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Abstract
We study the computational complexity of basic decision problems for one-counter simple stochas-
tic games (OC-SSGs), under various objectives. OC-SSGs are 2-player turn-based stochastic
games played on the transition graph of classic one-counter automata. We study primarily the
termination objective, where the goal of one player is to maximize the probability of reaching
counter value 0, while the other player wishes to avoid this. Partly motivated by the goal of
understanding termination objectives, we also study certain “limit” and “long run average” re-
ward objectives that are closely related to some well-studied objectives for stochastic games with
rewards. Examples of problems we address include: does player 1 have a strategy to ensure that
the counter eventually hits 0, i.e., terminates, almost surely, regardless of what player 2 does? Or
that the lim inf (or lim sup) counter value equals ∞ with a desired probability? Or that the long
run average reward is > 0 with desired probability? We show that the qualitative termination
problem for OC-SSGs is in NP ∩ coNP, and is in P-time for 1-player OC-SSGs, or equivalently
for one-counter Markov Decision Processes (OC-MDPs). Moreover, we show that quantitative
limit problems for OC-SSGs are in NP∩coNP, and are in P-time for 1-player OC-MDPs. Both
qualitative limit problems and qualitative termination problems for OC-SSGs are already at least
as hard as Condon’s quantitative decision problem for finite-state SSGs.
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1 Introduction

There is a rich literature on the computational complexity of analyzing finite-state Markov
decision processes and stochastic games. In recent years, there has also been some research
done on the complexity of basic analysis problems for classes of finitely-presented but infinite-
state stochastic models and games whose transition graphs arise from decidable infinite-state
automata-theoretic models, including: context-free processes, one-counter processes, and
pushdown processes (see, e.g., [9]). It turns out that such stochastic automata-theoretic
models are intimately related to classic stochastic processes studied extensively in applied
probability theory, such as (multi-type-)branching processes and (quasi-)birth-death processes
(QBDs) (see [9, 8, 3]).

In this paper we continue this line of work by studying one-counter simple stochastic
games (OC-SSGs), which are turn-based 2-player zero-sum stochastic games on transition
graphs of classic one-counter automata. In more detail, an OC-SSG has a finite set of control
states, which are partitioned into three types: a set of random states, from where the next
transition is chosen according to a given probability distribution, and states belonging to one
of two players: Max or Min, from where the respective player chooses the next transition.
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Transitions can change the state and can also change the value of the (unbounded) counter
by at most 1. If there are no control states belonging to Max (Min, respectively), then we call
the resulting 1-player OC-SSG a minimizing (maximizing, respectively) one-counter Markov
decision process (OC-MDP).

Fixing strategies for the two players yields a countable state Markov chain and thus a
probability space of infinite runs (trajectories). We focus in this paper on objectives that
can be described by a (measurable) set of runs, such that player Max wants to maximize,
and player Min wants to minimize, the probability of the objective. The central objective
studied in this paper is termination: starting at a given control state and a given counter
value j > 0, player Max (Min) wishes to maximize (minimize) the probability of eventually
hitting the counter value 0 (in any control state).

Different objectives give rise to different computational problems for OC-SSGs, aimed
at computing the value of the game, or optimal strategies, with respect to that objective.
From general known facts about stochastic games (e.g., Martin’s Blackwell determinacy
theorem [14]), it follows that the games we study are determined, meaning they have a value:
we can associate with each such game a value, ν, such that for every ε > 0, player Max has a
strategy that ensures the objective is satisfied with probability at least ν − ε regardless of
what player Min does, and likewise player Min has a strategy to ensure that the objective
is satisfied with probability at most ν + ε. In the case of termination objectives, the value
may be irrational even when the input data contains only rational probabilities, and this is
so even in the purely stochastic setting without any players, i.e., with only random control
states (see [8]).

We can classify analysis problems for OC-SSGs into two kinds: quantitative analyses:
“can the objective be achieved with probability at least/at most p” for a given p ∈ [0, 1]; or
qualitative analyses, which ask the same question but restricted to p ∈ {0, 1}. We are often
also interested in what kinds of strategies (e.g., memoryless, etc.) achieve these.

In a recent paper, [3], we studied one-player OC-SSGs, i.e., OC-MDPs, and obtained some
complexity results for them under qualitative termination objectives and some quantitative
limit objectives. The problems we studied included the qualitative termination problem
(is the maximum probability of termination = 1?) for maximizing OC-MDPs. We showed
that this problem is decidable in P-time. However, we left open the complexity of the same
problem for minimizing OC-MDPs (is the minimum probability of termination < 1?). One of
the main results of this paper is the following, which in particular resolves this open question:

I Theorem 1. (Qualitative termination) Given a OC-SSG, G, with the objective of
termination, and given an initial control state s and initial counter value j > 0, deciding
whether the value of the game is equal to 1 is in NP∩coNP. Furthermore, the same problem
is in P-time for 1-player OC-SSGs, i.e., for both maximizing and minimizing OC-MDPs.

Improving on this NP ∩ coNP upper bound for the qualitative termination problem for
OC-SSGs would require a breakthrough: we show that deciding whether the value of an OC-
SSG termination game is equal to 1 is already at least as hard as Condon’s [6] quantitative
reachability problem for finite-state simple stochastic games (Corollary 16). We do not
know a reduction in the other direction. We furthermore show that if the value is 1 for a
OC-SSG termination game, then Max has a simple kind of optimal strategy (memoryless,
counter-oblivious, and pure) that ensures termination with probability 1, regardless of Min’s
strategy. Similarly, if the value is less than 1, we show Min has a simple strategy (using
finite memory, linearly bounded in the number of control states) that ensures the probability
of termination is < 1− δ for some positive δ > 0, regardless of what Max does. We show
that such strategies for both players are computable in non-deterministic polynomial time
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110 One-Counter Stochastic Games

for OC-SSGs, and in deterministic P-time for (both maximizing and minimizing) 1-player
OC-MDPs. We also observe that the analogous problem of deciding whether the value of a
OC-SSG termination game is 0 is in P, which follows easily by reduction to non-probabilistic
games.

OC-SSGs can be viewed as stochastic game extensions of Quasi-Birth-Death Processes
(QBDs) (see [8, 3]). QBDs are a heavily studied model in queuing theory and performance
evaluation (the counter keeps track of the number of jobs in a queue). It is very natural
to consider controlled and game extensions of such queuing theoretic models, thus allowing
for adversarial modeling of queues with unknown (non-deterministic) environments or with
other unknown aspects modeled non-deterministically. OC-SSGs with termination objectives
also subsume “solvency games”, a recently studied class of MDPs motivated by modeling of
a risk-averse investment scenario [1].

Due to the presence of an unbounded counter, an OC-SSG, G, formally describes a
stochastic game with a countably-infinite state space: a “configuration” or “state” of the
underlying stochastic game consists of a pair (s, j), where s is a control state of G and j
is the current counter value. However, it is easy to see that we can equivalently view G as
a finite-state simple stochastic game (SSG), H, with rewards as follows: H is played
on the finite-state transition graph obtained from that of G by simply ignoring the counter
values. Instead, every transition t of H is assigned a reward, r(t) ∈ {−1, 0, 1}, corresponding
to the effect that the transition t would have on the counter in G. Furthermore, when
emulating an OC-SSG using rewards, we can easily place rewards on states rather than
on transitions, by adding suitable auxiliary control states. Thus, w.l.o.g., we can assume
that OC-SSGs are presented as equivalent finite-state SSGs with a reward, r(s) ∈ {−1, 0, 1}
labeling each state s. A run of H, w, is an infinite sequence of states that is permitted by the
transition structure, and we denote the i-th state along the run w by w(i). The termination
objective for G, when the initial counter value is j > 0, can now be rephrased as the following
equivalent objective for H:

Term(j) := {w | w is a run of H such that there is m > 0 such that
∑m
i=0 r(w(i)) = −j} .

An important step toward our proof of Theorem 1 and related results, is to establish links
between this termination objective and the following limit objectives, which are of independent
interest. For z ∈ {−∞,∞}, and a comparison operator ∆ ∈ {>,<,=}, consider the following
objective:

LimInf (∆z) := {w | w is a run of H such that lim inf
n→∞

∑n
i=0 r(w(i)) ∆ z } .

We will show that if j is large enough (larger than the number of control states), then the game
value with respect to objective Term(j) and the game value with respect to LimInf (=−∞)
are either both equal to 1, or are both less than 1 (Lemma 14). We could also consider
the “sup” variant of these objectives, such as LimSup(=−∞), but these are redundant. For
example, by negating the sign of rewards, LimSup(=−∞) is “equivalent” to LimInf (=+∞).
Indeed, the only limit objectives we need to consider for SSGs are LimInf (=−∞) and
LimInf (=+∞), because the others are either the same objectives considered from the other
player’s points of view, or are vacuous, such as LimInf (>+∞). For both limit objectives,
LimInf (=−∞) and LimInf (=+∞), we shall see that the value of the respective SSGs is
always rational (Proposition 9). We shall also show that the objective LimInf (=+∞) is
essentially equivalent to the following “mean payoff” objective (Lemma 10):

Mean(>0) := {w | w is a run of H such that lim inf
n→∞

∑n−1
i=0 r(w(i))/n > 0 } .
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This “intuitively obvious equivalence” is not so easy to prove. (Note also that LimInf (=−∞)
is certainly not equivalent to Mean(≤0).) We establish the equivalence by a combination
of new methods and by using recent results by Gimbert, Horn and Zielonka [12, 13]. Mean
payoff objectives are of course very heavily studied for stochastic games and for MDPs
(see [16]). However, there is a subtle but important difference here: mean payoff objectives
are typically formulated via expected payoffs: the Max player wishes to maximize the expected
mean payoff, while the Min player wishes to minimize this. Instead, in the above Mean(>0)
objective we wish to maximize (minimize) the probability that the mean payoff is > 0. These
require new algorithms. Our main result about such limit objectives is the following:

I Theorem 2. For both limit objectives, O ∈ {LimInf (=−∞),LimInf (=+∞)}, given a
finite-state SSG, G, with rewards, and given a rational probability threshold, p, 0 ≤ p ≤ 1,
deciding whether the value of G with objective O is >p (or ≥p) is in NP ∩ coNP. If G is a
1-player SSG (i.e., a maximizing or minimizing MDP), then the game value can be computed
in P-time.

Although our upper bounds for both these objectives look the same, their proofs are quite
different. We show that both players have pure and memoryless optimal strategies in these
games (Proposition 7), which can be computed in P-time for 1-player (Max or Min) MDPs.
Furthermore, we show that even deciding whether the value of these games is either 1 or 0,
given input for which one of these two is promised to be the case, is already at least as hard
as Condon’s [6] quantitative reachability problem for finite-state simple stochastic games
(Proposition 13). Thus, even any non-trivial approximation of the value of SSGs with such
limit objectives is not easier than Condon’s problem.

We already considered in [3] the problem of maximizing the probability of LimInf (=−∞)
in a OC-MDP. There we showed that the maximum probability can be computed in P-time.
However, again, we did not resolve the complementary problem of minimizing the probability
of LimInf (=−∞) in a OC-MDP. Thus we could not address two-player OC-SSGs with
either of these objectives, and we left these as key open problems, which we resolve here.
An important distinction between maximizing and minimizing the probability of objective
LimInf (=−∞) is that maximizing this objective satisfies a submixing property defined by
Gimbert [11], which he showed implies the existence of optimal memoryless strategies, whereas
minimizing the objective is not submixing, and thus we require new methods to tackle it,
which we develop in this paper.

Finally, we mention that one can also consider OC-SSGs with the objective of terminating
in a selected subset of states, F . Such objectives were considered for OC-MDPs in [3]. Using
our termination results in this paper, we can also show that given an OC-SSG it is decidable
(in double exponential time) whether Max can achieve a termination probability 1 in a
selected subset of states, F . The computational complexity of selective termination is higher
than for non-selective termination: PSPACE-hardness holds already for OC-MDPs without
Min ([3]). Due to space limitations, we omit results about selective termination from this
conference paper, and will include them in the journal version of this paper.

Related work.

As mentioned earlier, we initiated the study of some classes of 1-player OC-SSGs (i.e.,
OC-MDPs) in a recent paper [3]. The reader will find extensive references to earlier related
literature in [3]. No earlier work considered OC-SSGs explicitly, but as we have highlighted
already there are close connections between OC-SSGs and finite-state stochastic games with
certain interesting limiting average reward objectives. One-counter automata with a non-
negative counter are equivalent to pushdown automata restricted to a 1-letter stack alphabet

FSTTCS 2010



112 One-Counter Stochastic Games

(see [8]), and thus OC-SSGs with the termination objective form a subclass of pushdown
stochastic games, or equivalently, Recursive simple stochastic games (RSSGs). These more
general stochastic games were introduced and studied in [9], where it is shown that many
interesting computational problems for the general RSSG and RMDP models are undecidable,
including generalizations of qualitative termination problems for RMDPs. It was also
established in [9] that for stochastic context-free games (1-exit RSSGs), which correspond to
pushdown stochastic games with only one state, both qualitative and quantitative termination
problems are decidable, and in fact qualitative termination problems are decidable in
NP∩ coNP ([10]). Solving termination objectives is a key ingredient for many more general
analyses and model checking problems for stochastic games. OC-SSGs form another natural
subclass of RSSGs, which is incompatible with stochastic context-free games. Specifically,
for OC-SSGs with the termination objective, the number of stack symbols, rather than the
number of control states, of a pushdown stochastic game is being restricted to 1. As we show
in this paper, this restriction again yields decidability of the qualitative termination problem.
However, the decidability of the quantitative termination problem for OC-SSGs remains an
open problem (see below).

Open problems.

Our results complete part of the picture for decidability and complexity of several problems
for OC-SSGs. However, our results also leave many open questions. The most important open
question for OC-SSGs is whether the quantitative termination problem, even for OC-MDPs, is
decidable. Specifically, we do not know whether the following is decidable: given a OC-MDP,
and a rational probability p ∈ (0, 1), decide whether the maximum probability of termination
is >p (or ≥p). Substantial new obstacles arise for deciding this. In particular, we know that
an optimal strategy may in general need to use different actions at the same control state for
arbitrarily large counter values (so strategies cannot ignore the value of the counter, even for
arbitrarily large values), and this holds already for the extremely simple case of solvency
games [1, Theorem 3.7].

Outline of paper.

We fix notation and key definitions in Section 2. In Section 3, we prove Theorem 2. Building
on Section 3, we prove Theorem 1 in Section 4. Due to space constraints, many proofs are
only sketched here. Please refer to the full version [2] for missing details.

2 Preliminaries

I Definition 3. A simple stochastic game (SSG) is given by a finite, or countably
infinite directed graph, (V, ↪→ ), where V is the set of vertices (also called states), and ↪→
is the edge (also called transition) relation, together with a partition (V>, V⊥, VP ) of V , as
well as a probability assignment, Prob, which to each v ∈ VP assigns a rational probability
distribution on its set of outgoing edges. States in VP are called random, states in V> belong
to player Max, and states in V⊥ belong to Min. We assume that for all v ∈ V there is
some u ∈ V such that v ↪→u. Writing v x

↪→u denotes Prob(v ↪→u) = x. If V⊥ = ∅ we call
G a maximizing Markov decision process (MDP). If V> = ∅ we call it a minimizing
MDP. If V⊥ = V> = ∅ then we call G a Markov chain. A SSG (a MDP, a Markov chain)
can be equipped with a reward function, r, which assigns to each state, v ∈ V , a number
r(v) ∈ {−1, 0, 1}. Similarly, rewards can be assigned to transitions.
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For a path, w = w(0)w(1) · · ·w(n− 1), of states in a graph, we use len(w) = n to denote
the length of w. A run in a SSG, G, is an infinite path in the underlying directed graph. The
set of all runs in G is denoted by RunG , and the set of all runs starting with a finite path w
is RunG(w). These sets generate the standard Borel algebra on RunG .

A strategy for player Max is a function, σ, which to each history w ∈ V + ending in
some v ∈ V>, assigns a probability distribution on the set of outgoing transitions of v. We
say that a strategy σ is memoryless if σ(w) depends only on the last state, v, and pure if
σ(w) assigns probability 1 to some transition, for each history w. When σ is pure, we write
σ(w) = v′ instead of σ(w)(v, v′) = 1. Strategies for player Min are defined similarly, just by
substituting V> with V⊥.

For every starting state s, and a pair of strategies: σ for player Max, and π for Min
in a SSG, G, there is a unique probabilistic measure, Pσ,πs , on the Borel space of runs
RunG , satisfying for all finite paths w starting in s: Pσ,πs (RunG(w)) =

∏len(w)−1
i=1 xi where

xi, 1 ≤ i < len(w) are defined by requiring that (a) if w(i−1) ∈ VP then w(i−1) xi↪→w(i);
and (b) if w(i−1) ∈ V> then σ(w(0) · · ·w(i−1)) assigns xi to the transition w(i−1) ↪→w(i);
and (c) if w(i−1) ∈ V⊥ then π(w(0) · · ·w(i−1)) assigns xi to the transition w(i−1) ↪→w(i).
Note that Pσ,πs (RunG(s)) = 1. If G is a maximizing MDP, a minimizing MDP, or a Markov
chain, we denote this probability measure by Pσs , Pπs , or Ps, respectively. See, e.g., [16, p. 30],
for the existence and uniqueness of the measure Pσs in the case of MDPs. Consider pairs of
strategies to be one strategy to establish existence and uniqueness of Pσ,πs for SSGs.

In this paper, an objective for a stochastic game is given by a measurable set of runs.
An objective, O, is called a tail objective if for all runs w and all suffixes w′ of w, we have
w′ ∈ O ⇐⇒ w ∈ O. Assume we have fixed a SSG, an objective, O, and a starting state,
s. We define the value of G in s as ValO(s) := supσ infπ Pσ,πs (O). It follows from Martin’s
Blackwell determinacy theorem [14] that these games are determined, meaning ValO(s) =
infπ supσ Pσ,πs (O). A strategy σ for Max is optimal in s if Pσ,πs (O) ≥ ValO(s) for every π.
Similarly a strategy π for Min is optimal in s if Pσ,πs (O) ≤ ValO(s) for every σ. A strategy
is called optimal if it is optimal in every state. An important objective for us is reachability.
Given a set T ⊆ V , we define the objective Reach(T ) := {w ∈ RunG | ∃i ≥ 0 : w(i) ∈ T}.
The following fact is well known:

I Fact 4. (See, e.g., [16, 6, 7].) For both maximizing and minimizing finite-state MDPs
with reachability objectives, pure memoryless optimal strategies exist and can be computed,
together with the optimal value, in polynomial time.

3 Limit objectives

All MDPs and SSGs in this section have finitely many states. Rewards are assigned to states,
not to transitions. The main goal of this section is to prove Theorem 2. We start by proving
that both players have optimal pure and memoryless strategies for objectives LimInf (=−∞),
LimInf (=+∞), and Mean(>0). The following is a corollary of a result by Gimbert and
Zielonka, which allows us to concentrate on MDPs instead of SSGs:

I Fact 5. (See [13, Theorem 2].) Fix any objective, O, and suppose that in every maximizing
and minimizing MDP with objective O, the unique player has a pure memoryless optimal
strategy. Then in all SSGs with objective O, both players have optimal pure and memoryless
strategies.

Note that the probability of LimInf (=−∞) is minimized iff the probability of LimInf (>−∞)
is maximized, similarly with LimInf (=+∞) vs. LimInf (<+∞), and Mean(>0) vs. Mean(≤0).

FSTTCS 2010
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I Fact 6. (See [12, Theorem 4.5].) Let O be a tail objective. Assume that for every
maximizing MDP and for every state, s, with ValO(s) = 1, there is an optimal pure
memoryless strategy starting in s. Then for all s there is an optimal pure memoryless strategy
starting in s, without restricting ValO(s).

I Proposition 7. For every SSG, with any of the objectives LimInf (=−∞), LimInf (=+∞),
or Mean(>0), both players Max and Min have optimal pure memoryless strategies.

Proof. (Sketch.) Using Fact 5 we consider only maximizing MDPs, and prove the proposition
for the objectives listed and their complements. Note that since all these objectives are tail,
a play under an optimal strategy, starting from a state with value 1, cannot visit a state
with value < 1. By Fact 6 we may thus safely assume that the value is 1 in all states. We
discuss different groups of objectives:
LimInf (=−∞), LimInf (<+∞), Mean(≤0), Mean(>0): The first three (with LimInf (=−∞)
also handled explicitly in [3]) are tail objectives and are also submixing (see [11]). Therefore,
Theorem 1 of [11] immediately yields the desired result. Mean(>0) can be equivalently
rephrased via a submixing lim sup variant. See [2] for details.
LimInf (=+∞): is a tail objective, so there is always a pure optimal strategy, τ , by [12,
Theorem 3.1]. Note that LimInf (=+∞) is not submixing, so Theorem 1 of [11] does not apply.
In the following we proceed in two steps: we start with τ and convert it to a finite-memory
strategy1, σ. Finally, we reduce the use of memory to get a memoryless strategy.

First, we obtain a finite-memory optimal strategy, starting in some state, s. For a run
w ∈ RunG(s) and i ≥ 0, we denote by r[i](w) the accumulated reward

∑i
j=0 r(w(j)) up to

step i. Observe that because τ is optimal there is some m > 0 and a (measurable) set of
runs A ⊆ RunG(s), such that Pτs(A) ≥ 1

2 , and for all w ∈ A we have that the accumulated
reward along w never reaches −m (i.e. infi≥0 r[i](w) > −m). Since for almost all runs of A
we have limi→∞ r[i](w) =∞, there is some n > 0 and a set B ⊆ A such that Pτs(B | A) ≥ 1

2
(and hence, Pτs(B) ≥ 1

4 ), and for all w ∈ B we have that the accumulated reward along
w reaches 4m before the n-th step. Thus with probability at least 1

4 , a run w ∈ RunG(s)
satisfies infi≥0 r[i](w) > −m and max0≤i≤n r[i](w) ≥ 4m.

We denote by Ts(w) the stopping time over RunG(s) which for every w ∈ RunG(s) returns
the least number i ≥ 0 such that either r[i](w) 6∈ (−m, 4m), or i = n. Observe that the
expected accumulated reward at the stopping time Ts is at least 1

4 · 4m+ 3
4 (−m) = m

4 > 0.
Let us define a new strategy σ as follows. Starting in a state s ∈ V , the strategy σ chooses
the same transitions as τ started in s, up to the stopping time Ts. Once the stopping time
is reached, say in a state v, the strategy σ erases its memory and behaves like τ started
anew in v. Subsequently, σ follows the behavior of τ up to the stopping time Tv. Once the
stopping time Tv is reached, say in a state u, σ erases its memory and starts to behave as τ
started anew in u, and so on. Observe that the strategy σ uses only finite memory because
each stopping time Ts is bounded for every state s. Because τ is pure, so is σ.

Now we argue that σ is optimal. Intuitively, this is because, on average, the accumulated
reward strictly increases between resets of the memory of σ. To formally argue that this
implies that the accumulated reward increases indefinitely, we employ the theory of random
walks on Z and sums of i.i.d. random variables (see, e.g., Chapter 8 of [5]). Essentially, we
define a set of random walks, one for each state s, capturing the sequence of changes to the
accumulated reward between each reset in s and the next reset (in any state). We can then

1 A finite-memory strategy is specified by a finite state automaton, A, over the alphabet V . Given
w ∈ V +, the value σ(w) is determined by the state of A after reading w.
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apply random walk results, e.g., from [5, Chapter 8], to conclude that these walks diverge to
∞ almost surely. Details are given in [2].

Taking the product of the finite-memory strategy σ and G yields a finite-state Markov
chain. By analyzing its bottom strongly connected components we can eliminate the use of
memory, and obtain a pure and memoryless optimal strategy. See [2] for details.
LimInf (>−∞): Like LimInf (=+∞), the objective LimInf (>−∞) is tail, but not submixing.
Thus there is always a pure optimal strategy, τ , for LimInf (>−∞), by [12, Theorem 3.1],
but Theorem 1 of [11] does not apply. We will prove Proposition 7 for LimInf (>−∞)
using the results for LimInf (=+∞), and also a new objective, All(≥ 0) := {w ∈ RunG |
∀n ≥ 0 :

∑n
j=0 r(w(j)) ≥ 0}. Let W∞ and W+ denote the sets of states s such that

ValLimInf (=+∞)(s) = 1, and ValAll(≥0)(s) = 1, respectively. The following is true for every
state, s, with ValLimInf (>−∞)(s) = 1 (see [2] for details):

∃σ : Pσs (Reach(W∞ ∪W+)) = 1 (1)

Moreover, we prove that whenever ValAll(≥0)(s) = 1 then Max has a pure and memoryless
strategy σ+ which is optimal in s for All(≥ 0). Indeed, observe that player Max achieves
All(≥ 0) with probability 1 iff all runs satisfy it. So we may consider the MDP G as a 2-player
non-stochastic game, where random nodes are now treated as player Min’s. In this case,
Theorem 12 of [4] guarantees the existence of the promised strategy σ+. The proof is now
finished by observing that, by Fact 4, there is a pure and memoryless strategy σ maximizing
the probability of reaching W∞ ∪W+. The resulting pure and memoryless strategy, optimal
for LimInf (>−∞), can be obtained by “stitching” σ together with the respective optimal
strategies for LimInf (=+∞) and All(≥ 0). J

I Lemma 8 (see [2]). LetM be a finite, strongly connected (irreducible) Markov chain, and
O be a tail objective. Then there is x ∈ {0, 1} such that Ps(O) = x for all states s.

A corollary of the previous proposition and lemma is the following:

I Proposition 9. Let O ∈ {LimInf (=−∞),LimInf (=+∞),Mean(>0)}. Then in every SSG,
and for all states, s, ValO(s) is rational, with a polynomial length binary encoding.

Proof. By Proposition 7, there are memoryless optimal strategies: σ for Max, and π for
Min. Fixing them induces a Markov chain on the states of G. By Lemma 8, in every fixed
bottom strongly connected component (BSCC), C, of this Markov chain, all states v ∈ C
have the same value, xC , which is either 0 or 1. Denote by W the union of all BSCCs, C,
with xC = 1. By optimality of σ and π, ValO(s) = Pσ,πs (Reach(W )) for every s ∈ V . By,
e.g., [7, Section 3], this probability is rational, with polynomial length bit encoding, since
reaching W is a regular event, and every Markov chain is a special case of a MDP. J

Proof of Theorem 2.

I Lemma 10. Let G be a MDP with rewards, and s a state of G. Then for every memoryless
strategy σ: Pσs (Mean(>0)) = Pσs (LimInf (=+∞)). In particular, both objectives are equivalent
with respect to both the value and optimal strategies.

Proof. (Sketch.) The inequality ≤ is true for all strategies, since Mean(>0) ⊆ LimInf (=+∞).
In the other direction, the property that σ is memoryless is needed, so that fixing σ

yields a Markov chain on the states of G. In this Markov chain, by Lemma 8, for every
BSCC, C, there are xC ≤ yC ∈ {0, 1}, such that Pσs (Mean(>0) | Reach(C)) = xC , and
Pσs (LimInf (=+∞) | Reach(C)) = yC . By random walk arguments, considering the rewards
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accumulated between subsequent visits to a fixed state in C, we can prove that yC = 1 =⇒
xC = 1, see [2] for details. Proposition 7 finishes the proof. J

I Lemma 11. For an objective O = LimInf (=−∞), LimInf (>−∞), LimInf (=+∞), or
LimInf (<+∞), and a maximizing MDP, G, denote by W the set of all s ∈ V satisfying
ValO(s) = 1. Then ValO(s) = ValReach(W )(s) for every state s.

Proof. Proposition 7 gives us a memoryless optimal strategy, σ. Fix it and obtain a Markov
chain on states of G. Denote by W ′ the union of all BSCCs in which at least one state has a
positive value. By Lemma 8, all states from W ′ have, in fact, value 1. Since W ′ ⊆W , and
σ is optimal, we get ValO(s) = Pσs (O) = Pσs (Reach(W ′)) ≤ Pσs (Reach(W )) ≤ ValReach(W )(s)
for every state s. As O is a tail objective, we easily obtain ValO(s) ≥ ValReach(W )(s). J

To prove Theorem 2, we start with the MDP case. By Proposition 7, pure memoryless
strategies are sufficient for optimizing the probability of all the objectives considered in this
theorem, so we can restrict ourselves to such strategies for this proof. Given an objective O,
we will write WO to denote the set of states s with ValO(s) = 1. As G is a MDP, optimal
strategies for reaching any state in WO can be computed in polynomial time, by Fact 4. If
O is any of the objectives mentioned in the statement of Lemma 11, then by that Lemma, in
order to compute optimal strategies and values for objective O, it suffices to compute the
set WO and optimal strategies for the objective O in states in WO. The resulting optimal
strategy “stitches” these and the optimal strategy for reaching WO.

I Proposition 12. For every MDP, G, and an objective O = LimInf (=−∞), LimInf (=+∞),
or Mean(>0), the problem whether s ∈WO is decidable in P-time. If s ∈WO, then a strategy
optimal in s is computable in P-time.

Proof. (Sketch.) From Lemma 10 we know that LimInf (=+∞) is equivalent to Mean(>0),
and thus we only have to consider O = LimInf (=−∞) and O = Mean(>0). For a uniform
presentation, we assume that G is a maximizing MDP, and consider two cases: O = Mean(>0),
and LimInf (>−∞). The remaining cases were solved in [3] – Theorem 3.1 there solves the
case O = LimInf (=−∞), and Section 3.3 solves O = Mean(≤0).
O = Mean(>0): We design an algorithm to decide whether maxσ Pσs (Mean(>0)) = 1, using
the existing polynomial time algorithm, based on linear programming, for maximizing the
expected mean payoff and computing optimal strategies for it (see, e.g., [16]). Note that it
does not matter whether lim inf or lim sup is used in the definition of Mean(>0) (see [2]
for details). Under a memoryless strategy σ, almost all runs in G reach one of the bottom
strongly connected components (BSCCs). Almost all runs initiated in some BSCC, C, visit
all states of C infinitely often, and it follows from standard Markov chain theory (e.g., [15])
that almost all runs in C have the same mean payoff, which equals the expected mean payoff
for the Markov chain induced by C.

The algorithm is given here as Procedure MP(s). Both step 2, as well as verifying the
condition from step 4, can be done in P-time, because, as observed above, this is equivalent
to verifying that the expected mean payoff in C is positive, which can be done in P-time (see
[16, Theorem 9.3.8]). Step 5 can be done in P-time by Fact 4. To obtain a formally correct
MDP, we introduce a new state z with a self-loop, and after the removal of any state v in
step 7 of the for loop, we redirect all stochastic transitions leading to v to this new state z,
and eliminate all other transitions into v. The reward of the new state z is set to 0. This
will not affect the sign of subsequent optimal expected mean payoffs starting from s, unless s
has been already removed. Thus, the algorithm can be implemented so that each iteration
of the repeat-loop takes P-time, and so the algorithm terminates in P-time, since in each
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Procedure MP(s)
Data: A state s.
Result: Decide ValMean(>0)(s) ?= 1. If yes, return a strategy σ with

Pσs (Mean(>0)) = 1.
repeat1

Compute a strategy σmp maximizing the expected mean payoff.2

if Eσmp
s (mean payoff) ≤ 0 then return No3

Fix σmp to get a Markov chain on G. Find a BSCC, C, with mean payoff almost4

surely positive.
Compute a strategy σC maximizing the probability of Reach(C).5

foreach v with PσC
v (Reach(C)) = 1 do6

Remove state v.7

if v ∈ C then σ(v)← σmp(v) else σ(v)← σC(v)8

until s is cut off9

return (Yes, σ)10

iteration at least one state must be removed. If the algorithm outputs (Yes, σ) then clearly
Pσs (Mean(>0)) = 1. On the other hand, by an easy induction on the number of iterations of
the repeat-loop one can prove that if ValMean(>0)(s) = 1 then the following is an invariant
of line 9: either s has been removed, or the maximal expected mean payoff starting in s is
positive. In particular, the algorithm cannot output No. Thus we have completed the case
when O = Mean(>0).
O = LimInf (>−∞): Recall first the auxiliary objective All(≥ 0) := {w ∈ RunG | ∀n ≥
0 :

∑n
j=0 r(w(j)) ≥ 0} from the proof of Proposition 7, and also the sets W∞ = {v |

ValLimInf (=+∞)(v) = 1}, and W+ = {v | ValAll(≥0)(v) = 1}. Note that W∞ = WMean(>0),
by Lemma 10. Finally, recall from the equation (1) in the proof of Proposition 7, that the
probability of LimInf (>−∞) is maximized by almost surely reaching W∞ ∪W+ and then
satisfying All(≥ 0) or LimInf (=+∞). We note that the strategy σ+, optimal for All(≥ 0),
from the proof of Proposition 7, can be computed in polynomial time by [4, Theorem 12].
The results on Mean(>0) and Fact 4 conclude the proof. J

Now we finish the proof of Theorem 2. Proposition 12 and Fact 4 together establish
the MDP case. Establishing the NP ∩ coNP upper bound for SSGs proceeds in a standard
way: guess a strategy for one player, fix it to get a MDP, and verify in polynomial time
(Proposition 12) that the other player cannot do better than the given value p. To decide
whether, e.g., ValO(s) ≥ p, guess a strategy σ for Max, fix it to get an MDP, and verify that
Min has no strategy π so that Pσ,πs (O) < p. Other cases are similar.

Finally, we show that the upper bound from Theorem 2 is hard to improve upon:

I Proposition 13. Assume that a SSG, G, a state s, and a reward function r are given,
and let O = LimInf (=−∞), LimInf (=+∞), or Mean(>0). Moreover, assume the property
(promise) that either ValO(s) = 1 or ValO(s) = 0. Then deciding which is the case is at least
as hard as Condon’s [6] quantitative reachability problem w.r.t. polynomial time reductions.

Proof. The problem studied by Condon [6] is: given a SSG, H, an initial state s, and a target
state t, decide whether ValReach(t)(s) ≥ 1/2. Deciding whether ValReach(()t)(s) > 1/2 is
P-time equivalent. Moreover, we may safely assume there is a state t′ 6= t, such that whatever
strategies are employed, we reach t or t′, with probability 1. Consider the following reduction:
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given a SSG, H, with distinguished states s, t, and t′ as above, produce a new SSG, G, with
rewards as follows: remove all outgoing transitions from t and t′, add transitions t ↪→ s and
t′ ↪→ s, and make both t and t′ belong to Max. Let r be the reward function over states of G,
defined as follows: r(t) := −1, r(t′) := +1 and r(z) := 0 for all other z 6∈ {t, t′}. It follows
from basic random walk theory that in G, ValLimInf (=−∞)(s) = 1 if ValReach(t)(s) ≥ 1/2, and
ValLimInf (=−∞)(s) = 0 otherwise. Likewise, ValLimInf (=+∞)(s) = 1 if ValReach(t′)(s) > 1/2,
and ValLimInf (=+∞)(s) = 0 otherwise, and identically for the objective Mean(>0) which we
already showed to be equivalent to LimInf (=+∞). J

4 Termination

Here we prove Theorem 1. We continue viewing OC-SSGs as finite-state SSGs with rewards,
as discussed in the introduction. However, for notational convenience this time we consider
rewards on transitions rather than on states. It is easy to observe that Theorem 2 remains
valid even if we sum rewards on transitions instead of rewards on states in the definition of
LimInf (=−∞). We fix a SSG, G, with state set V , and a reward function r.

I Lemma 14. For all states s and j ≥ |V |: ValTerm(j)(s) = 1 iff ValLimInf (=−∞)(s) = 1.

Proof. If G is a maximizing MDP, the proposition is true by results of [3, Section 4].
Consider now the general case, when G is a SSG. If ValLimInf (=−∞)(s) = 1 then clearly
ValTerm(j)(s) = 1. Now assume that ValTerm(j)(s) = 1 and consider the memoryless strategy
of player Min, optimal for LimInf (=−∞), which exists by Proposition 7. Fixing it, we get a
maximizing MDP, in which the value of Term(j) in s is, of course, still 1. We already know
from the above discussion that the value of LimInf (=−∞) in s is thus also 1 in this MDP.
Since the fixed strategy for Min was optimal, we get that ValLimInf (=−∞)(s) = 1 in G. Thus,
if ValTerm(j)(s) = 1 then ValLimInf (=−∞)(s) = 1. J

Proof of Theorem 1.

For cases where j ≥ |V |, the theorem follows directly from Lemma 14 and Theorem 2. If
j < |V | then we have to perform a simple reachability analysis, similar to the one presented
in [3]. The following SSG, G′, keeps track of the accumulated rewards as long as they are
between −j and |V | − j: its set of states is V ′ := {(u, i) | u ∈ V,−j ≤ i ≤ |V | − j}.

States (u, i) with i ∈ {−j, |V | − j} are absorbing, and for i /∈ {−j, |V | − j} we have
(u, i)→ (t, k) iff u→ t and k = i+ r(u→ t). Every (u, i) belongs to the player who owned u.
The probability of every transition (u, i)→ (t, k), u ∈ VP , is the same as that of u→ t. There
is no reward function for G′, we consider a reachability objective instead, given by the target
set R := {(u,−j) | u ∈ V } ∪ {(u, i) | −j ≤ i ≤ |V | − j,ValLimInf (=−∞)(u) = 1}. Finally, let
us observe that, by Lemma 14, ValReach(R)((s, 0)) = 1 iff ValTerm(j)(s) = 1. Since the size of
G′ is polynomial in the size of G, Theorem 1 is proved.

I Proposition 15. For all j > 0, s ∈ V , there are pure strategies, σ for Max, and π for Min,
such that
1. If ValTerm(j)(s) = 1 then σ is optimal in s for Term(j).
2. If ValTerm(j)(s) < 1 then supτ Pτ,πs (Term(j)) < 1.
Moreover, σ is memoryless, and π only uses memory of size |V |. Such strategies can be
computed in P-time for MDPs.

The proof goes along the lines of the proof of Theorem 1. It can be found in [2], together
with an example that shows the memory use in π is necessary.
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Similarly, both ValTerm(j)(s) = 0 and ValTerm(j)(s) > 0 are witnessed by pure and
memoryless strategies for the respective players. Deciding which is the case is in P-time, by
assigning the random states to player Max, obtaining a non-stochastic 2-player one-counter
game, and using, e.g., [4, Theorem 12]. Finally, we note that from Proposition 13 and
Lemma 14, it follows that:

I Corollary 16. Given an SSG, G, and reward function r, deciding whether the value of
the termination objective Term(j) equals 1 is at least as hard as Condon’s [6] quantitative
reachability problem, w.r.t. P-time many-one reductions.
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