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Abstract
Given a zero-sum infinite game we examine the question if players have optimal memoryless
deterministic strategies. It turns out that under some general conditions the problem for two-
player games can be reduced to the same problem for one-player games which in turn can be
reduced to a simpler related problem for multi-armed bandits.
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1 Introduction

Activities of a computer system interacting with the environment are often modeled as
two-player games with one player representing the system and the other player impersonating
the environment. In the worst case analysis we assume that the environment is hostile and
then we deal with two-player zero-sum games. Traditionally in verification and in automata
theory we use some variants of parity games [7] while the traditional game theory focuses on
mean-payoff games, discounted games and total payoff games [1].

Parity games capture qualitative system properties, but sometimes this is not enough
and we are interested in finer quantitative analysis. Mean-payoff and total payoff games
capture quantitative properties but do not seem really pertinent in the context of computer
systems. For these reasons there were recently several attempts to define new quantitative
measures or payoffs better suited to the analysis of computer systems. This is an ongoing
activity, each such attempt gives rise to a new game (a new payoff mapping).

And the recurrent basic question arising when new games (payoffs) are introduced is if
players have optimal strategies. However for a computer scientist the existence of optimal or
nearly optimal strategies is not sufficient, we want to be able to implement effectively such
strategies and strategies requiring an unbounded memory are unfeasible from the practical
point of view. A finite memory can often be incorporated directly into the game and then it
is sufficient to answer the simpler question if the players have optimal memoryless strategies.
Instead of examining various games one by one with some ad hoc methods it is much more
interesting to look for general sufficient conditions guaranteeing the existence of optimal
memoryless strategies. Such conditions are useful only if they are robust and can be applied
to a sufficiently large class of games.

Our aim is to present such general conditions, we do it first for one-player games (Markov
decision processes), next for two-player games.

2 Perfect information stochastic games – basic definitions

2.1 Notation.
For each finite set X, D (X) is the set of probability measures over X, i.e. it is the set of
mappings p : X → [0, 1] such that

∑
x∈X p(x) = 1. The support of p ∈ D (X) is the set
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66 Playing in stochastic environment

{x ∈ X | p(x) > 0}.
Xi will denote the set of all finite sequences (words) of length i composed of elements of

X, X∗ = ∪∞i=0X
i is the set of all finite words over X, Xω will stand for the set of all infinite

words over X. We endow Xω with the structure of a topological space with open sets of
the form

⋃
u∈L uX

ω for L ⊆ X∗. By B(Xω) we denote the smallest σ-algebra containing all
open sets (the Borel σ-algebra). Thus (Xω,B(Xω)) is a measurable space.

By πi : Xω → X, i ∈ N, we denote the mapping defined as πi(x1x2x3 . . .) = xi, i.e. the
mapping giving the ith element of an infinite word.

If we equipX with the σ-algebra P(X) of all subsets ofX then πi are measurable mappings
from (Xω,B(Xω)) to (X,P(X)) and, given any probability measure P on (Xω,B(Xω)),
{πi; i ∈ N} becomes a discrete process with values in X. Note that B(Xω) is in fact the
smallest σ-algebra such that all πi are measurable.

2.2 Games and Arenas
Two players, Min and Max, play an infinite game on an arena

A = (S,A, source, δ,player) (1)

where
S is a finite set of states,
A is a finite set of actions,
source : A→ S provides for each action a ∈ A a state source(a) ∈ S called the source of
a. Action a can be executed only if the current state is s = source(a) and then we say
that a is available at s. We write A(s) for the set of actions available at s and we assume
that A(s) 6= ∅ for each state s.
The dynamic aspect of A is described by δ, for each action a ∈ A and each state s ∈ S
δ(a, s) is the probability of going to a state s if a is executed. It is tacitly assumed that a
can be executed only if A is at the state source(a). For each action a ∈ A, δ(a, ·) is a
probability distribution over S, i.e. δ(a, ·) ∈ D (S).
Finally, player : S→ {Min,Max} is a mapping assigning to each state s ∈ S the player
player(s) controlling s.

The game is played by stages. If at stage i ∈ N the game is at state si ∈ S then player
player(si) chooses an available action ai ∈ A(si) and the game enters a new state si+1 with
probability δ(ai, si+1).

Let SMax = {s ∈ S | player(s) = Max} be the set of states controlled by player Max. A
strategy σ for player Max is a mapping

σ : A∗ × SMax → D (A)

such that σ(h, s) ∈ D (A(s)) for h ∈ A∗ and s ∈ SMax. Intuitively, if the game is at state
s ∈ SMax, h is the sequence of executed actions and player Max plays using strategy σ then
Max will play action a ∈ A(s) with probability σ(h, s)(a).

The strategy σ is memoryless (or stationary) if the past history is not taken into account,
i.e. if σ(h, s) = σ(1, s) for each finite history h ∈ A∗, where 1 is the empty history.

The strategy σ is deterministic (or pure) if for each finite history h and each state
s ∈ SMax the support of σ(h, s) consists of one action.

Thus a memoryless deterministic strategy σ for player Max is just a mapping σ : SMax →
A such that, for each state s ∈ SMax, σ(s) ∈ A(s). Intuitively, σ(s) is the action that player
Max plays each time s is visited.
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Strategies of player Min (general, memoryless, deterministic) are defined mutatis mutandis.
Our basic probability space associated with a given arena is the space (Aω,B(Aω)) of

infinite histories (infinite action sequences) equipped with the Borel σ-algebra. The basic
stochastic process associated with each game is the process {Ai; i ∈ N} with values in A,
where Ai is the action taken at stage i. Another process of interest is the auxiliary stochastic
process {Si; i ∈ N} with values in S defined as Si = source ◦Ai, i.e. Si gives the source of
the ith action (or equivalently the state at stage i).

Fixing strategies σ and τ of players Max and Min and an initial probability distribution
over states µ ∈ D (S) there exists a unique probability measure Pσ,τµ on (Aω,B(Aω)) satisfying
the following conditions:

Pσ,τµ {S1 = s} = µ(s), (2)

i.e. the initial state probability is given by µ,

Pσ,τµ {An+1 = an+1|A1 = a1, . . . , An = an, Sn+1 = sn+1} ={
σ(a1 . . . an, sn+1)(an+1) if player(sn+1) = Max,
τ(a1 . . . an, sn+1)(an+1) if player(sn+1) = Min,

(3)

i.e. if a1 . . . an is the current history and sn+1 the current state then the probability
distribution over actions taken on stage n + 1 is dictated by the strategy of the player
controlling sn+1,

Pσ,τµ {Sn+1 = sn+1|A1 = a1, . . . , An = an} = δ(an, sn+1), (4)

i.e. the state on stage n+ 1 depends only on the action executed at stage n.

2.3 Payoff mappings
After an infinite play player Max receives a payoff from player Min. The players have opposite
goals, Max wishes to maximize the payoff while player Min wants to minimize the payoff.

A payoff function is a Borel measurable mapping

u : Aω → (−∞,∞]

from infinite histories to real numbers extended with plus infinity. To avoid integrability
problems we assume that u is bounded from below, i.e. there exists K ∈ R such that
u(h) ≥ K for all h ∈ Aω, and we note byMb the class of such payoff functions.

A game is a couple Γ = (A, u) made of an arena and a payoff function u ∈Mb.
Let us recall that the tail σ-algebra relative to the sequence {Ai; i ∈ N} of r.v. is the

σ-algebra
⋂∞
n=1 σ(Ai; i ≥ n), where σ(Ai; i ≥ n) is the σ-algebra generated by random

variables {Ai; i ≥ n}. Thus a payoff function u is measurable relative to the tail σ-algebra if
and only if u is measurable relative to (Aω,B(Aω)) and u does not depend on initial finite
histories, i.e. u(a1a2 . . .) = u(a2 . . .) for each history h = a1a2 . . . ∈ Aω. We note by Tb the
class of all tail measurable mappings belonging toMb.

2.3.1 Mean-payoff games
A reward function is a function r : A → R. Given a reward function r the payoff of a
mean-payoff game is calculated as follows:

u(a1a2a3 . . .) = lim sup 1
n

n∑
i=1

r(ai).

FSTTCS 2010



68 Playing in stochastic environment

Since for a given arena the set A of actions is finite the payoff of mean-payoff games belongs
to Tb.

2.3.2 Parity games
In parity games we assume that there is a priority mapping α : A → N and the payoff is
calculated as

u(a1a2a3 . . .) = (lim inf α(ai)) mod 2.

Again this payoff mapping belongs to Tb.

2.4 Priority mean-payoff games
In priority mean-payoff games we combine priorities and rewards. There are several forms of
such games [5, 4, 3] but the most general one is defined as follows. We have three mappings
α : A → N, w : A → R+ and r : A → R assigning to each state a non-negative integer
priority, a positive real weight and a real reward respectively.

The payoff is calculated in the following way. For each infinite sequence x = a1a2a3 . . .

of actions we extract the subsequence ai1ai2ai3 . . . composed of all actions with priority c
where c is the minimal priority such that the set {i | α(ai) = c} is infinite. Then the payoff
for x is calculated as

u(x) = lim sup
∑n
k=1 w(aik )r(aik )∑n

k=1 w(aik )

i.e. this is a weighted mean-payoff but calculated only over actions with the minimal priority
visited infinitely often.

The games with such payoff contain as special cases parity games as well as mean-payoff
games.

2.5 Optimal strategies
Given an initial state distribution µ and strategies σ and τ of Max and Min the expected
value of the payoff u under Pσ,τµ is denoted Eσ,τµ [u].

If µ is such that µ(s) = 1 for some state s then to simplify the notation the corresponding
probability and expectation are noted Pσ,τs and Eσ,τs .

Given a game (A, u) strategies σ] and τ ] of players Max and Min are said to be optimal
if for each state s there exists a value val(s) ∈ R (the value of s) such that

Eσ
],τ
s [u] ≥ val(s) ≥ Eσ,τ

]

s [u]

for all strategies σ and τ of players Max and Min.
Martin’s theorem [9] guarantees that every state has a value. However it does not

guarantee the existence of optimal strategies.

3 Playing without players – 0-player games

Let A be an arena such that each state has only one available action. Then each player has
only one possible trivial strategy consisting in choosing at each state the unique available
action. Since the players have no decision to take we can as well forget them, once the game
starts the actions can be executed automatically.
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The resulting process {Si; i ∈ N} is a (homogeneous) Markov process with states S
and with one step transition probabilities p : S × S → [0, 1] such that, for all states
x, x′ ∈ S, p(x, x′) = δ(ax, x′), where ax is the unique action available at x. Then we have
P(Sn = xn|S1 = x1, . . . , Sn−1 = xn−1) = p(xn−1, xn) for all n.

Since we have a natural one to one correspondence between actions and states not only
the process {Ai; i ∈ N} determines {Si; i ∈ N} but also, conversely, {Si; i ∈ N} determines
{Ai; i ∈ N}.

Let us recall some basic notions from the theory of Markov chains [8].
A state s of a Markov chain is said to be transient if the probability to return to s (for

the chain starting at s) is strictly smaller than 1.
A set C of states of a Markov chain is closed if, for each s ∈ C and each t 6∈ C, p(s, t) = 0.
A set C of states of a Markov chain is irreducible if for any states s, t ∈ C there is a

positive probability to enter t for a chain starting at s and vice versa.
The set of states of each Markov chain can be decomposed as T ∪C1 ∪ . . . ∪Ck, where T

are transient states and Ci are closed irreducible sets.
A Markov chain containing no transient states and one closed irreducible set is called

irreducible.
Each finite state Markov chain enters almost surely, after a finite number steps, some

closed irreducible component. Thus if the payoff is tail measurable then it is determined by
its value in each such component.

As a rather straightforward consequence of the Kolmogorov 0− 1 law we obtain

I Theorem 1. Let u ∈ Tb be a tail measurable payoff.
Then for each irreducible Markov process with a finite state set S and action set A there

exists a constant c such that, Pµ{w ∈ Aω | u(w) = c} = Pµ{u = c} = 1, where Pµ is the
measure on (Aω,B(Aω)) induced by the Markov process with the initial state distribution µ.

Clearly Theorem 1 implies that a tail measurable payoff is almost surely constant in each
closed irreducible component of a finite Markov chain.

4 Multi-armed bandits

A multi-armed bandit is just a finite sequence of Markov chains (or equivalently 0-player
games) B = (B1, . . . ,Bn). Each Bi is an arm of B. We assume that each arm Bi is in some
state si, thus the state of B is the vector (s1, . . . , sn), where si is the state of the ith arm.

Player Max plays an infinite game on B. Let (s1, . . . , sn) be the state of B. Player Max
chooses one of the arms i, the nature executes the unique action available at si, Bi enters a
new state s′i, and (s1, . . . , s

′
i, . . . , sn) becomes the new global state of B.

A payoff mapping is defined on the set of infinite sequence of actions of B and, as usually,
player Max wants to maximize the expected payoff. A multi-armed bandit game is a pair
(B, u) consisting of a multi-armed bandit and a payoff mapping. Thus a multi-armed bandit
game is just a special type of a one-player stochastic game.

We say the multi-armed bandit is irreducible if each Bi is an irreducible Markov chain.

I Definition 2. A strategy of player Max in an irreducible multi-armed bandit is said to be
trivial if at each step Max chooses the same arm i.

Note that each trivial strategy is deterministic and memoryless but the triviality condition
is stronger, if B is composed of more than one Markov chain then there are many deterministic
memoryless strategies that are not trivial in the sense of Definition 2.

FSTTCS 2010



70 Playing in stochastic environment

It is easy to see that a multi-armed irreducible bandit with the mean payoff or with the
parity payoff has optimal trivial strategies. The same holds for priority mean-payoff.

In general the question if there exists a trivial optimal strategy for a multi-armed bandit
game is easier to handle than the question if there exists an optimal memoryless deterministic
strategy for the corresponding one-player stochastic game thus it is interesting to note that
the last problem can be reduced to the former one.

5 Optimal strategies for one-player games

In this section we consider general one-player games with a tail measurable payoff. We assume
that all states of A = (S,A, source, δ,player) are controlled by the same player, without a
loss of generality we assume that this is player Max.

We call such an arena a one-player arena. A one-player game (or a Markov decision
process) is a game on a one-player arena.

We examine the question when player Max has an optimal deterministic memoryless
strategy for a given one-player game (A, u) with u ∈ Tb.

It turns out that this question can be reduced to the problem of the existence of trivial
optimal strategies for some related irreducible multi-armed bandit games.

An arena A] = (S],A], source], δ],player]) is a subarena of A = (S,A, source, δ,player)
if A] is an arena obtained from A by removing some states and actions. Note that the
requirement that A] be an arena means that each state of A] retains at least one available
action.

We say that a multi-armed bandit B = (B1, . . . ,Bn) is embeddable into an arena A if
each Bi is a subarena of A. Note that we allow the same chain to be used several times in B,
i.e. the chains Bi and Bj can be equal even if i 6= j. This implies that each finite arena A
has an infinite number of embeddable multi-armed bandits.

The following theorem reduces the question about the existence of optimal memoryless
deterministic strategies in one-player games to a question about optimal trivial strategies in
related multi-armed bandit games:

I Theorem 3. Let (A, u) be a one-player game with u ∈ Tb.
If for each irreducible multi-armed bandit B embeddable in A there exists an optimal

trivial strategy in the game (B, u) then player Max has an optimal memoryless deterministic
strategy in (A, u).

In particular we can immediately deduce that one-player parity games, mean-payoff games
and priority mean-payoff games have optimal memoryless deterministic strategies.

However the real value of Theorem 3 is not in recovering old results, I hope that it
will prove to be useful for establishing the existence of optimal memoryless deterministic
strategies for new games.

6 From one-player games to two-player games

Let A = (S,A, source, δ,player) and A] = (S],A], source], δ],player]) be two arenas. A
morphism from A] to A is a pair (f, g) of mappings f : S] → S and g : A] → A such that

for each s] ∈ S], player](s]) = player(f(s])), i.e. f preserves the controlling player,
for each a] ∈ A], f(source](a])) = source(g(a])), i.e. the source of each action is
preserved,
for each s] ∈ S], for a], b] ∈ S](s]), if a] 6= b] then g(a]) 6= g(b]), i.e. g is locally surjective
(but actions with different sources can be mapped to the same action),



W. Zielonka 71

(f, g) preserves (positive) transition probabilities, for all s] ∈ S] and a] ∈ A], if δ](a], s]) >
0 then δ(g(a]), f(s])) = δ](a], s]).

The degree of the morphism (f, g) is defined as maxs∈S |f−1(s)|.
Let (A, u) be a game and (f, g) a morphism from an arena A] to A. The lifting of

u is the payoff mapping u] : (A])ω → (−∞,∞] such that, for w = a1a2a3 . . . ∈ (A])ω,
u](w) = u(g(w)), where g(w) = g(a1)g(a2)g(a3) . . .. The game (A], u]) will be called the
lifting of (A, u) through the morphism (f, g).

In this section we adopt a slightly extended notion of a one-player arena. We say that A
is a one-player arena controlled by player Max if for each state s controlled by player Min
the set A(s) of available actions contains only one element.

Since for states s with one available action it does not matter who controls s this modified
notion of a one-player arena is essentially equivalent to the one used in the previous section.

The following is an enhanced version of the main result of [6]:

I Theorem 4. Let Γ = (A, u) be a two-player game. Suppose that for each morphism (f, g)
of degree at most 2 from a one-player arena A] to A the player controlling A] has an optimal
deterministic memoryless strategy in the corresponding lifted one-player game Γ] = (A], u]).
Then both players have optimal deterministic memoryless strategies in Γ.

Note that for each arena A there is only a finite number of morphisms of degree at most
2 into A. Thus Theorem 4 states that to establish the existence of optimal memoryless
deterministic strategies in a two-player game it suffices to examine a finite number of
one-player games.

Note also that a lifting of a mean-payoff game is again a mean-payoff game, similarly
a lifting of a parity game is a parity game, and a lifting of a priority mean-payoff game is
a priority mean-payoff game thus Theorem 4 allows to deduce that two-player versions of
these games have optimal deterministic memoryless strategies for both players. Again these
results are not new and the true value of Theorem 4 resides rather in potential applications
to new games.

7 Final remarks

There is a large body of literature devoted to multi-armed bandits but it concerns mainly
bandits with discounted payoff. The result announced in Theorem 3 relating Markov decision
processes to multi-armed bandits seems to be new. Another sufficient condition for the
existence of optimal memoryless deterministic strategies in one-player games with a tail
measurable payoff is due to H. Gimbert [2]:

I Theorem 5 (H. Gimbert). Let u be a tail-measurable payoff. Suppose that for all infinite
words (histories) w,w1, w2 ∈ Aω such that w is a shuffle of w1 and w2, u satisfies the
following inequality

u(w) ≤ max{u(w1), u(w2)}.

Then finite state Markov decision processes (one-player games controlled by Max) with payoff
u have optimal deterministic memoryless strategies.

In practice it is easier to verify the condition of Theorem 5 than the one stated in
Theorem 3. However the condition of Theorem 3 seems to be more robust since there exist
one-player games where we can prove the existence of optimal memoryless deterministic
strategies by means of Theorem 3 but not by Theorem 5 (at least not directly).

FSTTCS 2010
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It is an open problem how to extend Theorem 3 to payoffs which are measurable but not
tail measurable.
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