
On the Use of Context Information for Precise

Measurement-Based Execution Time Estimation∗

Stefan Stattelmann
1

and Florian Martin
2

1 FZI Forschungszentrum Informatik

Haid-und-Neu-Str. 10–14, D-76131 Karlsruhe, Germany

stattelmann@fzi.de

2 AbsInt Angewandte Informatik GmbH

Science Park 1, D-66123 Saarbrücken, Germany,

martin@absint.com

Abstract

The present paper investigates the influence of the execution history on the precision of measurement-

based execution time estimates for embedded software. A new approach to timing analysis is

presented which was designed to overcome the problems of existing static and dynamic methods.

By partitioning the analyzed programs into easily traceable segments and by precisely controlling

run-time measurements with on-chip tracing facilities, the new method is able to preserve inform-

ation about the execution context of measured execution times. After an adequate number of

measurements have been taken, this information can be used to precisely estimate the Worst-Case

Execution Time of a program without being overly pessimistic.

Digital Object Identifier 10.4230/OASIcs.WCET.2010.64

1 Introduction

Information about the execution time of programs in embedded systems must be available

at several design stages. During the initial phases, a rough estimate of the execution times

should be available so that components which fit the expected workload of the system can

be chosen. In the final phase of a project, precise execution times must be known in order

to verify that the system fulfils all its timing requirements. The increasing complexity of

real-time systems makes reasoning about the execution time of embedded software more and

more challenging. This particularly holds for the Worst-Case Execution Time (WCET) of

a task since it might only occur under rare circumstances which are caused by a nontrivial

interaction of system components.

Existing methods for WCET analysis can be divided into static and dynamic methods.

Static timing analyses try to determine a safe upper bound for all possible executions of

a given program. In contrast, dynamic methods use measurements taken during a finite

number of actual executions to determine an estimate of the WCET. On current processor

architectures, both methods do not always produce satisfying results. The interaction of

performance enhancing features in modern processors makes it very unlikely to observe

the worst-case execution during a few test runs. Hence measurement-based analyses might

underestimate the WCET considerably. Furthermore, existing methods are often not able to

∗ This work has been partially supported by the German Federal Ministry of Education and Research
(BMBF) within the project SANITAS under grant 01M3088C and by the research project “Integrating
European Timing Analysis Technology” (ALL-TIMES) funded by the European Commission’s 7th
Framework Programme on Research, Technological Development and Demonstration under contract
215068.

© Stefan Stattelmann and Florian Martin;
licensed under Creative Commons License NC-ND

10th International Workshop on Worst-Case Execution Time Analysis (WCET 2010).
Editor: Björn Lisper; pp. 64–76

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


Stefan Stattelmann and Florian Martin 65

represent the performance gain from caches (cache effects) precisely. If only the worst-case

execution time is considered for each basic block in a loop body, a performance increase in

following iterations due to caching cannot be represented. This can make dynamic estimates

very pessimistic, too. Static analyses must use (safe) approximations for the potential states

of the analyzed system as the state space can grow very large for sophisticated architectures.

These approximations are necessary to make the computation of WCET estimates feasible,

but the increase of the reported bounds and the resulting imprecision can restrict their

practical use.

This paper presents a context-sensitive analysis of accurate instruction-level measure-

ments which can provide precise worst-case execution time estimates. The notion of context-

sensitivity is a well-known concept from static program analysis. It has been shown that

the precision of an analysis can be improved significantly if the execution environment is

considered. This especially holds if the analysis does not only consider different call sites but

also distinct iterations of loops (see [12]), as this allows the consideration of cache effects. Up

to now, context information is mainly used in static timing analysis. The results presented

in this work suggest that the precision of measurement-based timing analyses, too, can be

increased considerably by incorporating context information.

Recent developments in debug hardware technology allow the creation of cycle-accurate

traces with a fully programmable on-chip event logic [13]. The increasing availability of these

tools for instruction-level measurements and the precise timing information they provide

motivate the use of methods from static timing analysis for measurement-based approaches.

As dynamic methods for WCET estimation can be adapted to new processor architectures

much more easily than the models used in static analyses, this would reduce the initial

investment necessary for performing exact timing analyses.

The influence of context information on the precision of execution time estimates is not

only interesting for WCET analysis. All forms of execution time inspection on complex

architectures might be improved by incorporating context information, even if the worst-

case is not (yet) of interest, like during design space exploration in an early development

phase.

The remainder of this work will be organized as follows. The next section will list some

related approaches for dynamic WCET analysis. Section 3 introduces a new context-sensitive

method for measurement-based execution time analysis. In the fourth section, experimental

results with this method will be presented. The last section gives a summary of the work

and the impact of the results.

2 Related Work

A complete overview of existing methods for WCET analysis can be found in [20]. This

section will focus on measurement-based methods. One of the first attempts to consider

the execution context of execution times was the structure-based approach, a technique for

static timing analysis proposed in [16], but it only aimed at a more precise combination

of execution times from individual program parts. Similar techniques are still used for

measurement-based WCET analysis, e.g. in [5], but they lack the ability to reflect the

interaction of individual program parts which is mandatory to represent the influence of

the execution history for example due to cache effects. An extension to the structure-based

approach which can distinguish execution times of loop iterations is described in [6], but

there is no practical evaluation of the effects on the execution time estimates.

To overcome the problem of exhaustive measurements, several solutions have been de-

WCET 2010



66 Precise Measurement-Based Execution Time Estimation

veloped (e.g. [7] and [18]) that try to partition a program into parts which can be measured

more easily. These approaches usually assume that the system can be brought into a worst-

case state before taking measurements, e.g. by clearing the cache. This assumption may hold

on simpler processors, but it is hard to fulfil in complex systems as it might not be clear

what this state looks like due to a complex interaction of system components [9]. Modifying

the system state can also make the execution time estimates very pessimistic, for example

if the cache is cleared too often during the measurements. Further solutions include the

automatic generation of input data to enforce a worst-case execution [19, 18] or the probab-

ilistic analysis of measurements [5]. The use of results from a cache analysis to guarantee

that a sufficient number of measurements have been performed was described in [14]. An

approach based on game theory which can represent varying execution times for different

loop iterations is presented in [15]. It is also based on program partitioning, an automatic

generation of input data and requires that all loops in the analyzed program can be un-

rolled completely. In [11] constraint logic programming is used to model context-sensitive

execution times based on constraints that are derived from an execution time dependency

analysis of program traces.

Although only an incomplete overview of methods for measurement-based timing ana-

lysis can be given here, the main concern of existing approaches seems to be to enforce

the observation of a worst-case execution. Furthermore, many techniques require that the

analyzed program is changed since instrumentation code must be added. In contrast to this,

the following section will introduce an approach which aims at the precise combination of a

large number of measurements. By using evaluation boards which provide hardware support

for controlling the collection of trace data, probe effects are avoided since code instrument-

ation is not necessary. Furthermore, steering measurements precisely during runtime allows

increasing the precision of execution time estimates since cache effects can be represented

by distinguishing the execution history of an observed code region.

3 Proposed Method

This section presents a new concept for measurement-based timing analysis. The method

works on the interprocedural control flow graph (ICFG) of a program executable and re-

quires measurement hardware that can be controlled by complex trigger conditions. The

development of the approach was motivated by the limited size of trace buffer memory which

is available in current hardware for on-chip execution time measurements. Measurement

hardware which stores traces in an external memory overcomes this problem by sacrificing

accuracy. Due to bandwidth constraints these traces only store certain instructions, for ex-

ample taken branches. Additionally, timestamps for these instructions are often only created

when a partial trace is transfered from a small on-chip buffer to the large external memory.

Hence deriving the execution time of every single instruction is hardly possible. As a con-

sequence of these limitations, it is not feasible to determine context-sensitive execution times

from end-to-end measurements, since it is not possible to create cycle-accurate end-to-end

traces for programs of realistic size, i.e. traces containing a timestamp for every executed

instruction. Instead of using traces of complete program runs, this work investigates the

use of the programmable trigger logic in state-of-the-art evaluation boards for embedded

processors to create context-sensitive program measurements. Current tracing technology,

like the Infineon Multi-Core Debug Solution [13], allows considering the execution history

of a program before starting a measurement run. This is achieved by dedicated event logic

in the actual hardware which can be used to encode state machines to model the program



Stefan Stattelmann and Florian Martin 67

(a) ICFG with virtual inlining (b) Partitioning into segments

Figure 1 Execution contexts and program partitioning

state. These possibilities motivated the development of an analysis which makes use of this

additional logic to generate context-sensitive traces despite the limitations of the trace buffer

size. The analysis is divided into several phases:

Initially, the ICFG is created and partitioned into program segments in such a way that

every possible run through the segments can be measured with the available trace buffer

memory.

The information gathered during the partitioning phase is used to generate trace auto-

mata that will control the measurements.

Taking measurements requires a sufficiently large number of actual executions of the

analyzed program on the target hardware.

After the measurements have been taken, the context-sensitive timing information for

each basic block of the program can be extracted and annotated to the ICFG. Further

computations then yield the worst-case path through the ICFG and an estimate of the

worst-case execution time of the program.

3.1 Control Flow Extraction

Initially, the control flow is extracted from the program executable and its ICFG is construc-

ted. To represent the execution context of program parts precisely, the concept of virtual

inlining, virtual unrolling (VIVU) is used [12]. VIVU applies function inlining and loop

unrolling on the level of the ICFG. Thus the ICFG can contain several copies of the same

basic block for which different execution times can be annotated. To consider the execution

history of these duplicates, the control flow graph is extended with additional information

that represents the execution context. A call string is used to model a routine’s execution

history. Call strings can be seen as an abstraction of the call stack that would occur during

an execution of the program. In this work, a call string will be represented as a sequence of

call string elements. A Call string element (b, r) is a pair of a basic block b and a routine

r which can be called from b. Only valid call string elements will be allowed, meaning it

must be possible that the last instruction of the basic block b is executed immediately before

the first instruction of routine r. For the entry routine of the analyzed task (e.g. main in a

standard C program) there is no execution history as the execution is started by calling the

respective routine. This context is described by the empty call string ǫ. It will be omitted

in the following examples. The intuition behind this representation of an execution context

is that whenever a routine is called, the call string is extended with another element to

WCET 2010



68 Precise Measurement-Based Execution Time Estimation

(a) Original CFG (b) First iteration unrolled

Figure 2 Extension of the CFG by virtual unrolling

describe the context of the function body. Therefore extending the call string works sim-

ilar to extending the call stack during program execution. Since the execution history of

a routine can be very complex, its call string representation might become very long. In

order to achieve a more compact representation of execution contexts, the maximal length

of call strings will be bounded by a constant k ∈ N0. For call strings which describe a valid

execution but exceed the maximal length, only the last k call string elements will be used

to describe the context. In the following examples a call string length of one will be used.

Figure 1a depicts an example of virtual inlining in an ICFG by duplicating routine bod-

ies for every call site. Intraprocedural edges are drawn with solid lines, while the edges

describing a function call are represented by dashed lines. Routines are not explicitly high-

lighted in the ICFG, but every routine is assumed to have a unique entry node, which is

the target of the call edges, and an artificial exit node through which the routine must be

left. The effect of virtual unrolling is shown in in Figure 2. Virtual unrolling also extends

the ICFG by duplicating nodes. Additional precision is gained by extracting loops from

their parent routine and treating them like recursive routines. This allows a more precise

classification of the execution history than a simple calling context when searching for the

WCET path through the program, since varying execution times in different loop iterations

can be represented independently from the parent routine.

3.2 Program Partitioning

To cope with the limited memory for trace data, the ICFG is partitioned into program

segments. These segments consist of a start and an end node in the graph which must fulfil

the condition that the longest path in terms of executed instructions (not execution time)

between them is smaller than or equal to the number of instructions for which timestamps

can be stored in the trace buffer. Additionally, both nodes must be part of the same

execution context. Segments can either include all nodes which lie on the interprocedural

paths between the start and the end node or they can be restricted to the nodes on the

intraprocedural paths. By excluding calls to other routines, the size of a program segment

can be reduced, but information about the execution context can be preserved in the traces.

After this partitioning, each node of the ICFG is covered by at least one program segment and



Stefan Stattelmann and Florian Martin 69

it suffices to perform measurements for individual segments to determine context-sensitive

execution times for every basic block.

The program from Figure 1a will be used to illustrate the concept of program segments.

Assume the program is to be traced with a trace buffer which can hold timestamps for at most

6 instructions. In order to extract cycle-accurate and context-sensitive timing information,

at least 3 program segments are necessary. Each of these segments is measured individually

and the results are combined during a post-processing phase. Figure 1b illustrates one

possible partitioning. In this example, a separate segment is created for the body of the

routine addnb at each call site. Additionally, the segment for the top-level routine main is

assumed to be measured without the routine it calls. This assumption makes it possible

to handle the limited trace buffer. However, to fulfil this assumption during an actual

measurement run, it must be possible to trigger the measurement hardware precisely.

3.3 Trace Automata

For each program segment, a trace automaton is generated to control the measurement runs

of the respective segment. These state machines encode the conditions which describe the

execution history of each segment, i.e. which instructions must have been executed before the

execution context of the observed program run matches the program segment. Monitoring

the execution of the program before starting a measurement allows preserving information

about the execution context even if the trace does not contain the complete execution history

of the analyzed code regions. The automata are constructed from the execution history of

the respective segments, which is described by a sequence of call sites and loop entries (call

string). This abstract description of trace preconditions is translated to the event logic of

the evaluation board using a software debugger [4] which is then used to collect measurement

data.

For the description of an execution context, each element of a call string describes two

conditions in terms of executed instructions: the call instruction in the call block must be

executed immediately before the first instruction of the called routine. Additionally, the

sequence of the elements constrains the order of these conditions, i.e. the order of the calls.

In principle, they can be directly translated to a trace automaton which changes its state

depending on whether the correct routines are called at the appropriate call sites. But

since most call sites call exactly one routine, the automata created by this strategy are

not minimal. On the other hand, there might be program segments which have a common

call string, but lie in a different instruction address range (e.g. if a routine gets partitioned

into two segments). Hence it is not sufficient to consider only the context description when

constructing trace automata.

To generate a trace automaton for measuring a program segment, the first step is to

create states and transitions which correspond to the constraints described by the call string

representation of the segment’s execution context. After that, states must be added to

express which instructions on the paths through the segment should be traced. The complete

approach proceeds as follows:

Initially, the automaton has a single state, no transitions and generates no output. Then,

at least one state for each element of the call string is added to the automaton. How many

states are added depends on the properties of the call site described by the string element.

If the call described by the element has only one possible destination, it suffices to use the

address of the call block as condition for the transition to the next state. Similarly, if this

is not the case but the destination routine is only called at this call site, it is enough to

add a single state which is entered as soon as the entry address of the respective routine is

WCET 2010



70 Precise Measurement-Based Execution Time Estimation

(a) Basic block calls a unique routine (b) Routine is only called from one basic block

(c) Several callers and callees

Figure 3 Translation of a call string element

encountered. For call string elements which fulfil neither of the conditions, both states have

to be added to the trace automaton to model the requirements for the execution history

described by the call string elements. These three cases are illustrated in Figure 3 for the

one-element call string (0x4000, addnb) and the routine addnb from Figure 1a which starts

at the memory location 0x4018 and returns at address 0x4028.

Finally, the state for actually storing trace data is added. For program segments which

cover all routines that are called on the paths through the segment, this can be done by

adding a single state which is entered as soon as the start block is entered and left when

the end block is left. In this state, all instructions which will be executed will also be stored

in the trace buffer. For segments which exclude called routines, things are slightly more

complicated and an additional state gets necessary. The tracing state is constructed as

before, but the additional state is entered when calls are executed within the segment (i.e.

when the address interval for the segment is left) and no trace data will be generated while

the automaton is in this state. Note that no extra state for storing trace data is necessary

if the program segments covers a complete routine and all its calls. In this case, tracing can

start as soon as the addresses for all call string elements of the execution context have been

processed by the automaton. This is also illustrated in Figure 3.

3.4 Trace Data Generation

Taking measurements requires a sufficiently large number of actual executions of the ana-

lyzed program on the target hardware. The approach relies on the assumption that all

worst-case execution times of each basic block in every execution context were observed

during the measurements to produce a safe estimate. As the program under consideration

is not modified in any way, measurements should be taken under realistic conditions to

produce execution time estimates that match the expected workload. Using typical inputs

during a large number of measurements should result in estimates close to the actual WCET.

Controlling the generation of trace data with state machines offers the advantage that the

measurement logic can wait for code region which are executed rarely before triggering the



Stefan Stattelmann and Florian Martin 71

trace generation. Since this process can be automated, achieving a sufficient level of code

coverage is facilitated, but not guaranteed.

3.5 Timing Extraction

After a set of traces has been generated for each of the segments into which the program of

interest was partitioned, the maximal execution time for each basic block is extracted from

the measurements. As the traces are assumed to be cycle-accurate, this is a straightforward

process since every instruction which gets executed during a measurement run must also

be contained in the respective trace. Additionally, the traces must contain a (relative)

timestamp for each instruction. Since tracing is controlled by (an implementation of) a

trace automaton, the precise execution context of the trace data is known. Hence the

execution time for each basic block can be extracted from a trace by simply going through

the trace and the ICFG in parallel. Whenever a new basic block is entered in the trace, the

respective node must be found in the ICFG. Depending on the type of program segment

which is annotated, this search for a successor must be carried out on the whole ICFG or just

within the current routine, i.e. without following call edges. The execution time of a basic

block is determined by subtracting the timestamp of its first instruction from the timestamp

of the first instruction of its successor block. As the context in which a trace is generated is

preserved while creating the measurements, basic block execution times from the trace are

only annotated to those nodes with matching context. In case of virtual inlining, this means

that execution times are only annotated to those nodes in the ICFG at the correct call site,

but not to the nodes in other contexts (although these nodes represent the same basic blocks

on assembly level). Depending on the level of unrolling, the execution times of nodes within

a loop can also be assigned to distinct iterations. Hence the worst-case execution time of

nodes in the first iteration of a loop, which might generate many misses in the instruction

cache, can be easily separated from the remaining iterations. Further iterations are usually

not expected to suffer the same performance penalty from cache misses. By duplicating these

nodes, the WCET estimates get more precise compared to approaches which cannot make

this distinction. In contrast to the method presented in [11], no additional processing of the

traces has to be performed to derive these dependencies between basic block execution times.

Additionally, the worst-case execution time of the whole program can still be computed by

implicit path enumeration [10] and there is no need to resolve additional execution time

constraints using constraint logic programming.

For each node in the ICFG which was covered by a trace, this provides the execution time

for this particular run. Under the assumption that all local worst-cases were observed during

the measurements, meaning that the worst-case execution time of each node is covered by

at least one of the traces, the maximum from all of the execution times equals the worst-

case execution time. All nodes in the ICFG which never occurred in one of the traces are

assumed to be never executed during any execution of the program. If a sufficiently large

number of measurements has been taken under realistic conditions, taking the maximum of

the measured execution times for each node is likely to provide the worst-case execution time

or at least a realistic estimate of it. Nevertheless, the presented work provides no means to

enforce these conditions.

3.6 Cache Analysis

The design of the proposed method allows an easy integration of static analyses to make the

measurement phase more efficient. To demonstrate this, the cache analysis described in [8]

WCET 2010



72 Precise Measurement-Based Execution Time Estimation

Figure 4 Comparison of context-sensitive and end-to-end measurements

has been adapted to classify the instruction cache behavior of different execution contexts.

This classification is achieved by comparing the number of potential and guaranteed cache

hits and misses for different execution contexts of a basic block. If two program segments

from the same code region, but with a different execution history, will exhibit a (roughly)

identical cache behavior, they will not be distinguished during the measurements. By joining

some of the execution contexts generated by the VIVU approach, the number of measure-

ments can be reduced without influencing the precision of the WCET estimates. A detailed

description of this optimization is beyond the scope of this paper, but further details can be

found in [17].

4 Experimental Results

The proposed method was implemented as an extension of the AbsInt aiT WCET Ana-

lyzer [1] and tested with an Infineon TriCore TC1797ED evaluation board. Several com-

mon WCET benchmarks could be successfully analyzed, in particular programs from the

Mälardalen WCET Benchmark Suite [3] and the DEBIE-1 benchmark [2], which is an adap-

ted satellite control application. No changes to the hardware state or the analyzed software

were performed during the experiments. The programs were simply loaded into the flash

memory of the evaluation board and then measured several times successively. Input data for

the programs did not have to be generated as this was already handled by the benchmarks.

For an initial test, the estimates provided by the implementation were compared to

WCET estimates based on a number of simple end-to-end measurements. The result of this

comparison is shown in Figure 4. Estimating the worst-case execution time of programs



Stefan Stattelmann and Florian Martin 73

Figure 5 Improvement of WCET estimates through context information

based on measurements is problematic as it usually cannot be guaranteed that the worst-

case has been covered. This was demonstrated by the test case HandleTelecommand from

the DEBIE-1 benchmark: though a considerable effort was made for the measurements, the

observed end-to-end execution times were considerably smaller than the context-sensitive

WCET estimates. Manual examination of the traces showed that some routines which were

on the WCET path reported by the context-sensitive approach were never executed during

the end-to-end measurements. Hence this test case showed that for programs which rarely

execute the routines which are responsible for the worst-case execution, the presented ap-

proach is superior to simpler methods. The program partitioning and the precise control over

the measurement runs allows the measurement hardware to wait for these rarely executed

program parts before starting the actual trace. Nonetheless, the prototype implementation

reported some WCET estimates which were smaller than the maximal execution time ob-

served during the end-to-end measurements. One reason for this is that the measurement

hardware sometimes did not start the traces immediately after they were triggered. As a

result of these delays, some basic blocks were never completely covered by the measure-

ments and thus the execution time was underestimated. As the number of measurements

which were taken during the experiments was relatively small, insufficient coverage of critical

program parts is another potential cause of the underestimation.

The effect of context information for measurement-based execution time estimation was

investigated by using the same set of trace data with and without the consideration of

the execution history (Figure 5). A smaller number of measurements was performed for

these experiments than for the previous ones as the focus was not on precisely estimating

WCET 2010



74 Precise Measurement-Based Execution Time Estimation

the WCET (i.e. covering all local worst-cases), but on investigating the effect of context

information. For this reason, some results presented in Figure 5 differ slightly from previous

estimates. The context-insensitive analysis uses the maximal execution time of each basic

block found in the traces and annotates this value to every copy of the respective basic

block in the ICFG. On the other hand, the context-sensitive analysis was able to annotate

smaller execution times to some of the basic block instances since it is able to preserve

information about the execution history, e.g. by distinguishing the first from all remaining

iterations of a loop. For two out of three test cases, the context-sensitive approach seems

to be able to represent cache effects more precisely. Hence, smaller WCET estimates are

reported. This effect could not be observed for the smallest of the test cases, probably

since the execution time of the program does not benefit from caches due to its linear

structure. The results of this comparison suggest that the difference between a context-

sensitive and a context-insensitive analysis can be substantial. By increasing the number of

measurement runs, this effect can only be intensified, as for every increase in the context-

sensitive estimate, the context-insensitive estimate must grow as well. Thus the execution

context of execution time measurements should be preserved whenever possible. If this is

not done, cache effects cannot be determined correctly, which is why a context-insensitive

evaluation might introduce a severe amount of pessimism to the execution time estimates,

which renders them less precise.

5 Conclusion

This work proposed a new approach to measurement-based timing analysis which makes use

of techniques from static program analysis. The results obtained during the experiments

show that state-of-the-art measurement hardware can be used to determine WCET estimates

automatically. To get precise results, a large number of measurements should be performed

since the method relies on the assumption that the local worst-case for each basic block was

observed during the measurements. Although the new approach seems to be more robust

and more precise than existing methods for measurement-based timing analysis, it does not

overcome their inherent problems, like the dependence on input data. However, controlling

the collection of trace data precisely allows weakening the influence of these problems to the

WCET estimate, e.g. because it is now possible to facilitate measurements within program

parts or execution contexts which are executed very rarely. While the precise control of trace

data generation makes it more likely that local worst-case executions can be observed, the

use of context information allows the precise combination of partial execution times. This

makes the calculated WCET estimates less pessimistic.

The outcome of the experiments also shows that only measuring each basic block of-

ten enough, which is the prevailing paradigm for measurement-based timing analysis, is

not enough to determine precise execution time estimates as the execution history might

have a significant influence on them. For static timing analysis this is a well-known fact,

but the presented results suggest that all techniques for reasoning about software execution

times on complex hardware can benefit from the use of context information. This includes

measurement-based execution time analysis as well as techniques for execution time estim-

ation in a design space exploration or simulation environment.

As a complex event logic for trace data generation is not always available, measurement-

based methods for WCET analysis could try to reconstruct context information from trace

data instead of controlling its creation. This should still improve the precision of the estim-

ates, but would also work with simpler measurement facilities. Extracting a context-sensitive



Stefan Stattelmann and Florian Martin 75

worst-case execution time for each basic block from the trace data has the additional be-

nefit that only one value has to be stored for every execution context. As more traces

are generated, these values are only updated if a longer execution time has been observed.

All execution times which are below the worst-case can be discarded without influencing

the final result. This allows the efficient parallelization of trace data generation and tim-

ing extraction. Additionally, this approach can also help to reduce the tremendous storage

requirements which measurement-based methods for WCET analysis often have.

Acknowledgements The authors would like to thank Christian Ferdinand for fruitful dis-

cussions about the content of this paper.

References

1 AbsInt aiT Worst-Case Execution Time Analyzer. http://www.absint.com/ait/.

2 Debie-1 WCET Benchmark. http://www.mrtc.mdh.se/projects/WCC08/doku.php.

3 Mälardalen WCET Benchmark Suite. http://www.mrtc.mdh.se/projects/wcet.

4 pls Development Tools Universal Debug Engine (UDE). http://www.pls-mc.com.

5 Guillem Bernat, Antoine Colin, and Stefan M. Petters. pWCET: A Tool for Probabilistic

Worst-Case Execution Time Analysis of Real-Time Systems. Technical report, Department

of Computer Science, University of York, February 2003.

6 Adam Betts and Guillem Bernat. Tree-Based WCET Analysis on Instrumentation Point

Graphs. In ISORC ’06: Proceedings of the Ninth IEEE International Symposium on Object

and Component-Oriented Real-Time Distributed Computing, pages 558–565. IEEE Com-

puter Society, 2006.

7 Jean-François Deverge and Isabelle Puaut. Safe Measurement-Based WCET Estimation.

In Reinhard Wilhelm, editor, 5th Intl. Workshop on Worst-Case Execution Time (WCET)

Analysis, Dagstuhl, Germany, 2007. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

Germany.

8 Christian Ferdinand. Cache Behavior Prediction for Real-Time Systems. PhD thesis, Saar-

land University, 1997.

9 Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm. The

Influence of Processor Architecture on the Design and the Results of WCET Tools. Pro-

ceedings of the IEEE, 91(7):1038–1054, 2003.

10 Yau-Tsun Steven Li and Sharad Malik. Performance Analysis of Embedded Software using

Implicit Path Enumeration. In DAC ’95: Proceedings of the 32nd annual ACM/IEEE

Design Automation Conference, pages 456–461, New York, NY, USA, 1995. ACM.

11 Amine Marref and Guillem Bernat. Towards Predicated WCET Analysis. In Raimund

Kirner, editor, 8th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis, Dag-

stuhl, Germany, 2008. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

12 Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdinand. Analysis of Loops.

In Kai Koskimies, editor, Proceedings of the 7th International Conference on Compiler

Construction (CC ’98), volume 1383 of Lecture Notes in Computer Science, pages 80–94,

Berlin, 1998. Springer.

13 Albrecht Mayer and Frank Hellwig. System Performance Optimization Methodology for

Infineon’s 32-bit Automotive Microcontroller Architecture. In DATE ’08: Proceedings of

the Conference on Design, Automation and Test in Europe, pages 962–966. ACM, 2008.

14 Stefan Schaefer, Bernhard Scholz, Stefan M. Petters, and Gernot Heiser. Static Analysis

Support for Measurement-Based WCET Analysis. In 12th IEEE International Confer-

ence on Embedded and Real-Time Computing Systems and Applications, Work-in-Progress

Session, 2006.

WCET 2010



76 Precise Measurement-Based Execution Time Estimation

15 Sanjit A. Seshia and Alexander Rakhlin. Game-Theoretic Timing Analysis. In ICCAD ’08:

Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided Design,

pages 575–582, Piscataway, NJ, USA, 2008. IEEE Press.

16 Alan Shaw. Reasoning about Time in Higher-Level Language Software. IEEE Transactions

on Software Engineering, 15:875–889, 1989.

17 Stefan Stattelmann. Precise Measurement-Based Worst-Case Execution Time Estimation.

Master’s thesis, Saarland University, September 2009.

18 Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter Puschner. Measurement-

Based Timing Analysis. In Proc. 3rd Int’l Symposium on Leveraging Applications of Formal

Methods, Verification and Validation, Oct. 2008.

19 Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and Peter Puschner. Automatic Tim-

ing Model Generation by CFG Partitioning and Model Checking. In Proc. Conference on

Design, Automation, and Test in Europe, Mar. 2005.

20 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,

David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Frank Mueller,

Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The Worst-Case

Execution-Time Problem — Overview of the Methods and Survey of Tools. ACM Trans-

actions on Embedded Computing Systems (TECS), 7(3):1–53, 2008.


	Introduction
	Related Work
	Proposed Method
	Control Flow Extraction
	Program Partitioning
	Trace Automata
	Trace Data Generation
	Timing Extraction
	Cache Analysis

	Experimental Results
	Conclusion

