ = G1 ⊕G2. It follows that

ϕ ∈ SAT =⇒ α(G′) ≥ (1 + ε)rkr

ϕ 6∈ SAT =⇒ α(G′) ≤ kr.

The algorithm B runs in polynomial time and produces a gap of (1 + ε)r. Consider any
constant c and set r = (log c)/ log(1 + ε). Then, the above algorithm with parameter r
produces a gap of c. The above argument leads to the following theorem.

I Theorem 8. If NP 6= P then the MaxCIS problem on comparability graphs cannot be
approximated within any constant factor.

We can amplify the gap further. Instead of fixing r to be a constant, let us set r = d logn,
where n is the number of vertices in Ĝ and d is a suitably defined constant. The output
graph Ĝr will have N = nr vertices and the gap would become (1 + ε)d logn. Setting
d = (1/ log(1 + ε))2, we get a gap of 2

√
N . However, taking the rth power would take nO(logn)

time. The above construction leads to the following result.

I Theorem 9. If NP 6⊆ DTIME[nO(logn)], then MaxCIS problem on comparability graphs
cannot be approximated within a factor of 2

√
logn.
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