
Compiling Geometric Algebra Computations
into Reconfigurable Hardware Accelerators

Jens Huthmann1 , Peter Müller1, Florian Stock1, Dietmar Hildenbrand2, and
Andreas Koch1

1 Embedded Systems and Applications Group
Technische Universität Darmstadt, Germany

Email: {huthmann|mueller|stock|koch}@esa.cs.tu-darmstadt.de
2 Computer Science Department

Technische Universität Darmstadt, Germany
Email: dhilden@gris.informatik.tu-darmstadt

Abstract. Geometric Algebra (GA), a generalization of quaternions
and complex numbers, is a very powerful framework for intuitively ex-
pressing and manipulating the complex geometric relationships common
to engineering problems. However, actual processing of GA expressions
is very compute intensive, and acceleration is generally required for prac-
tical use. GPUs and FPGAs offer such acceleration, while requiring only
low-power per operation. In this paper, we present key components of
a proof-of-concept compile flow combining symbolic and hardware op-
timization techniques to automatically generate hardware accelerators
from the abstract GA descriptions that are suitable for high-performance
embedded computing.

1 Introduction

1.1 Compiling for Reconfigurable Computing

Reconfigurable computers have successfully been used to accelerate a wide spec-
trum of high-performance embedded applications, while requiring a power bud-
get far below that of Graphics Processing Units (GPUs) with comparable through-
put. However, the use of reconfigurable technology often required significant
manual implementation effort and knowledge not only of the application, but
also of digital design and computer architecture.

As in ASICs, the productivity gap between the hardware description lan-
guages (HDLs) traditionally used for digital design and the ever-increasing FPGA
capacities has widened. On one side, this has been addressed by growing the syn-
thesizable subsets of HDLs. Today, some tools can already synthesize variable
operand multiplication and division into hardware and infer various kinds of
memories directly from the HDL code. On the other side, many attempts have
been made to compile from higher-level software programming languages (HLL)
into hardware, e.g. [1–4].

Despite the progress in that area, translating HLLs into hardware is complex.
In many cases, only a limited subset of language constructs can be translated.

Dagstuhl Seminar Proceedings 10281
Dynamically Reconfigurable Architectures
http://drops.dagstuhl.de/opus/volltexte/2010/2838

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Restrictions often exist with regard to control flow, data types, and pointer
handling. All language features, that software developers expect to be available.
Their lack one more complicates the use of hardware acceleration by non-experts.

A different approach to compiling to hardware lies in using more abstract
domain-specific languages (DSL) instead of generic HLLs as input. These DSLs
often pose less difficulty for automatic compilation since, e.g., difficult-to-translate
constructs pointers or irregular control flow are not part of the language at all.
This has already been done successfully for signal processing applications from
MATLAB and Simulink ([5,6]). Our work also takes this route of compiling from
Geometric Algebra, a powerful DSL much better suited to hardware mapping
than a full HLL.

1.2 Geometric Algebra

The input language for our compiler are expressions formulated in Geometric
Algebra (GA). GA is a very powerful mathematical framework for intuitively ex-
pressing and manipulating complex geometric relationships. In many cases, GA
descriptions require only a fraction of the space of that conventional formulations
(e.g., half a page instead of dozens of pages).

GA generalizes projective geometry, imaginary numbers, and quaternions to
provide a powerful and flexible mathematical framework. It describes the manip-
ulation of multi-vectors, which are linear combinations of simple vectors (called
blades in this context). In addition to standard operators such as addition and
subtraction, GA also encompasses special operators such as geometric product,
inner product, outer product, inverse and division, dual and reverse operators
(see [7] for an introduction).

The current form of GA has its roots in work by Grassmann [8] and Clifford
[9] from the 19th century. However, its usefulness and wide practical applicability
have only recently been discovered. Initially, it became popular to solve physics
problems [10–12].

With the invention of conformal geometric algebra [13] by David Hestenes,
this has also been extended to engineering applications such as robotics, com-
puter graphics and computer vision. In conformal geometric algebras, high-level
geometric objects such as points, lines, planes and spheres, as well as operations
on them (e.g., intersection) can all be concisely expressed using GA operators.

However, due to the significant computation effort necessary to evaluate the
multi-dimensional GA expressions, practical adoption has only been limited so
far. While modern GPUs do have sufficient compute capacity [14], their long
latencies (40 µs for a single computation) and high power requirements (170
W+) make them infeasible for many embedded control scenarios. Most FPGA-
based reconfigurable computers do not quite reach the throughput of GPUs,
but achieve much shorter latencies (for this example, 2 µs) and a much reduced
power draw (here just 7 W). This will be discussed in greater detail in Sec. 4.

2

2 Related Work

This work is an extension of research previously presented as [15], now updated
with further details and additional information regarding the hardware module
library. Since [15] already contains an exhaustive survey of prior work, especially
with regards to hardware compilation, the current discussion will just examine
work directly relevant to our approach.

2.1 Tools

A number of pure software tools exist for working with GA expressions. Some
of these, specifically CLUCalc, CLIFFORD, and Gaalop are used in our hardware
compile flow.

CLUCalc is a software environment [7] for developing GA algorithms in the in
CLUCalc-script DSL.

CLIFFORD [16] is a Maple library allowing symbolic computations with GA
operations.

Gaalop (Geometric Algebra Algorithms Optimizer) [17] is our plugin-based
source-to-source compiler framework. It reads CLUCalc-script programs into a
flexible intermediate representation, which can then be optimized in both target
independent and dependent manner (internally using Maple and CLIFFORD for
symbolic transformations). Output code can be generated C, LATEX, dot-graphs
or CLUCalc-script (to visualize and verify the output). We use Gaalop as the base
for our hardware compiler.

The main contribution of this work is the extension of Gaalop with numerous
hardware-specific optimizations and a code generator for Verilog HDL.

2.2 Hardware Accelerators

With the high computing requirements for actually evaluating a GA model,
much effort has been expended on special-purpose processor architectures.

Different attempts include [18], [19], [20], [21], [22], and [23]. However, in
general, these approaches have not resulted in actual speed-ups over current
CPUs.

The main reason for the poor performance of these prior attempts appears
to be the fixation on software programmable, instruction-fetching processor ar-
chitectures, even when targeting reconfigurable logic.

2.3 Benchmark Application

As the focus is on the compiler and not on the application, we chose as benchmark
application an algorithm,

1. whose GA description superior to the standard formulation, and
2. where we have a both manual FPGA design and a GPU implementation as

reference solutions.

3

A typical engineering application useful for evaluating the performance of our
proof-of-concept compiler is an inverse kinematic computation: given a target
point and a kinematic chain (e.g., shoulder, upper arm, elbow, forearm, wrist,
hand), the algorithm computes the angles of all joints so the target point can be
reached.

This specific inverse kinematics algorithm is used in a virtual reality (VR)
applications [24]. As shown in [25], a formulation in five-dimensional conformal
GA was 3x faster in software and much more concise (a page of formulas instead
of many pages) than an algorithm using conventional mathematics.

Also, we have a manually created highly optimized versions for FPGA, GPU
and multi-core CPU targets [14, 26]. Each implementation has been carefully
hand-tuned for each platform (including, e.g., optimal bit width determination
of FPGA operators and multi-threading for the GPU and CPU targets). We can
thus judge the performance of the GA-to-hardware compiler using the manual
design and a GPU implementation as reference.

3 Extending Gaalop

In this section we will give an overview over the entire compile flow of the Gaalop

compiler framework and how its back-end is extended to translate the interme-
diate representation into high performance pipelined hardware data paths.

3.1 Gaalop Introduction

While CLUCalc is a very productive environment for the interactive development
and debugging of GA algorithms, it does not allow the export of the completed
models for execution outside of the tool. Gaalop aims to close this gap and export
GA models into a variety of external formats (both executable and graphical).

As shown in Fig. 1, Gaalop reads a description for five-dimensional conformal
GA algorithms as developed in CLUCalc. The CLUCalc-script is parsed into an
intermediate representation (IR), specifically a control flow graph (CFG) of basic
blocks holding the actual GA expression. Gaalop does not fully support control
flow in CLUCalc-script yet, but that did not hinder the implementation of the
inverse kinematics algorithm. A CFG was chosen for future extensibility to full
control-flow support, which is currently under development.

Each of the basic blocks is stored as a data flow graph (DFG). The DFG
represents the linear combinations of five blades. Each blade itself is represented
as the outer product of five basis vectors (e0, . . . , e3, e∞), with the grade of the
blade being the number of different basis vectors combined. At this stage, the
multi-vectors in the DFG may be fed to high-level GA operators.

5D conformal GA has multi-vectors which are linear combinations of at most
32 independent blades. For efficient compilation to a language without GA oper-
ators (e.g., C or fully spatial hardware), both the multi-vectors as well as the GA
operators combining them have to be translated into their underlying primitive
scalar representations and computations.

4

Gaalop Compiler Flow

GA Algorithm
(CluCalc)

Symbolic Simplification
(Maple with Cliffordlib)

Intermediate Representation

C
Graphviz

Dot
LaTeX CLUCalcVerilog

Fig. 1. Compile flow

This is achieved symbolically using the Maple computer algebra system with
the CLIFFORD library. With the library, Maple can now symbolically evaluate GA
expressions in each DFG, simplifying them. Next, we also symbolically transform
the remaining GA operators in the simplified GA expressions into their scalar
equivalents, now operating on the individual scalar components of the basis vec-
tors making up the blades. The results are scalar computations, amenable to
both parallel as well as pipelined computation. Note that these scalar computa-
tions may well include trigonometric and similar functions as operators.

Fig. 2 shows this process of lowering a set of GA expressions into an expres-
sion solely consisting of primitive operations.

From this lowered DFG, the various back-ends can then generate code in
the desired format. In addition to various textual and graphical formats (for
documentation and debugging purposes), we have so far generated executable
code in C/C++ and CLUCalc-script. In the next Section, we describe the flow
from the lowered DFG to efficient hardware.

3.2 IR for Hardware Generation

Several standard optimization techniques are performed on the Gaalop-DFG,
i.e. constant folding and common subexpression elimination. Afterward it is
translated into an expanded form better suited to hardware generation. Still
a DFG, it now holds only primitive operations acting on scalar data and also
carries additional attributes such as data types (floating or fixed-point), format

5

DefVarsN3();

// Generic example:

// inputs: two points (x1, x2, x3),(p1,p2,p3)

// two diameters :d1,d2

// two spheres are intersected, and the

// resulting circle is intersected with a plane

// the end result is a pair of points Pp

Pw =x1*e1+x2*e2+x3*e3;

s1 = Pw-0.5*d2*d2*einf;

s2 = e0-0.5*d1*d1*einf;

Ze = s1^s2;

Plane = p1*e1+p2*e2+p3*e3;

?Pp = Ze ^ Plane;

(a)

⇓
Pw := ((subs(Id=1,(x1 &c e1)) + subs(Id=1,(x2 &c e2))) + subs(Id=1,(x3 &c e3)));

s1 := (Pw - subs(Id=1,(subs(Id=1,(subs(Id=1,(0.5 &c d2)) &c d2)) &c einf)));

s2 := (e0 - subs(Id=1,(subs(Id=1,(subs(Id=1,(0.5 &c d1)) &c d1)) &c einf)));

Ze := (s1 &w s2);

Plane := ((subs(Id=1,(p1 &c e1)) + subs(Id=1,(p2 &c e2))) + subs(Id=1,(p3 &c e3)));

Pp := (Ze &w Plane);

gaalop(Pp);

(b)

⇓
Pw := x1*e1+x2*e2+x3*e3

s1 :=x1*e1+x2*e2+x3*e3-.5*d2^2*e4-.5*d2^2*e5

s2 := -1/2*e4+1/2*e5-.5*d1^2*e4-.5*d1^2*e5

...

(c)

⇓
TopLevelInput p2

MULT

HWOutput Pp23

TopLevelInput p3

MULT

SUB

TopLevelInput x3 TopLevelInput x2

(d)

Fig. 2. Converting a geometric algebra expression into primitive scalar operations. (a)
GA computation in CLUCalc-script. (b) GA expressions as given to Maple. (c) Clif-
fordLib results in GA, containing only primitive scalar operations (shortened). (d) Data
flow graph used for hardware generation. For brevity, we just show the computation of
blade 23 of the result Pp.

(bit-widths of integer and fractional parts of fixed-point representations), laten-
cies and scheduling cycles. As we also pursue other HLL-to-hardware compiler

6

Fig. 3. Nymble-IR graph. Nodes represent operations, inputs and outputs. Each Op-
eration has fixed latency and execution start time. Edges are data- and control flow.

projects (e.g., [27]), which also require a hardware generation back-end, this new
IR works as interface to a reusable back-end. The specific hardware generator
used is called Nymble, accordingly the new IR is named Nymble-IR. Fig. 3 shows
such an Nymble-IR graph (including control flow - the Gaalop back-end is not
yet able to handle control flow, but the used hardware generator Nymble is).

3.3 Word Length Optimization

The area and speed of fully spatial compute units can be improved significantly
by matching the width of the hardware operators to the data types processed at

7

this point in the calculation. This optimization must be assisted by the developer
by specifying the value ranges and precisions of input and output data.

Word length optimization is performed by forward and backward propagation
of the desired value ranges and precision. In the forward phase, the incoming
value ranges (integer and fractional parts) determine the required width of the
operator and its result. In the backward phase, unnecessarily precise (and thus
too wide) operators can be narrowed and this truncation also propagated back
toward the operator inputs.

For addition, subtraction, and multiplication the forward propagation is quite
simple. However, division or functions such as square root, sine or cosine have
more complex behavior. In this proof-of-concept implementation, we currently
assume a default value (32b, with 16b fraction) for these functions, but this will
be refined in future work. Similarly, we can set a global limit on the width of
intermediate values. Note that the operators themselves are not affected by this
and compute at the full required precision. Only the result is then clipped to the
global limit.

In addition to these established techniques, we can also do word-width opti-
mization based on the original higher-level Gaalop DFG-representation containing
GA operators. For the proof-of-concept compiler, e.g., we recognize the normal-
ization of vectors at the GA level, and restrict the output value range of the
corresponding scalar operator to [−1, . . . , 1].

Good examples for operators that profit from backward propagation are
inverse trigonometric functions (which will restrict the input value range to
[−1, . . . , 1]), or the square root (which limit the input value to be positive).
If we cannot determine a narrow value range for an operator analytically, we
then perform an automatic Monte-Carlo-Simulation of the entire data path to
achieve a better fit. This Monte-Carlo-Simulation runs in parallel using both
floating-point and fixed-point formats to also perform error estimation for all
operator nodes.

While we can also directly generate data paths using single or double-precision
floating-point operators, this is currently not practical: The proof-of-concept
compiler presented here aims for a fully-spatial implementation (no operator
sharing, but higher throughput). Even very simple GA algorithms will quickly
lead to hardware exceeding the capacities of even the largest FPGAs. Area op-
timization of floating-point computations will be one topic for future research
(see Sec. 5).

3.4 Scheduling and Balancing

After word-length optimization, the latency of the hardware operations can be
determined and the computation actually scheduled. Since we aim for fully spa-
tial operation without operator sharing, we use a simple greedy ASAP (as-soon-
as-possible) approach: An operation opi with latency li is scheduled at time
ti = maxopj∈Predecessor(opi){tj + lj}, i.e. it is scheduled after the latest prede-
cessor operation has finished its computation.

8

For maximum pipeline throughput of one result per clock cycle, we then need
to balance converging paths with unequal latencies by inserting registers. Also,
all paths from all inputs to all outputs need to be brought to equal latency.

let Dij the distance of the current node i to the successor j
sort Dij by ascending distance
if Dfirst 6= Dlast then

create new register node NOP n
for all successors j of i with Dk > Dfirst do

remove edge (i, j)
insert edge (n, j)

end for
add edge (i, n)
execute algorithm for n

end if

Fig. 4. Balance successors of a node i

Fig. 4 shows the balancing algorithm. The successors j of the current node
i in the DFG are sorted by their latency distance. The latter is defined as
dist(opi, opj) := tj − ti − lj , with opi ∈ Predecessor(opj), t being the scheduled
start cycles, and l the latency in cycles. If the minimal and maximal and dis-
tances are different, a register node is inserted in all paths from the current node
that are longer than the shortest path. The register node itself is scheduled at
cycle ti +Dfirst. The algorithm is then restarted on the new register node. The
result is a data path with balanced path lengths.

3.5 Hardware Generation

Hardware is generated by our Nymble hardware back-end. Since the data path
is a fully spatial, perfectly balanced pipeline, no additional control logic is re-
quired beyond markers indicating if and when results are available in the output
(a simple shift register). For control flow implementation Nymble can generate
lightweight controllers to (partially) pause the data path. This is necessary, e.g.,
in case of operations with variable latency (such as memory accesses) or (nested)
loops.

We support chaining of some computations within the same clock cycle. At
the moment, these are constant shifts, sign/bitwidth extension and bit-select
operations that reduce to simple wires.

If the sinks of an operator are scheduled one or more cycles later, the source
operator is fitted with a shift register to delay results over that time. Note that
the balancing algorithm in Fig. 4 ensured that all sinks (possibly NOP nodes
inserted for that very purpose) have the same latency distance from the source
operator. Thus, many paths can share the balancing shift register.

9

Dedicated input registers accept input values for the computation, either as
slave-writes from the CPU, or via a streaming mechanism directly from mem-
ory. Output registers can also be read from the CPU or be streamed back into
memory.

The operators themselves are implemented using the flexible target-independent
module library Modlib [28]. Internally, it expresses simple operators (e.g., ad-
dition, etc.) as synthesizable Verilog HDL operators. More complex operators
(e.g., multiplication, division, square root, trigonometric functions) are realized
internally using the Xilinx CoreGen IP blocks, using fully pipelined implemen-
tations with maximum throughput. The operators are generated on-the-fly for
the specific bit-widths and data types required, caching generated modules for
re-use if an operator with the same characteristics occurs again. As our other
compiler projects also exploit a more complex, token-based hardware genera-
tion scheme [27], the Modlib operators support not only the static scheduling
as used in Nymble, but also dynamic scheduling. This allows control speculation
and canceling of mispredicted operators. To estimate the final area/timing data,
Modlib can provide meta-information for the single operators. It determines this
information empirically by actually automatically mapping the required opera-
tor once to the selected device, analyzing it, and then caching this information
for further re-use.

Supported operators are add, sub, mul, div, mod, and type conversions for
integer and float types, bitwise and logical operations, memory reads and writes,
and I/O and IRQ registers. The parameters include the bit-width of the operands
and the result, the signedness, the length of an output shift register (used for
balancing), a queue depth for decoupling when used for dynamic scheduling, and
in- and outputs for the speculation cancellation.

4 Evaluation and Results

As described in Sec. 2.3, we use an inverse kinematics application to evaluate the
compiler prototype. Specifically, we compare the compiler-generated hardware
with an implementation very carefully manually optimized by two experienced
designers. In both cases, we target the Xilinx Virtex 5 devices using Synplify
Premier for synthesis and Xilinx ISE for mapping.

For a fair comparison of the different platforms, our performance numbers
assume that the input and output data is fetched from/stored to memory local to
the computing device: The CPU has the data in its node-local memory accessed
via FSB, the FPGA uses directly attached DRAM, and the GPU processes data
in its on-board device memory.

Tab. 1 compares the area requirements and the performance for both so-
lutions. Obviously, the compiler-generated datapath requires significantly more
space than the manually optimized one, specifically a high number of DSP blocks.
But with its deeper pipeline, it can be mapped to a Virtex 5 SX 240T device
with a slightly higher clock frequency than the manual design.

10

Table 1. Comparison of manual design ([14]) vs. compiler-generated data path (com-
pute kernels only, disregarding communication interface).

manual compiler

operations 140 258

resources # FFs 49938 71173
resources # LUTs 34912 72664
resources # DSPs 74 817

pipeline length 365 447
max. frequency [MHz] 170 180
throughput [106eval/s] 170 180
latency [µs] 2.147 2.483
speed-up to CPU 6.9x 7.3x

average word-length [bits] 38 45
average fraction-length [bits] 23 41

implementation time [h] 80 << 1

throughput / speedup
0

50

100

150

200

250

300

350

0

2

4

6

8

10

12

14

16

CPU 2.4 GHz Q6600 / icc
Manual (Virtex 5SX) – 170 MHz
Gaalop (Virtex 5SX) – 180 MHz
GPU(ltd) – GTX280

m
ill

io
n

ev
al

s/
s

fa
ct

or

Fig. 5. Throughput

It is clear that our future work needs to concentrate on area optimization. The
human designers exploited a number of high-level algebraic simplifications that
are not yet performed automatically using the Maple computer algebra system
in the Gaalop flow. This also affects the fixed-point conversion: The manually
optimized design contains significantly fewer operators that are infeasible for
analytical value range determination. Instead, the compiler has to rely on the
Monte-Carlo-Pass to tighten the constraints. That approach, however, suffers
from the nature of the Monte-Carlo test data generation: Since we aimed for
a general-purpose solution, we generate streams of completely random input
vectors. Not all of these will actually be valid inputs for this specific problem
(e.g., a kinematic chain anchored at the origin can obviously not reach the origin
and other points very close to it). Thus, we have to extend operator value ranges

11

0

20

40

60

80

100

120

140

160

180

CPU
GPU(ltd)
manual
FPGA
Gaalop
FPGA

p
ow

er
 [W

]

0

200

400

600

800

1000

1200

1400

CPU
GPU(ltd)
manual FPGA
Gaalop FPGA

en
er

g
y

pe
r e

va
l [

n
W

s
]

Fig. 6. Power and Energy comparison

to handle values that will actually never appear in practice, leading to wider
operators. This explains that the average word-length in the compiler-generated
design is 1.2x larger than the one in the manual design.

Performance-wise, though, the compiler-generated design performs quite sat-
isfactorily (see Fig. 5): It slightly exceeds the throughput of the manual design
(measured as million function evaluations per second) and has similar latency. It
is still significantly better in terms of throughput than a four-threaded software
implementation running on a 2.4 GHz Intel Core 2 Quad Q6600 CPU (which
would draw 4.6x the power of the FPGA), yielding a real wall-clock speed-up
compared to most of the prior approaches outlined in Sec. 2. While a GPU under
optimum conditions could be even faster (1366M evaluations/s), it also incurs a
latency of more that 40 µs on an NVidia GTX 280 card, which also would draw
more than 24x the power of the FPGA. Fig. 6 shows that the FPGA is much
more efficient in terms of required energy per computation. [14] gives greater
details on these alternate implementations.

Apart from the area and performance issues, however, an automatic tool must
be rated by its effect on designer productivity. This is the area where even the
proof-of-concept compiler shines: The manual implementation required a total
of approx. 80 h of determined effort by two experienced designers, familiar with
both digital design/computer architecture as well as the maths underlying GA
(which they exploited for the operator-reducing high-level simplifications). The
compiler itself takes less than a minute to execute, with the bulk of the total
implementation time taken by the Xilinx ISE mapping tools. Now, a domain
expert proficient in GA can use a familiar notation to describe an algorithm,
with no hardware design knowledge required.

12

5 Conclusion and Future Work

Even in its proof-of-concept stage, the compiler generates compute pipelines for
the GA descriptions with a throughput significantly higher than the carefully
tuned software version on a quad-core CPU.

The compiled compute pipeline does not yet reach the performance of the
manual reference implementation, but was created in a fraction of the design time
(minutes vs. days). Gaalop can already be used to quickly perform experiments
with other GA algorithms, something simply not possible if a manual hardware
design would be required for each problem.

Ongoing research also tackles going from the fully spatial design presented
here to one with a flexible degree of operator sharing. This not only will allow the
implementation of even more complex GA applications without using excessive
amounts of reconfigurable area, but also the use of smaller reconfigurable devices
for less extreme application performance requirements.

The compiler does not yet perform all of the optimizations that were un-
dertaken for the manual design. Specifically, tree height-reduction would have
been advantageous. Also, when implementing the CLUCalc-script control flow
constructs, our very simple word-length optimization has to be replaced with a
more precise algorithm, e.g., [29] or [30]. All of these classical techniques will
need to be extended to exploit the underlying structure of the high-level GA
operators to achieve even tighter word-length fittings. These issues are also the
subject of current research in our group.

5.1 Dynamic Reconfiguration

As good as the inverse kinematic is for demonstrating the capabilities of our
proof-of-concept compiler and the potential of GA, it is not a representative
choice for general GA algorithms: Usually, these consist of much smaller sub-
models, that are called at different times from the host program. These sub-
models could be mapped onto the FPGA one at a time using dynamic partial
reconfiguration.

An example of an application with these characteristics is a molecular dy-
namic simulation, which consists of a number of different kernels. Since a fully
spatial, high-performance implementation of each kernel fills a large FPGA all
by itself, putting the entire application onto a chip is not feasible using current
devices.

Dynamic reconfiguration, however, would allow to execute all relevant parts
using appropriate hardware accelerators. This approach is subject of ongoing
research work and will eventually also be added to the compiler.

References

1. Budiu, M.: Spatial Computation. PhD thesis, Carnegie Mellon University, Com-
puter Science Department (December 2003) Technical report CMU-CS-03-217.

13

2. Guo, Z., Buyukkurt, B., Najjar, W., Vissers, K.: Optimized generation of data-path
from c codes for fpgas. In: Design Automation Conference. (2005)

3. Kasprzyk, N., Koch, A.: High-level-language compilation for reconfigurable com-
puters. In: Proc. Intl. Conf. on Reconfigurable Communication-centric SoCs (Re-
CoSoC). (2005)

4. Séméria, L., Sato, K., Micheli, G.D.: Synthesis of hardware models in c with
pointers and complex data structures. IEEE Trans. Very Large Scale Integr. Syst.
9(6) (2001) 743–756

5. Xilinx: MATLAB for Synthesis. Xilinx. (2008)
6. Xilinx: System Generator for DSP. Xilinx. (2008)
7. Perwass, C.: Geometric Algebra with Applications in Engineering. Springer (2009)
8. Clifford, W.K.: Applications of grassmann’s extensive algebra. In Tucker, R., ed.:

Mathematical Papers, Macmillian, London (1882) 266–276
9. Clifford, W.K.: On the classification of geometric algebras. In Tucker, R., ed.:

Mathematical Papers, Macmillian, London (1882) 397–401
10. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified

Language for Mathematics and Physics. Dordrecht (1984)
11. Hestenes, D.: New Foundations for Classical Mechanics. Dordrecht (1986)
12. Hestenes, D., Ziegler, R.: Projective Geometry with Clifford Algebra. Acta Appli-

candae Mathematicae 23 (1991) 25–63
13. Hestenes, D.: Old wine in new bottles : A new algebraic framework for computa-

tional geometry. In Bayro-Corrochano, E., Sobczyk, G., eds.: Geometric Algebra
with Applications in Science and Engineering. Birkhäuser (2001)

14. Lange, H., Stock, F., Koch, A., Hildenbrand, D.: Acceleration and energy efficiency
of a geometric algebra computation using reconfigurable computers and gpus. In:
FCCM. (2009) 255–258

15. Huthmann, J., Müller, P., Stock, F., Hildenbrand, D., Koch, A.: Accelerating
high-level engineering computations by automatic compilation of geometric algebra
to hardware accelerators. In: International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation. (2010)

16. Ablamowicz, R., Fauser, B.: Mathematics of clifford - a maple package for clifford
and graßmann algebras. In: Advances in Applied Clifford Algebras, Birkhäuser
(2005)

17. Hildenbrand, D., Pitt, J., Koch, A. In: Gaalop - High Performance Parallel Com-
puting based on Conformal Geometric Algebra. Volume 1 of American Journal of
Mathematics. Springer (2010) 350–358

18. Crookes, D., Alotaibi, K., Bouridane, B., Donachy, P., Benkrid, A.: An environment
for generating fpga architectures for image algebra-based algorithms. In: Proc.
International Conference on Image Processing (ICIP). (1998)

19. Perwass, C., Gebken, C., Sommer, G.: Implementation of a clifford algebra co-
processor design on a field programmable gate array. In Ablamowicz, R., ed.:
CLIFFORD ALGEBRAS: Application to Mathematics, Physics, and Engineering.
Progress in Mathematical Physics, 6th Int. Conf. on Clifford Algebras and Appli-
cations, Cookeville, TN, Birkhäuser, Boston (2003) 561–575

20. Gentile, A., Segreto, S., Sorbello, F., Vassallo, G., Vitabile, S., Vullo, V.: Cliffosor,
an innovative fpga-based architecture for geometric algebra. In: International Con-
ference on Engineering of Reconfigurable Systems and Algorithms (ERSA). (2005)
211–217

21. Mishra, B., Wilson, P.: Color edge detection hardware based on geometric algebra.
In: European Conference on Visual Media Production (CVMP). (2006)

14

22. Mishra, B., Wilson, P.R.: Vlsi implementation of a geometric algebra parallel
processing core. Technical report, Electronic Systems Design Group, University of
Southampton, UK (2006)

23. Franchini, S., Gentile, A., Grimaudo, M., Hung, C., Impastato, S., Sorbello, F.,
Vassallo, G., Vitabile, S.: A sliced coprocessor for native clifford algebra operations.
In: Euromico Conference on Digital System Design, Architectures, Methods and
Tools (DSD). (2007)

24. Hildenbrand, D.: Geometric Computing in Computer Graphics and Robotics us-
ing Conformal Geometric Algebra. PhD thesis, TU Darmstadt (2006) Darmstadt
University of Technology.

25. Hildenbrand, D., Fontijne, D., Wang, Y., Alexa, M., Dorst, L.: Competitive runtime
performance for inverse kinematics algorithms using conformal geometric algebra.
In: Eurographics conference Vienna. (2006)

26. Hildenbrand, D., Lange, H., Stock, F., Koch, A.: Efficient inverse kinematics algo-
rithm based on conformal geometric algebra - using reconfigurable hardware. In:
GRAPP. (2008) 300–307

27. Gädke, H., Stock, F., Koch, A.: Memory access parallelisation in high-level lan-
guage compilation for reconfigurable adaptive computers. In: FPL. (2008) 403–408

28. Gädgke-Lütjens, H., Thielmann, B., Koch, A.: A flexible compute and memory
infrastructure for high-level language to hardware compilation. Submitted to FPL
2010

29. Budiu, M., Goldstein, S.C.: Bitvalue inference: Detecting and exploiting narrow
bitwidth computations. In: In Proceedings of the EuroPar 2000 European Confer-
ence on Parallel Computing, Springer Verlag (2000) 969–979

30. Patterson, J.R.C.: Accurate static branch prediction by value range propagation.
In: PLDI ’95: Proceedings of the ACM SIGPLAN 1995 conference on Programming
language design and implementation, New York, NY, USA, ACM (1995) 67–78

15

