-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

METAMOC: Modular Execution Time Analysis
using Model Checking

Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René R.
Hansen, and Kim G. Larsen

Department of Computer Science, Aalborg University

Selma Lagerlofs Vej 300, 9220 Aalborg @st, Denmark
{andrease, mchro, mt, rrh, kgl}@cs.aau.dk

—— Abstract

Safe and tight worst-case execution times (WCETS) are important when scheduling hard real-
time systems. This paper presents METAMOC, a modular method, based on model checking
and static analysis, that determines safe and tight WCETs for programs running on platforms
featuring caching and pipelining. The method works by constructing a UPPAAL model of the
program being analysed and annotating the model with information from an inter-procedural
value analysis. The program model is then combined with a model of the hardware platform and
model checked for the WCET. Through support for the platforms ARM7, ARM9 and ATMEL
AVR 8-bit, the modularity and retargetability of the method are demonstrated, as only the
pipeline needs to be remodelled. Hardware modelling is performed in a state-of-the-art graphical
modelling environment. Experiments on the Mélardalen WCET benchmark programs show that
taking caching into account yields much tighter WCETs than without modelling caches, and that
METAMOC is a sufficiently fast and versatile approach for WCET analysis.

Digital Object Identifier 10.4230/0ASIcs. WCET.2010.113

1 Introduction

Embedded software is virtually ubiquitous these days. It is used to control the proper
functioning of technical devices we routinely use and rely on in our daily life. Often embedded
software is applied in safety-critical systems—e.g. the braking system of a car or the steering
gear of an airplane. Many of these safety-critical systems are also time-critical, meaning that
the calculations performed by the tasks of an embedded system need not only be correct
but must be carried out in a timely fashion. Worst-case execution time (WCET) analysis
is concerned with providing guarantees for proper timing behaviour of system tasks by
computing bounds for their execution time on given processors.

In order to allow for reliable and efficient scheduling of tasks, the scheduling algorithms
need safe and tight WCETs. Two different classes of methods are predominant (see also [11]):
measurement-based methods, where statistical information on WCETSs is obtained by ex-
ecuting tasks on the given processor or simulator for a sample collection of input, and
static methods, where static analysis (typically abstract interpretation and integer linear
programming [10]) of the task, taking the specific hardware platform into account, allow the
derivation of safe upper bounds on the execution time. The method presented in this paper,
Modular Execution Time Analysis using Model Checking (METAMOC)?!, is a static method
utilising model checking to provide safe WCET estimates. Figure 1 provides an overview of
the prototype implementation of METAMOC.

! http://metamoc.dk

@@@@ © Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René R. Hansen and Kim G. Larsen;
G licensed under Creative Commons License NC-ND

10" International Workshop on Worst-Case Execution Time Analysis (WCET 2010).
Editor: Bjorn Lisper; pp. 113-123

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/62915733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.WCET.2010.113
http://metamoc.dk
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

114

METAMOC: Modular Execution Time Analysis using Model Checking

Annotated Pipeline Main memory Cache
executable (UPPAAL model) (UPPAAL model) specifications

\

disassemble
(objdump, Dissy)
\

|
Assembly

generate generate
(Assembly—to—UPPAAL) (cache—gen)

\ Y
Control Flow Graph . Caches
(UPPAAL modeb combine (UPPAAL models)

value anal

Complete model model check
(WAL (UPPAAL model) (UPPAAL)

grsis

Figure 1 Overview of the prototype implementation of METAMOC. The top row shows required
inputs. The executable (annotated with loop bounds) is the only user input, whereas the other
inputs are platform specific models developed by specialists or hardware vendors. The output is a
WCET estimate for running the executable on the hardware platform. Rounded and rectangular
boxes represent actions and objects, respectively.

Modern processors utilise techniques such as caching and pipelining, which increase the
average number of operations that can be executed per time unit. Since these techniques are
also found in many processors intended for embedded devices, such as members of the widely
deployed ARM7 and ARM9 families, a modern WCET analysis method must take them into
account to be useful. The use of model checking in METAMOC provides a modular approach
for dealing with these techniques: the model to be analysed comprises an abstract model
of the program, and similarly for the component models for the hardware platform, which
include caches, pipelines and memories. Thus, WCET analysis of a platform with, say, a
new pipeline component only requires a model for the new component.

The paper is organised as follows. Section 2 provides a brief introduction to the model
checker UPPAAL [2] and its extensions to timed automata (TA). Section 3 describes the
models used in METAMOC for hardware components and programs, and in which ways they
interact. The modularity of the method is demonstrated through support for the platforms
ARM7, ARM9 and ATMEL AVR 8-bit. Section 4 details a number of experiments, which
evaluate the applicability and performance of METAMOC. The experiments are conducted
using a suite of WCET benchmark programs from Milardalen Real-Time Research Centre?.
Section 5 gives an overview of related work. Section 6 concludes the paper and presents
possible directions for future work.

2 The UPPAAL Model Checker

UPPAAL [2] is a model checker for real-time systems which, besides the verification engine,
features a state-of-the-art graphical user interface for modelling, simulation and verification.
This section gives a brief introduction to UPPAAL models, which are used as the model

2 http://www.mrtc.mdh.se/projects/wcet/home.html

http://www.mrtc.mdh.se/projects/wcet/home.html

Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René R. Hansen, and Kim G. Larsen 115

formalism in METAMOC.

Systems in UPPAAL are modelled as a network of timed automata (TA), that is a set
of finite automata and a set of free-running clocks that can be reset. The TA are extended
with a number of features to ease modelling. Binary synchronisation channels enable a TA
having an edge labelled name! to synchronise with another TA having an edge labelled
name?, i.e. they follow the edges together in one transition. If several pairs are possible, a
pair is chosen non-deterministically. Urgent channels dictate that synchronisations must be
carried out immediately whenever possible, i.e. a time delay must not occur. Another case
where a time delay must not occur is when one or more of the TA are in a location marked
as committed. Priorities can be assigned to TA, such that a transition in a TA is enabled
only if no transitions in any higher priority TA are enabled.

In addition to the control-flow primitives, UPPAAL models can contain a number of
discrete-valued variables (and arrays of variables) and a number of C-like functions that can
access and update those variables. These functions can be used as guards on transitions, or
invoked when an transition is taken to update variables.

Properties to be verified for the systems are formulated in a logic inspired by timed com-
putation tree logic (TCTL). Besides standard TCTL, UPPAAL provides a special sup prop-
erty for finding the supremum of a clock. For example, the property “sup: cyclecounter”
causes UPPAAL to determine an upper bound for the clock cyclecounter. This exact
property is used by METAMOC. For an introduction to TA model checking and TCTL
see [1].

3 Modelling Hardware Components and Programs

As is clear from Figure 1, METAMOC is centered around a number of models. In this
section we explain the ideas behind the models and how they fit together. Starting in the
upper left corner of Figure 1, the method takes as input an executable annotated with
loop bounds. The executable is disassembled using the tools objdump and Dissy?, and the
resulting assembly code is given as input to a generator and a value analysis. The generator
creates a control flow graph (CFG) from the assembly code, in the form of a UPPAAL model,
which is annotated with results from the value analysis. Besides the executable, the method
takes as input a pipeline model, a main memory model and some cache specifications. The
latter are given as input to another generator, which creates cache models. Finally, the four
models are combined and model checked, resulting in a WCET estimate for running the
executable on the hardware platform. The CFG generator, the value analysis, the cache
generator and the combine tool have been written for the prototype implementation by the
authors of this paper and are released as open source.

We use a prototype implementation of METAMOC for a simplified ARM920T processor?
as a continuing example in this section. The ARM920T processor is a member of the ARM9
family, which features an ARM9TDMI processor core®, separate instruction and data caches,
a memory management unit (MMU), and a bus interface for connecting main memory.
We have modelled the core and the caches of the processor together with a simple main
memory. The MMU and the bus interface are not modelled, and we have modelled least
recently used (LRU) caches rather than first in first out (FIFO) caches, as FIFO caches

3 http://www.gnu.org/software/binutils/ and http://code.google.com/p/dissy/
4 http://infocenter.arm.com/help/topic/com.arm.doc.ddi0151c/ARM920T_TRM1_S.pdf
5 http://infocenter.arm.com/help/topic/com.arm.doc.ddi0180a/DDI0180. pdf

WCET 2010

http://www.gnu.org/software/binutils/
http://code.google.com/p/dissy/
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0151c/ARM920T_TRM1_S.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0180a/DDI0180.pdf

116 METAMOC: Modular Execution Time Analysis using Model Checking

1

| Execute stage |

| Writeback stage |

1 | |
I : ARMI9TDMI pipeline [élil\i[9_2(_)T !
I | | |
) | Fetch stage I< .: Caches L
I |
|: * } L:—H Instruction cache I
| | | | |
: \ | Decode stage | | Memory stage) Data cache I :
| ! |
|
I
I
|
¥

Figure 2 Communication between components in the ARM920T and the main memory.

cause timing anomalies [3]. Section 3.4 discusses the problem with FIFO caches and how
they can be handled by METAMOC. The core implements the ARM instruction set v4T and
contains a five stage pipeline with the stages fetch, decode, execute, memory and writeback.
Communication between components in the model is illustrated in Figure 2. In order to
demonstrate the modularity of the method we have utilised the ARM920T implementation
to rapidly create implementations for the processors ARM7 and ATMEL AVR 8-bit. This
process is detailed in Section 3.5.

In the following, a program is understood as a low-level machine executable representa-
tion, which has been disassembled to human readable assembly. The WCET of a program
depends heavily on the hardware platform it is executed on, which explains why it is neces-
sary to do the analysis at the lowest level; it is only at this level that enough information is
present to determine the exact execution behaviour.

3.1 Modelling Pipelines

A pipeline is the part of a processor responsible for the execution of instructions. A pipeline
divides the execution of an instruction into a number of parallel stages, in order to increase
the average pace of execution. The five stages found in the ARM9TDMI core are illustrated
in Figure 2. The fetch stage fetches instructions from main memory through the instruction
cache. The decode stage determines the instruction type and the involved registers and
prepares the needed values for the execute stage. The execute stage performs the actual
arithmetic or logical computation. The memory stage accesses main memory through the
data cache. Finally, the writeback stage writes computed values back into the registers.
Each instruction flows through all stages, staying at least one cycle in each stage.

The parallel nature of a pipeline matches the parallel nature of a UPPAAL model,
making the modelling of a pipeline in METAMOC a straight-forward process. Figure 3
shows a sketch of the UPPAAL model for the ARM9TDMI pipeline. The model contains
an automaton for each stage in the pipeline. Progress in the model is forced by declaring
all synchronisation channels as urgent, and time is bounded using a committed location in
the writeback automaton. The non-determinism arising from the automata combinations is
limited using priorities, since all combinations will result in the same state before time is
allowed to progress. The simulation ensures that a safe overapproximation of the execution
time is found. For example, since branch instructions are evaluated in the execute stage
in hardware and in the program model in METAMOC, special handling is required. Even
though the hardware flushes the fetch and decode stages in case of a branch to a non-
consecutive address, the instruction cache has been affected, and we imitate this effect in
METAMOC by having the fetch automaton perform two fetches without moving the fetched

Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René R. Hansen, and Kim G. Larsen

Fetch
fetch?

Decode

decode?

Writeback

writeback?

Execute Memory

execute? memory?

9

e I
te 22
S %‘?0
7 %

m_done?

f_done? d_done? e_done?

2 d_done! 2 2 e_done! i 2 m_done! Q

Figure 3 Sketch of the UPPAAL model for the pipeline in the ARM9TDMI processor core.

2 f_done! 2

X == must_stall()

©)

x<=1

O

Imust_stall()

decode?
x=0

decode_done! Imust_stall()

fetch_done?

O

execute!
move(THIS, NEXT)

Figure 4 UPPAAL model for the decode stage in the ARMI9TDMI pipeline. The model uses
the local clock x, the functions move and the function must_ stall. A single location is marked as
committed with a C.

instructions further on in the pipeline.

Another example is pipeline stalls, which are handled in the decode automaton. The
automaton initially delays for one cycle. Then, if the current instruction depends on data
being loaded by the memory stage or data being shifted or sign extended by the writeback
stage, it stalls until the data is ready. Consider the instructions:

LDR RO, [R1]
ADD R2, RO, R1

Load RO with the word pointed to by R1
Store the sum of RO and R1 in R2

The sum cannot be computed before the value of RO is available, and the second instruction
must therefore stay in the decode stage until the load has finished in the memory stage.
The actual UPPAAL model for the decode stage is shown in Figure 4. Pipeline stalls are
documented by four examples in the reference manual for the core, however, the manual
does not guarantee that the examples are exhaustive. The pipeline model in METAMOC
handles the four examples cycle-accurately.

To further validate our pipeline model, we have used it to calculate the number of cycles
for executing some small, single-path programs from the Mailardalen WCET benchmarks
and compared these cycle counts to results from the ARMulator emulator®, assuming only
cache hits. The cycle counts are comparable (with our estimates erring on the safe side),
e.g. fibcall gives 407 vs. 415. It should be noted that ARMulator does not give any definite
guarantees regarding cycle-accuracy’, which means the cycle counts can only be used for
approximate comparisons.

5 http://infocenter.arm.com/help/topic/com.arm.doc.dui0058d/DUI0058 . pdf
" http://infocenter.arm.com/help/index. jsp?topic=/com.arm.doc.faqs/ka4106.html

117

WCET 2010

http://infocenter.arm.com/help/topic/com.arm.doc.dui0058d/DUI0058.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka4106.html

118

METAMOC: Modular Execution Time Analysis using Model Checking

An important property of our simplified model of the ARM920T processor is that it is
free of “timing anomalies”, as its pipeline is in-order [4], and it is modelled with LRU caches.
If a processor has timing anomalies, it means that the local worst-case might not lead to
the global worst-case. For instance, a cache hit rather than a cache miss might lead to a
longer overall execution time. The absence of timing anomalies makes it convenient to find
overapproximations, as the local worst-case can be used. Alternatively, if presented with a
processor with timing anomalies, additional non-determinism in the model might be used
to explore all local possibilities.

3.2 Modelling Caches

Another feature for improving the average execution pace is caching. The basis of caching
is the principles of locality. Caches improve the pace greatly, since a main memory access
might take e.g. 33 cycles while a cache access typically only requires a single cycle. A cache
is divided into sets, where each block from main memory can reside in precisely one of these
sets. Each set is divided into lines, also called “ways”. A memory block can be stored in any
of the lines in the set that it can be cached in. When a memory access occurs, eviction of a
line in a cache set might be required, since all lines might be occupied. If that is the case,
a replacement policy is used to determine which line to evict.

The ARM920T processor has separate instruction and data caches. Both are 16 KB, 64
way associative, have eight words (i.e. 32 bytes) per line, support the write-through and
write-back write policies, and support the pseudo-random and FIFO replacement policies.
As mentioned above, we consider an LRU policy in this paper. The set for a byte at address
x is determined by (x & ((ns—1) < log,(ls))) > log,(ls), where ns is the number of sets, Is is
the line size in bytes, &, < and > are bitwise AND and SHIFT operators. This expression,
slightly modified, is part of the cache models.

In order to add caching to the pipeline model, each cache is modelled as a UPPAAL
model, simulating a cache hit by delaying for one cycle and a cache miss by synchronising
with the UPPAAL model for main memory, which delays the appropriate number of cycles.
The cache model has to keep track of which memory blocks are currently in the cache. It
does so by storing an array of 512 addresses, as there are 512 lines. Cache hits are determined
using this array, and the cache replacement policy is implemented as functions.

3.3 Modelling Programs

The program is modelled as a data-insensitive CFG of the program, which communicates
with the fetch stage of the pipeline. Figure 5 shows a simplified example of a program
with two functions: main and foo. All programs have a main function, which is where
the execution starts. Function calls are simulated by transferring control to the function
automaton and transferring control back to the call-site when the function returns. This
is illustrated in Figure 5 by synchronisation over the channels fooCall and fooReturn.
Bounded recursion is supported, albeit only through manual modification of the generated
models. Loops are handled using loop counter variables that ensure that a back-edge of a
loop can only be taken the specified number of times.

In order to reduce the amount of non-determinism in the program model, it is deter-
minised using a simple rule: executing more code increases the execution time. Concretely,
this means that loops are iterated the maximum number of times, and that forward branches
are sometimes ignored. For example if a forward branch skips over a number of instructions
it is ignored, as following it will only lead to less code being executed. Before ignoring such

Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René R. Hansen, and Kim G. Larsen 119

main foo
@__ (> fetch! (> o G fooCall? (> o
fooCall! 00 fetch!
4’%
Qs __

: done! :

Figure 5 Sketches of the UPPAAL models for the functions main and foo.

fooReturn?

a forward branch, the effects of the pipeline still have to be considered as if the jump is
sufficiently small it might be the worst-case to take the branch, flushing the pipeline. This
form of determinisation is not safe in the presence of timing anomalies.

The program CFG is annotated with the memory addresses accessed, determined stat-
ically using a value analysis. We have implemented a precise, inter-procedural constant-
propagation value analysis using weighted push-down systems (WPDSs) [7] and loop un-
rolling. For brevity reasons we omit the details on the value analysis.

3.4 Handling Timing Anomalies such as FIFO Caches

FIFO caches cause domino effects [3], which are a type of timing anomaly. A domino effect
is where the iteration of a loop body gives rise to different states of a hardware component,
e.g. the pipeline or the caches, without convergence. The consequence is that it is not
safe to unroll the loop any number of times and assume that state leads to the global
worst case. Concretely for METAMOC this means the maximum number of loop iterations
cannot be assumed, as if the bound is n, iterating the loop m times, where m < n, might
lead to a hardware state that becomes slower overall than iterating the loop n times. By
changing the guards on transitions in the program CFG that exit a loop to be more lenient,
we can introduce non-determinism to explore all possible iterations of loops and thereby
handle cache replacement policies that cause domino effects. Similarly, the determinisation
described in Section 3.3 must be disabled for the analysis to be sound. However, the added
non-determinism often results in state space explosion making the program unanalysable.

3.5 Support for ARM7 and ATMEL AVR 8-bit

Inspired by the WCET Tool Challenge 20082 we have implemented METAMOC for the
ARMTTDMI processor core”. The core has three pipeline stages: fetch, decode and execute.
The execute stage covers the actions performed by the execute, memory and writeback stages
in the ARM9TDMI. Since the ARM9TDMI model could be reused extensively, and since
both cores implement the v4T instruction set, we were able to create the ARM7TDMI model
in less than a man-week.

To show that other popular embedded processors can be supported as well, we have
implemented support for the ATMEL AVR 8-bit processor. It took approximately one man-
week to implement the support and only required adding a new pipeline, creating support
in Dissy for the AVR architecture and slightly generalising the CFG generator. Since the
processor has no caches, no value analysis is performed.

8 http://www.mrtc.mdh.se/projects/WCCO8/
9 http://infocenter.arm.com/help/topic/com.arm.doc.ddi0210c/DDI0210B. pdf

WCET 2010

http://www.mrtc.mdh.se/projects/WCC08/
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0210c/DDI0210B.pdf

120

METAMOC: Modular Execution Time Analysis using Model Checking

4 Experiments

To evaluate the applicability and performance of our method, we evaluate it on a number of
WCET benchmark programs from the Mélardalen Real-Time Research Centre. We compile
the programs using a cross-compiling GNU C Compiler (GCC)!°. The model generation is
done on a 2 GHz Intel Core 2 Duo processor with 4 GB of RAM, and the model checking
is done on a Dell PowerEdge 2950 with two 2.5 GHz Intel Quad Core Xeon processors
and 32 GB of RAM. The UPPAAL settings for all runs are: depth-first search, aggresive
state-space reduction and 64 MB hash table size.

We have manually annotated all loops in the programs with loop bounds. In addition we
have promoted a few local variables to the global scope to sidestep GCC’s translation of large
local arrays into data segments with specialised initialiser code. We have discarded programs
that either use floating point operations, do register-indirect jumps, or do not compile.
GCC inserts software floating point routines, which we could analyse given an estimation
of the routines’ loop bounds—these are hard to estimate though, without thorough manual
analysis. Out of 35 programs, this resulted in 21 programs'! for the ARM architecture and
19 programs for the AVR architecture!?.

METAMOC has many parameters that can be adjusted for different trade-offs between
precision, memory and analysis time: the compiler optimisation level, the amount of heuristic
determinisation and manual annotation of the models, the level of hardware detail modelled
and model checker options (specifically state space reduction techniques). To demonstrate
the modularity of the method we have tested three different ARM9 configurations in order
of increasing precision: with no caches (always assuming that main memory is accessed),
with only an instruction cache, and with both an instruction cache and a data cache. Our
value analysis is only used when the data cache is enabled. The improvements gained by
using more precise models can be seen in Figure 6a, while the increase in analysis time can
be seen in Figure 6b. We have omitted the benchmarks for the ARM7 architecture as the
results are very similar to the ARM9 results.

Our applicability results are presented in Table 1, together with the analysis times in
Figure 6b. For the ARM9 we are able to provide WCETSs for all 21 benchmarks. The adpcm
program results in state space explosion when enabling any caches. The ndes program is only
analysable with an instruction cache with 128 cache lines. When both caches are enabled,
we manually have to modify the models for three of the benchmarks: compress has a small
syntactical error due to deep loop nesting; and for matmult and bsort100 the number of data
cache lines modelled concretely must be reduced from 512 to 128 and 64, respectively (which
amounts to editing a constant in the model editor, due to the modular design). Without
this manual modification, UPPAAL runs into its 4 GB memory limit.

More AVR benchmarks suffer from state space explosion than ARM benchmarks, pri-
marily due to the ARM architecture having support for predicated (conditional) execution
of all instructions, thus reducing the number of distinct paths through the program.

The analysis times are all within 42 mins., with the average across all configurations and
benchmarks being 100.47 secs. Details of the benchmarking are available at the METAMOC

10For ARM: GCC 4.1.2, with the options -02 -g -fno-builtin -fomit-frame-pointer. For AVR: GCC
4.3.3, with the options -02 -g -fno-builtin -fno-inline -fomit-frame-pointer -mmcu=avrb

11adpcm7 bs, bsort100, cnt, compress, crc, edn, expint, fac, fdct, fibcall, fir, insertsort, janne_ complex,
jfdctint, matmult, ndes, ns, nsichneu, prime, ud.

12The same as for the ARM, except bsort100 and nsichneu, which failed compiling due to the resulting
program image being too large for the AVR.

Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René R. Hansen, and Kim G. Larsen 121

ARM9 w. LRU caches, 21 benchmarks
Analysable without caches 21
Analysable with instruction cache 20
Unanalysable, state space explosion 1 ATMEL AVR 8-bit, 19 benchmarks
| Manual modification of instruction cache size | 1 | Analysable 16
Analysable with data and instruction cache 19 Unanalysable, state space explosion 3
Unanalysable, state space explosion 2
| Manual modification of data cache size ~ = | 2]
Manual syntax fix of model 1

Table 1 How many programs were analysable, and reasons for failure.

1 45
0.9 - - 40 - 3
08 e 351 i
0.7 - b 30 L R
0.6 - il .
VTS e)
05 L NN R -
o 20 s -
04 o B
i 15 - {
0.3 ¥)
02| 0r R 7
01 b = 54 / 4
0 T 0w ﬁ'/ s
No caches Instruction cache Instruction and data cache AVR ARMY, no cache Instr. cache Instr. and data cache
(a) (b)

Figure 6 (a) Improvement in WCET estimate by precisely modelling the different caches on the
ARMY. The average improvement in WCET estimate is 72.2% by modelling the instruction cache,
and 82.3% by modelling both caches. (b) Analysis times for the different configurations in minutes.
The average successful analysis times are, respectively: 52.46 secs., 80.76 secs., 27.84 secs. and
235.32 secs.

website, including the actual WCET estimates and UPPAAL models generated.

We have experimented with modelling an ARM9 with a FIFO instruction cache, disabling
the determinisation described in Section 3.4 as this is unsound in the presence of timing
anomalies, but our results are very inconclusive. Some benchmarks can be handled almost
as efficiently by using different optimisations in the model checker, such as the “convex hull”
overapproximation technique, while others suffer from massive state space explosion. Convex
hull collapses states that only differ in their clock valuations into one overapproximated state
for further exploration. The efficiency of this depends very much on the search order, but
this cannot be managed at such a detailed level currently. The handling of timing anomalies
is an area of future work.

5 Related Work

Using model checking for determining worst-case execution times (WCETSs) is a debated
approach. In [10] it is claimed that model checking is not suitable for WCET analyses,
however, in [6] it is shown that model checking can actually improve WCET estimates for
hardware with caching. In this paper we show that model checking can be used for WCET
analysis for a simplified model of a real-world, modern processor—and with good results
and performance.

Cache analyses can generally be sorted into abstract and concrete cache analyses. In
the former, a model state covers a number of concrete hardware states that are similar in
some way. In the latter, a model state corresponds to a particular, concrete hardware state.
The common model for abstract cache analyses as in [5] has the advantage of being space

WCET 2010

122

METAMOC: Modular Execution Time Analysis using Model Checking

efficient, with a trade-off of precision.

The pipeline analysis typically uses an abstract model of the pipeline to take its impact
on the execution into account [5]. The pipeline analysis should be able to handle unknown
memory values. They might lead to non-determinism, as it might be impossible to deduce
a reasonable overapproximation. For this reason, abstract pipeline states are traditionally
represented as a set of concrete pipeline states [8]. Recent work has looked into using binary
decision diagrams (BDDs) to represent abstract pipeline states [12]. The work presented
in this paper is conceptually similar but the standard reduction techniques of the model
checker is used. Using real-time model checking should be more resilient to the memory
delay than the method presented in [12], as delays of any length results in a single state,
without intermediate states for each time unit.

For the path analysis, implicit path enumeration technique (IPET) and integer linear
programming (ILP) have been combined in several tools [11, p. 42]. In [9], a path-based
method is presented and has been implemented as an alternative to IPET in the SWEET
tool. The method is more effective than previous path-based methods. Furthermore, path-
based methods explore a path explicitly which, in contrast to IPET, could make debugging
and infeasible path pruning easier. The path analysis presented in this paper is a simple
exploration of the CFG of the program, with pruning of paths which cannot lead to the
worst-case behaviour, but no pruning of infeasible paths.

6 Conclusion and Future Work

The optimisation features of modern processors, such as caching and pipelining, make it
difficult to determine safe and tight WCETs. Our method, METAMOC, is a modular and
easily retargetable approach for determining WCETs for programs running on hardware
platforms featuring caching and pipelining, but no timing anomalies. In order to evaluate
the method, a prototype implementation has been made for a simplified model of the ARM9
architecture, a typical processor for embedded systems. To show the modularity of the
approach, the initial prototype has been extended with support for the ARM7 and ATMEL
AVR architectures.

The prototype has been benchmarked to test its performance and general applicability.
The experiments additionally show that much tighter WCET estimates are found when tak-
ing instruction caching into account: up to 96% tighter estimates, and 72.2% on average.
Also considering the data cache increases the average to 82.3%. When taking both caches
into account, the average analysis time is just under four minutes. For the ARM9 archi-
tecture, WCET estimates are given for all benchmarks, but requiring manual tweaking in
four cases. For the ATMEL AVR three programs are unanalysable due to the model checker
running out of memory.

Future work includes improving the model checker technology, and thereby being able
to handle timing anomalies. We speculate that our models will parallelise very efficiently,
as paths seem to be quite independent (especially when including caches). Distributing the
model checking across more hosts will allow us to use much more memory, thereby allowing
the analysis of larger programs. Exploiting the structure of our models in order to summarise
the effects of long deterministic chains, e.g. basic blocks, into single steps should also help.
Seeing that abstract caches seem to give a good trade-off between precision and performance,
adding support for abstract caches would be interesting. Finally, rather than being data-
insensitive, we would like to incorporate some form of flow facts into the program model. We
already support this in some form, by allowing the user to manually annotate the program

Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René R. Hansen, and Kim G. Larsen 123

model, but it would be more beneficial if some flow facts were deduced automatically.

Acknowledgements The authors would like to thank the anonymous reviewers for their
very insightful feedback.

—— References

1

10

11

12

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,
first edition, 2008.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on UPPAAL. In Marco
Bernardo and Flavio Corradini, editors, SFM-RT, number 3185 in LNCS, pages 200-236.
Springer, 2004.

Christoph Berg. PLRU Cache Domino Effects. In Frank Mueller, editor, WCET. Inter-
nationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany, 2006.

Jakob Engblom and Bengt Jonsson. Processor Pipelines and Their Properties for Static
WCET Analysis. In Embedded Software, volume 2491 of LNCS, pages 334-348. Springer,
2002.

Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Applying Compiler Tech-
niques to Cache Behavior Prediction. In LCTRTS, ACM SIGPLAN, pages 37—46, 1997.
Alexander Metzner. Why Model Checking Can Improve WCET Analysis. In Rajeev Alur
and Doron Peled, editors, CAV, volume 3114 of LNCS, pages 334—-347. Springer, 2004.
Thomas Reps, Akash Lal, and Nick Kidd. Program Analysis using Weighted Pushdown
Systems. In FSTTCS, volume 4855 of LNCS, pages 23-51. Springer, 2007.

Jorn Schneider and Christian Ferdinand. Pipeline Behavior Prediction for Superscalar
Processors by Abstract Interpretation. In LCTES, pages 35-44, New York, NY, USA,
1999. ACM.

Friedhelm Stappert, Andreas Ermedahl, and Jakob Engblom. Efficient Longest Executable
Path Search for Programs with Complex Flows and Pipeline Effects. In CASES, pages
132-140, New York, NY, USA, 2001. ACM.

Reinhard Wilhelm. Why AI + ILP is good for WCET, but MC is not, nor ILP alone. In
Bernhard Steffen and Giorgio Levi, editors, VMCAI volume 2937 of LNCS, pages 309-322.
Springer, 2004.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenstrom.
The Worst-Case Execution Time Problem — Overview of Methods and Survey of Tools.
Transactions on Embedded Computing Systems, 7(3):1-53, 2008.

Stephan Wilhelm and Bjérn Wachter. Symbolic State Traversal for WCET Analysis. In
EMSOFT, pages 137-146, New York, NY, USA, 2009. ACM.

WCET 2010

	Introduction
	The UPPAAL Model Checker
	Modelling Hardware Components and Programs
	Modelling Pipelines
	Modelling Caches
	Modelling Programs
	Handling Timing Anomalies such as FIFO Caches
	Support for ARM7 and ATMEL AVR 8-bit

	Experiments
	Related Work
	Conclusion and Future Work

