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Abstract
Reachability and boundedness problems have been shown decidable for Vector Addition Systems
with one zero-test. Surprisingly, place-boundedness remained open. We provide here a variation
of the Karp-Miller algorithm to compute a basis of the downward closure of the reachability set
which allows to decide place-boundedness. This forward algorithm is able to pass the zero-tests
thanks to a finer cover, hybrid between the reachability and cover sets, reclaiming accuracy on
one component. We show that this filtered cover is still recursive, but that equality of two such
filtered covers, even for usual Vector Addition Systems (with no zero-test), is undecidable.

Keywords and phrases Vector addition systems; Inhibitor arcs; Karp-Miller algorithms; Reach-
ability sets; Cover sets; Well-quasi orders.
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1 Introduction

Context. Petri Nets, Vector Addition Systems (VAS), and Vector Addition Systems with
control states (VASS) are equivalent well-known classes of counter systems for which the
reachability problem is decidable [19, 17, 18], even if its complexity is still an open problem. On
the other hand, testing equality of the reachability sets of two such systems is undecidable [12].
For that reason, one cannot compute a canonical finite representation of the reachability set
that would make it possible to test for equality. However, there is such an effective finite
representation for the cover, a useful over-approximation of the reachability set which is
connected to various verification problems.

If we add to VAS the ability to test at least two counters to zero, one obtains a model
equivalent to Minsky machines, for which all nontrivial properties are undecidable. The study
of VAS with a single zero-test transition began recently, and very few results are known for
this model. Reinhardt [21] has shown that the reachability problem is decidable for VASS
with one zero-test transition (as well as for hierarchical zero-tests). Abdulla and Mayr have
shown that the coverability problem is decidable in [2], by using the backward procedure
of Well Structured Transition Systems [1]. See [10] for a survey. The boundedness problem
(whether the reachability set is finite), the termination and the reversal-boundedness problem
(whether the counters can alternate infinitely often between the increasing and the decreasing
modes) are all decidable by using a forward procedure, a finite but non-complete Karp
and Miller tree [9]. The place-boundedness problem, and more generally the possibility to
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compute a finite representation of the cover were still open problems. Only in the particular
case of dimension 2 with control states, the reachability set is semilinear and its basis and
periods are computable [11] and then the place-boundedness is decidable; but this result
cannot be extended in dimension 3, even without zero-test [14].

Our contribution. We give an algorithm for computing a finite representation of the cover
for a VAS with one zero-test. This result makes it possible to decide the place-boundedness,
which is in general undecidable for VAS extensions (such as VAS with resets [5] or Lossy
Minsky machines, i.e. Lossy VAS with zero-test transitions [3, 20]). Our proof techniques
introduce a filtered cover, an hybrid between the reachability and cover sets, which unlike the
cover reclaims accuracy on one component. We show that this set is recursive, but that one
cannot decide the equality of such filtered covers of two VAS (even without zero-test). Thus,
our work is a contribution to understanding the limits of decidability, taking into account
two parameters: the models (VAS and VAS with zero-test) and the problems (reachability,
cover and filtered cover).

The difficulty. The central problem is to compute the cover of a VAS with one zero-test.
Let us explain the reasons why the usual Karp and Miller is not sufficient for that purpose.
A natural idea appearing in [9] is to adapt the classical Karp-Miller construction [15], first
building the Karp-Miller tree, but without firing the zero test. To continue the construction
after this first stage, we need to fire the zero test from the leaves of the Karp-Miller tree
carrying a 0 value on the component tested to 0. The problem is that accelerations performed
while building the Karp-Miller tree may have produced, on this component in the label of
such a leaf, an ω value which represents infinity, and abstracts actual values. For that reason,
one may not be able to determine if the zero test succeeds or not. We therefore want a more
accurate information for the labeling of the leaves, for the component tested to 0. This is
what the filtered cover actually captures.

The schema of our proof.

1. We start in Section 3 with usual VAS: we extend the decidability of the reachability
problem for VAS, in proving that the set Lim Reach of limits of increasing sequences
of reachable states is also recursive (Lim Reach contains the reachability set). The set
Lim Reach is a more sophisticated set than both the cover and the reachability set. It
allows us to know whether an element in (N∪{ω})d is a reachable state or is the limit of a
sequence of reachable states. This information is not given by the reachability set neither
by the cover. The proof carries on by using Higman’s Lemma, using a nontrivial ordering.

2. In Section 4, we refine the definition of the cover in which the first component has now
to be exactly known (and not only bounded by a maximum). We prove that, for VAS, a
finite basis of this filtered cover is still computable by using the recursivity of Lim Reach.

3. We finally compute in Section 5 the finite basis of the cover of a VAS with one zero-test
by using a variation of the Karp and Miller algorithm that uses the previously defined
filtered covers in order to convey enough information to go through the zero-test.

Due to lack of space, some proofs are omitted.

2 Vector Addition Systems

Orderings and vectors. An ordering 4 on a set X is a reflexive, transitive and antisym-
metric binary relation on X. Given x, y ∈ X, we write x ≺ y for x 4 y and x 6= y. For d > 1,
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194 Place-Boundedness for Vector Addition Systems with one zero-test

we write any x ∈ Xd as x = (x(1), . . . ,x(d)), with x(i) ∈ X. The pointwise ordering on Xd,
still denoted 4, is defined by x 4 y if x(i) 4 y(i) for all i. For x1 ∈ Xd1 and x2 ∈ Xd2 ,
we let (x1,x2) ∈ Xd1+d2 be the vector obtained by gluing x1 and x2. For X = N, let 0 be
the vector whose components are all 0, and for i ∈ {1, . . . , d}, let ei be the vector such that
ei(i) = 1 and ei(k) = 0 if k 6= i. Finally, given Y ⊆ X, let ↓4Y = {x ∈ X | ∃y ∈ Y, x 4 y}
denote the downward closure of Y with respect to 4. The set Y is said downward closed
if Y = ↓4Y . When working in Nd or Nd

ω (see below) we shorten the downward closure
operator ↓6 as ↓.

Downward closed sets of Nd. Given an ordered set, one may under suitable hypotheses
construct a topological completion of this set to recover a finite description of downward
closed sets [7, 8]. The completion of Nd is Nd

ω, with Nω = N ∪ {ω}, where we extend 6 by
n 6 ω for all n ∈ Nω. The results of [7, 8] in this case yield that, if D ⊆ Nd is downward
closed, then D = Nd ∩ ↓B for some finite set B ⊆ Nd

ω, which we call a (finite) basis of D.
One can show that the maximal elements of any basis B of D still form a basis which does
not depend of B. It is minimal for inclusion among all basis, and is called the minimal basis.

An example. Let us consider in N2 the downward closed set{
(x, y) ∈ N2 | x 6 3 ∨ y 6 1

}
∪
{

(4, 2), (4, 3), (5, 2)
}
. A (non-

minimal) basis is ({0, 1, 2, 3} × {ω}) ∪ {(4, 3), (5, 2)} ∪ {ω} × {0, 1}.
It is shown with dots • in the figure, where elements involving ω
fall beyond the grid. The elements of the minimal basis are circled.

I Definition 1. (VAS0). A Vector Addition System of dimension d with one zero-test
(VAS0) is a tuple 〈A, aZ , δ,xin〉, where A is a finite alphabet of actions, aZ /∈ A is called the
zero-test, δ : A ∪ {aZ} → Zd is a mapping, and xin ∈ Nd is the initial state.

Intuitively, a VAS0 works on d counters, one for each component, whose initial values
are given by xin. Executing a ∈ A ∪ {aZ} translates the counters according to δ(a) ∈ Zd.
The mapping δ extends to a monoid morphism δ : (A ∪ {aZ})∗ → Zd, so that δ(ε) = 0 and
δ(uv) = δ(u) + δ(v) for u, v ∈ (A∪{aZ})∗. A word u ∈ (A∪{aZ})∗ is fireable from x ∈ Nd if

(a) for every prefix v of u, we have x + δ(v) > 0, and
(b) for every prefix waZ of u, we have [x + δ(w)](1) = 0.

The first condition means that all counters must remain nonnegative while firing actions.
The second one says that the zero-test aZ is possible only when the first counter is zero.
We write x

u−→ y if u is fireable from x and y = x + δ(u). This implies in particular that
x,y > 0.

I Definition 2. (VAS). A Vector Addition System (VAS) of dimension d is a tuple 〈A, δ,xin〉
where A is a finite alphabet, δ : A→ Zd is a mapping, and xin ∈ Nd is the initial state.

A VAS is a particular VAS0: choosing δ(aZ) = −e1 makes the zero-test aZ never fireable.
Given the VAS S = 〈A, δ,xin〉, we say that u ∈ A∗ is fireable if condition (a) above is
satisfied.
For a VAS0 or a VAS S, the reachability set Reach(S) and the cover Cover(S) of S are:

Reach(S) = {xin + δ(u) | u is fireable in S},
Cover(S) = ↓Reach(S).

We call elements of Reach(S) reachable states (also called reachable markings in related
work). The reachability (resp. coverability) problem consists in deciding membership in
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the set Reach(S) (resp. in Cover(S)). Reachability is decidable for VAS [19, 17, 18] and
VAS0 [21].

I Theorem 3. Given a VAS S, the reachability problem is decidable.

Testing membership in the cover set is easier. One even gets a more precise result [15, 10, 8].

I Theorem 4. Given a VAS S, one can effectively compute a finite basis of Cover(S).

Observe that from a finite basis B of a downward closed set D, one can effectively test
membership in D. Therefore, one can effectively test membership in Cover(S). Computing a
finite basis of the cover makes it possible to decide place-boundedness, that is, whether the
projection of Reach(S) on some given component is bounded. In the next sections, we will
show that one can also effectively compute a finite basis for the cover of a VAS0.

3 Limits of reachable states of a VAS

Limits in Nd
ω. A sequence (`n)n>0 (also written (`n)n) of elements of Nω has limit ` ∈ Nω,

noted limn `n = `, if either it is ultimately constant with value `, or its subsequence of integer
values is infinite, it tends to infinity, and ` = ω. A sequence (xn)n of vectors of Nd

ω has limit
x ∈ Nd

ω, noted limn xn = x, if limn xn(i) = x(i) for all i ∈ {1, . . . , d}.
For M ⊆ Nd

ω, we denote by LimM the set of limits of sequences of elements of M . Note
that M ⊆ LimM . Topologically speaking, LimM is the least closed set (for the topology
associated with the ordering) containing M and is usually called the (topological) closure
of M . Also note that for M ⊆ Nd, if LimM is recursive, then so is M = Nd ∩ LimM .
However, in general, M may be recursive while LimM is not.

We prove in this section the following statement.

I Theorem 5. Lim Reach(S) is recursive.

We do so by proving that Lim Reach(S) and its complement in Nd
ω are both recursively

enumerable. We start by proving that Lim Reach(S) is recursively enumerable, by introducing
productive sequences, a notion inspired by Hauschildt [13].

I Definition 6. Let S = 〈A, δ,xin〉 be a VAS. A sequence π = (ui)06i6k of words ui ∈ A∗ is
productive in S for a word v = a1 · · · ak (ai ∈ A) if

(1) the partial sums δ(u0) + · · ·+ δ(ui) are nonnegative for every i ∈ {0, . . . , k}, and
(2) the word u0a1u1 · · · akuk is fireable from xin.

The total sum
∑k

i=0 δ(ui) is called the production of π and is simply denoted δ(π).

The following lemma provides a characterization of the productive sequences.

I Lemma 7. A sequence π = (ui)06i6k is productive for v = a1 · · · ak if and only if the
words un

0a1u
n
1 · · · aku

n
k are fireable from xin for all n > 1. In particular, every marking

xin + δ(v) + nδ(π) where n > 1 is reachable from xin.

Proposition 9 below shows that limits of reachable states can be witnessed by productive
sequences. Its essential argument is Higman’s Lemma. Recall that an ordering 4 is well if
every infinite sequence (`n)n∈N admits an infinite increasing subsequence (`nk

)k∈N, i.e., such
that `n0 4 `n1 4 `n2 4 · · · . The pointwise ordering on Nd or on Nd

ω is well (Dickson’s Lemma).
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196 Place-Boundedness for Vector Addition Systems with one zero-test

Higman’s Lemma. For a (possibly infinite) set Σ, we denote by Σ∗ the set of finite words
over Σ. Given an ordering 4 on Σ, let 4∗ be the ordering on Σ∗ defined as follows: for
u, v ∈ Σ∗, we have u 4∗ v if u = a1 · · · an with ai ∈ Σ, v = v0b1v1 · · · vn−1bnvn, with vi ∈ Σ∗,
bj ∈ Σ, and for all i = 1, . . . , n, we have ai 4 bi. In other words, u is obtained from v by
removing some letters, and then replacing some of the remaining letters by smaller ones.
Higman’s Lemma is the following result, see [4] for instance for a proof.

I Lemma 8. (Higman) If 4 is a well ordering on A, then 4∗ is a well ordering on A∗.

We extend the multiplication on Nω by ω · 0 = 0 = 0 · ω and ω · k = ω = k · ω if k 6= 0.
This multiplication then extends componentwise to the scalar multiplication of Nd

ω by Nω.

I Proposition 9. Let S = 〈A, δ,xin〉 be a VAS. Then

Lim Reach(S) =
{

xin + δ(v) + ωδ(π) | π is productive for v
}
.

Proof. For the inclusion from right to left, if π is a productive sequence for a word v, then
xin + δ(v) +ωδ(π) is the limit of the sequence (xn)n∈N with xn = xin + δ(v) +nδ(π), and xn

is a reachable state by Lemma 7. We prove the reverse inclusion thanks to Higman’s lemma.
We first introduce a well ordering v over Reach(S), using a temporary ordering 4.

Consider the infinite set Σ = A× Nd
ω. This set is well ordered by 4, defined by

(a,y) 4 (b, z) if and only if a = b and y 6 z.

Since 4 is a well ordering, Higman’s lemma shows that 4∗ is a well-ordering over Σ∗. Let
us now associate to every reachable state y ∈ Reach(S) a word αy in Σ∗ as follows: since
y is reachable, we can choose a word v = a1 · · · ak, with ai ∈ A, such that xin

v−→ y. We
introduce the sequence (yi)06i6k of states defined by yi = xin + δ(a1 · · · ai), and we let:

αy = (a1,y1) · · · (ak,yk).

The ordering v over Reach(S) is defined by y v z if αy 4∗ αz and y 6 z. Since the orderings
4∗ over Σ∗ and 6 over Nd are well, we deduce that v is a well ordering over Reach(S).

To show the inclusion from left to right, pick x ∈ Lim Reach(S): x is the limit of a
sequence (xk)k∈N of reachable states. By extracting a subsequence we can assume that
(xk(i))k∈N is strictly increasing if x(i) = ω, and xk(i) = x(i) if x(i) < ω. Denote by
αk the word αxk associated to the reachable state xk. Since v is a well ordering, there
exist m < n such that xm v xn. By construction of αm there exists a word v = a1 · · · ak

with aj ∈ A such that the sequence (yj)06j6k defined by yj = xin + δ(a1 · · · aj) for every
j ∈ {1, . . . , k} satisfies:

αm = (a1,y1) · · · (ak,yk).

Since xm 4∗ xn and by definition of 4∗, there exist a sequence (zj)16j6k of states with
yj 6 zj , and a sequence (βj)06j6k of words in Σ∗ such that the following equality holds:

αn = β0(a1, z1)β1 · · · (ak, zk)βk

We call label of a word (b1, t1) · · · (b`, t`) over Σ the word b1 · · · b` over A. Consider the
sequence π = (uj)06j6k where uj is the label of βj . By definition of αn, we have

xin
u0a1−−−→ z1 · · ·

uk−1ak−−−−−→ zk
uk−→ xn
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In particular, zj = yj + δ(u0) + · · ·+ δ(uj−1) for every j ∈ {1, . . . , k} and xn = zk + δ(uk) =
yk + δ(π) = xm + δ(π). As yj 6 zj for every j ∈ {1, . . . , k} and xm 6 xn, we deduce that
π is productive for v.

Finally, let us prove that x = y where y = xin + δ(v) +ωδ(π). We have xn = xm + δ(π).
Let us consider i ∈ {1, . . . , d}. If x(i) < ω then xm(i) = x(i) = xn(i). Thus δ(π)(i) = 0
and we deduce that x(i) = y(i). If x(i) = ω then xm(i) < xn(i) and we deduce that
δ(π)(i) > 0 and in particular x(i) = ω = y(i). Thus x = y. We have proved that there
exists a productive sequence π for a word v such that x = xin + δ(v) + ωδ(π). J

It is easier to prove that the complement of Lim Reach(S) recursively enumerable. We just
give the construction. Let S = 〈A, δ,xin〉 and y ∈ Nd

ω. We introduce d distinct additional
elements b1, . . . , bd 6∈ A. Let B = {b1, . . . , bd}. We introduce the VAS Sy = 〈A ]B, δy,xin〉,
where δy extends δ by:

δy(bi) =
{

0 if y(i) < ω,
−ei if y(i) = ω.

Finally, we define from y a sequence (y`)` converging to y, by y`(i) =
{
` if y(i) = ω,
y(i) if y(i) < ω.

I Lemma 10. Let Sy and (y`)` constructed from y as above. Then,

y 6∈ Lim Reach(S)⇐⇒ ∃` ∈ N, y` /∈ Reach(Sy). (1)

In particular, the complement of Lim Reach(S) is recursively enumerable.

Theorem 5 now follows from Proposition 9 and Lemma 10.

4 Between the cover and the reachability set: the filtered covers

In this section, we introduce a set hybrid between the reachability and cover sets, which to
our knowledge has not yet been considered. Instead of the downward closure Cover(S) of
Reach(S) wrt. the pointwise ordering 6, we consider Cover6P

(S) = ↓6P
Reach(S), that is,

we replace 6 with an ordering 6P parametrized by a set of “positions” P ⊆ {1, . . . , d}:

x 6P y if
{

x(i) = y(i) for i ∈ P ,
x(i) 6 y(i) for i /∈ P .

The set P contains the components for which we insist on keeping equality. Thus, 6∅ is the
usual pointwise ordering 6, while 6{1,...,d} boils down to equality. Note that 6P is not a well
ordering, except if P = ∅ (e.g., N ordered by 6{1} consists only of incomparable elements).

The ordering 6{1} will be abbreviated as 61. It is a natural order to study for a VAS0
(recall that the zero-test occurs on the first component). Indeed, the transition relation of a
VAS0 is monotonic regarding this order: if x

u−→ x′ and x 61 y, then there exists y′ with
y

u−→ y′ and x′ 61 y′. More precisely, testing if Cover61(S) contains a vector whose first
component is 0 is what we need to design our algorithm computing the cover of a VAS with
one zero test. Unfortunately, this set has infinitely many maximal elements for 61, and thus
cannot be represented by a finite basis. The following theorem shows that we cannot find a
sensible way to compute a representation of this set, as any representation would not allow
to test for equality.

I Theorem 11. Given two VAS S1 and S2 of the same dimension d, the equality problem
Cover61(S1) = Cover61(S2) is undecidable.
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198 Place-Boundedness for Vector Addition Systems with one zero-test

Proof. We reduce this problem to the equality problem Reach(S1) = Reach(S2). This
problem is known to be undecidable [12]. Let us first consider a VAS S = 〈A, δ,xin〉 of
dimension d. We introduce a VAS S ′ = 〈A, δ′,x′

in〉 of dimension d + 1 that counts in the
first component the sum of the other components. Formally, x′

in = (
∑d

i=1 xin(i),xin) and
δ′(a) = (

∑d
i=1 δ(a)(i), δ(a)) for every a ∈ A. Observe that the following equivalence holds:

(n,x) ∈ Reach(S ′) ⇐⇒ x ∈ Reach(S) and n =
d∑

i=1
x(i)

Finally let us consider two VAS S1 and S2 and just observe that Reach(S1) = Reach(S2) if
and only if Cover61(S ′1) = Cover61(S ′2). J

So, we cannot hope for a useful representation of the sets Cover6P
(S) themselves. However,

one can capture the needed information differently, by replacing the downward closure ↓6P

in Cover6P
(S) = ↓6P

Reach(S) with an operator ⇓f parametrized by a vector f of Nd
ω.

Informally, ⇓fM takes into account only elements of M that agree with f on its finite
components. Formally, for f ∈ Nd

ω and M ⊆ Nd, let

Filter(M,f) =
{

x ∈M |
d∧

i=1

[
f(i) < ω =⇒ x(i) = f(i)

]}
,

⇓fM =
yFilter(M,f).

Note that ⇓fM = ↓M for f = (ω, ω, . . . , ω). On the other hand, if f ∈ Nd, then ⇓fM = ↓f
if f ∈M , and ⇓fM = ∅ otherwise. Observe also that ⇓fM is downward closed and that the
maximal elements of any basis of ⇓fM agree with f on every component i where f(i) is
finite. The next lemma provides a relationship between the sets ⇓fM and ↓6P

M .

I Lemma 12. Let M ⊆ Nd. Then, the following conditions are equivalent:

(a) For all f ∈ Nd
ω, one can effectively compute the basis of ⇓fM .

(b) For all P ⊆ {1, . . . , d}, the set Lim ↓6P
M is recursive.

The main result of this section states that both conditions of Lemma 12 actually hold
when M is the reachability set of a VAS. This is obtained by first proving that Cover6P

(S) =
Reach(SP ) where SP is a VAS constructed from S and P . From this equality, we deduce that
Lim Cover6P

(S) = Lim Reach(SP ). Applying Theorem 5, it follows that this set is recursive,
which proves condition (b) for M = Reach(S). Then by Lemma 12, condition (a) also holds.

Let S = 〈A, δ,xin〉 be a VAS and P ⊆ {1, . . . , d}. Let us define a VAS SP such that
Reach(SP ) = Cover6P

(S). We consider d distinct additional elements b1, . . . , bd 6∈ A. Let
B = {b1, . . . , bd}. We consider the VAS SP = 〈A ]B, δP ,xin〉, where δP extends δ by:

δP (bi) =
{

0 if i ∈ P
−ei if i /∈ P .

I Lemma 13. Let SP constructed from S and P as above. Then Cover6P
(S) = Reach(SP ).

Proof. Consider a state x ∈ Cover6P
(S). By definition, there exists y ∈ Reach(S) such that

x 6P y. Observe that xin
∗−→ y

u−→ x in SP with u =
∏d

i=1 b
y(i)−x(i)
i . Hence x ∈ Reach(SP ).

Conversely let x ∈ Reach(SP ) and let u ∈ (A ∪B)∗ such that xin
u−→ x in SP . Consider the

word v obtained from u by erasing all letters of B. Since δP (b) 6 0 for b ∈ B, the word v is
still fireable from xin. Thus y = xin + δ(v) ∈ Reach(S). Moreover, by definition of SP we
have x 6P y. Therefore x ∈ Cover6P

(S). J
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Combining Lemma 13, Theorem 5 and Lemma 12 as explained above yields:

I Theorem 14. Given f ∈ Nd
ω and a VAS S, one can effectively compute a basis of

⇓f Reach(S).

5 Computing the cover of a VAS with one zero-test

We provide an algorithm computing the basis of Cover(S) of any VAS0 S = 〈A, aZ , δ,xin〉.
Intuitively the algorithm, inspired by the Karp and Miller algorithm for VAS [15], builds a
tree with nodes labeled by vectors in {0} × Nd−1

ω such that the finite set R of node labels
satisfies the following equality when the algorithm terminates:

⇓f Reach(S) = (↓R) ∩ Nd, where f = (0, ω, . . . , ω).

In order to simplify the presentation, we assume without loss of generality that xin ∈ {0}×
Nd−1 and δ(aZ) ∈ {0} × Zd−1. In the sequel we denote by SVAS the VAS SVAS = (A, δ,xin)
obtained from S by removing the zero-test aZ . Moreover, given s ∈ {0}×Nd−1 we denote by
S(s) and SVAS(s) the VASs obtained respectively from S and SVAS by replacing the initial
state xin by s.

At any step of the execution, in the tree built in the algorithm, every ancestor node n of
a node n′ satisfies the invariant x

∗=⇒ x′ where x,x′ are the labels of n, n′ and where ∗=⇒ is
the binary relation defined over the vectors in {0} × Nd−1

ω by:

x
∗=⇒ x′ if (↓x′) ∩ Nd ⊆

⋃
s∈(↓x)∩Nd

⇓f Reach(S(s)).

By the next lemma, it is sufficient to maintain this invariant along each parent-child edge.

I Lemma 15. The binary relation ∗=⇒ is reflexive and transitive.

Proof. The reflexivity is immediate. For the transitivity, we first introduce the binary
relation ∗−→ over Nd defined by x

∗−→ x′ if there exists u ∈ (A∪ {aZ})∗ such that x
u−→ x′. We

observe that x
∗=⇒ x′ if and only if the following relation holds:

∀s′ ∈ (↓x′) ∩ Nd ∃s ∈ (↓x) ∩ Nd ∃z ∈ {0} × Nd−1
ω s

∗−→ s′ + z.

Assume that x
∗=⇒ x′ and x′

∗=⇒ x′′. Let s′′ ∈ (↓x′′) ∩ Nd. From x′
∗=⇒ x′′, we deduce that

there exist z′ ∈ {0} × Nd−1 and s′ ∈ (↓x′) ∩ Nd such that s′ ∗−→ s′′ + z′. From x
∗=⇒ x′,

we deduce that there exist z ∈ {0} × Nd−1 and s ∈ (↓x) ∩ Nd such that s
∗−→ s′ + z. In

particular we deduce that s
∗−→ s′′ + z + z′. We have proved that x

∗=⇒ x′′. J

Assume now that x ∈ {0} ×Nd−1
ω labels a leaf. We create a child of this leaf if the vector

y = x + δ(aZ) is nonnegative. Note that in this case y ∈ {0} × Nd−1
ω , since δ(aZ)(1) = 0.

We do not violate the invariant when creating the child labeled y since x
∗=⇒ y. We may

also add new children labeled by elements of the minimal basis B(x) of the following
downward-closed set: ⋃

s∈(↓x)∩Nd

⇓f Reach(SVAS(s))

We observe that x
∗=⇒ b for every b ∈ B(x), so that the invariant will still be fulfilled after

adding elements of B(x).
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I Lemma 16. The basis B(x) is effectively computable.

Proof. We introduce the set I of components i ∈ {2, . . . , d} such that x(i) = ω. We
consider the VAS S ′VAS = (A, δ′,x′) obtained from SVAS(x) by preventing any modification
of components in I. More formaly δ′ and x′ are defined by δ′(a)(i) = 0 and x′(i) = 0 if i ∈ I
and δ′(a)(i) = δ(a)(i) and x′(i) = x(i) if i 6∈ I. Theorem 14 shows that we can effectively
compute the basis B′ of ⇓f Reach(S ′VAS). Now B(x) = {y+ z | y ∈ B′}, where z is the vector
defined by z(i) = ω if i ∈ I and z(i) = 0 if i 6∈ I. J

The algorithm termination is obtained by introducing an acceleration operator ∇. We
define the vector x∇ y for every x,y ∈ {0} × Nd−1

ω such that x 6 y by

(x∇ y)(i) =
{
ω if x(i) < y(i)
x(i) if x(i) = y(i).

I Lemma 17. If x
∗=⇒ y with x 6 y then x

∗=⇒ x∇ y.

Let us now describe informally the algorithm. It inductively computes a tree with nodes
labeled by vectors in {0} × Nd−1

ω . The tree is rooted at a node labeled by xin (recall that
xin ∈ {0} × Nd−1). The tree is modified in such a way that for every node n and for every
child n′ of n, the labels x,x′ of n, n′ satisfy x

∗=⇒ x′. While there exists a leaf n′ labeled by
a vector x′ that admits an ancestor n labeled by a vector x such that x 6 x′ < x∇ x′, we
replace the label x′ of node n′ by x∇ x′. From Lemma 17, we deduce that the invariant
still holds. Since this loop just replaces some components by ω, it terminates. Then, the
algorithm checks if for every leaf n labeled by x, there exists a strict ancestor (i.e., different
from n) labeled by the same vector x. In this case, the algorithm terminates and it returns
the set of node labels. Otherwise the algorithm considers a leaf n not fulfilling this condition,
and it creates a new child of n labeled by b for each b ∈ B(x). It also creates a new child
labeled by x + δ(aZ) if this vector is nonnegative. The modification of the tree is then
restarted.

The termination of this algorithm follows from König’s lemma. If the algorithm does not
terminate, then it would generate an infinite tree. Because this tree has a finite branching
degree, by König’s lemma, there is an infinite branch. Since 6 is a well-ordering over
{0} × Nd−1

ω , this implies that we can extract from this infinite branch an infinite increasing
subsequence. However, since we add children to a leaf only if there does not exist a strict
ancestor labeled by the same vector, this sequence cannot contain the same vector twice, and
must therefore be strictly increasing. But, due to the use of the operator ∇, a component
with an integer is replaced by ω at every acceleration step. Because the number of ω’s in
the vectors labeling a branch cannot decrease, we obtain a contradiction. We deduce the
following proposition.

I Proposition 18. Algorithm 1 terminates and it returns a finite set R such that

⇓f Reach(S) = ↓R ∩ Nd.

We have proved that we can effectively compute a basis R of ⇓f Reach(S). Now, observe
that the following equality holds:

Cover(S) =
⋃

b∈R

⋃
s∈(↓b)∩Nd

Cover(SVAS(s)).
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Algorithm 1 An algorithm to compute a basis of ⇓f Reach(S)

Inputs: A VAS0 S such that xin ∈ {0} × Nd−1 and a δ(aZ) ∈ {0} × Zd−1.
Outputs: R, a finite subset of {0} × Nd−1

ω .
Internal Variables:
T , a tree labeled by elements of Nd

ω.
N , a set of nodes.

Algorithm:
1: Initialize T as a single root nin, labeled by xin
2: N ← {nin}
3: while N 6= ∅ do
4: Take a node n from N

5: x← label(n)
6: if the label of every strict ancestor of n is not equal to x then
7: for all strict ancestor n0 of n do
8: x0 ← label(n0)
9: if x0 6 x then

10: x← x0 ∇ x

11: end if
12: end for
13: Replace the label of n by x

14: if x + δ(aZ) > 0 then
15: Create a new node in T labeled by x + δ(aZ), as a child of n
16: Add this node to N
17: end if
18: for all b ∈ B(x) do
19: Create a new node in T labeled by b, as a child of n
20: Add this node to N
21: end for
22: end if
23: end while
24: R← {label(n) | n ∈ nodes(T )}
25: return R
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A reduction similar to the one provided in the proof of Lemma 16 shows that the basis
of
⋃

s∈(↓b)∩Nd Cover(SVAS(s)) can be obtained from a basis of Cover(S ′VAS), where S ′VAS is
a VAS obtained from SVAS and b by removing the components i ∈ {2, . . . , d} such that
b(i) = ω. We deduce the following theorem.

I Theorem 19. Given a VAS0 S, one can effectively compute the finite basis of Cover(S).

6 Conclusion and perspectives

Our main result is a forward algorithm, à la Karp&Miller, to compute the downward closure
of the reachability set of a nonmonotonic transition system: VAS0. This implies that place-
boundedness is decidable. For our purposes, we introduced new sets, sitting between the
cover and the reachability set. Unfortunately, we cannot say anything about the complexity
of the computation of the cover for VAS0, because our proof uses the decidability of the
reachability problem for VAS as an oracle, whose complexity is still open.

Since we have solved the place-boundedness problem, a natural question would be an
instance of a liveness problem, like the repeated control-state reachability problem (RCSRP).
One could think of a reduction from the RCSRP to the place-boundedness problem (or to
the computation of the cover), by adding a new counter cq getting increased each time the
control-state q is hit. This does actually not work, because cq might be unbounded even if
on each single run, it is bounded. It seems that these two problems are not close: for solving
the RCSRP, we need to decide whether there is an infinite run along which a given counter
is unbounded, while the cover gives boundedness information about the global reachability
set, but not on infinite runs. For VAS with one weak zero-test (for instance a lossy zero-test,
like a reset), the usual Karp and Miller algorithm can be easily extended, and the RCSRP is
decidable; for VAS with two weak zero-test (two resets), the techniques used in [6] allow one
to show that this problem is undecidable. Finally, the RCSRP remains open for VAS0.

We have proved new decidability results for VAS0. One could think that maybe, VAS0
can be simulated by VAS. The answer is negative: the language {anbn | n > 1}∗ can be easily
recognized by a VAS0, but not by a VAS [16]. More generally, one may prove that for every
VAS-language L, there is a VAS0 S such that L(S) = L∗. One can also separate VAS and
VAS0 wrt. the reachability set. Hence, even if their reachability problem is decidable [21]
and their cover is computable (this paper), VAS0 are strictly more powerful than VAS.
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