
An Experimental Comparison of Speed Scaling

Algorithms with Deadline Feasibility Constraints

Ahmed Abousamra

Computer Science Department

University of Pittsburgh

abousamra@cs.pitt.edu

David P. Bunde

Computer Science Department

Knox College

dbunde@knox.edu

Kirk Pruhs ∗

Computer Science Department

University of Pittsburgh

kirk@cs.pitt.edu

Abstract

We consider the first, and most well studied, speed scaling problem
in the algorithmic literature: where the scheduling quality of service
measure is a deadline feasibility constraint, and where the power ob-
jective is to minimize the total energy used. Four online algorithms for
this problem have been proposed in the algorithmic literature. Based
on the best upper bound that can be proved on the competitive ratio,
the ranking of the online algorithms from best to worst is: qOA, OA,
AVR, BKP. As a test case on the effectiveness of competitive analy-
sis to predict the best online algorithm, we report on an experimental
“horse race” between these algorithms using instances based on web
server traces. Our main conclusion is that the ranking of our algo-
rithms based on their performance in our experiments is identical to
the order predicted by competitive analysis. This ranking holds over a
large range of possible power functions, and even if the power objective
is temperature.

1 Introduction

Energy consumption has become a key issue in the design of microproces-
sors. Major chip manufacturers, such as Intel, AMD and IBM, now produce

∗Supported in part by NSF grants CNS-0325353, CCF-0514058, IIS-0534531, and CCF-
0830558, and an IBM Faculty Award.

1

Dagstuhl Seminar Proceedings 10261
Algorithm Engineering
http://drops.dagstuhl.de/opus/volltexte/2010/2797

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

chips with dynamically scalable speeds, and produce associated software,
such as Intel’s SpeedStep and AMD’s PowerNow, that enables an operating
system to manage power by scaling processor speed. Thus the operating
system should have an online speed scaling policy for setting the speed of
the processor, that ideally should work in tandem with a job selection policy
for determining which job to run. In order to be implementable in a real
system, these policies must be online since the system will not in general be
aware of which jobs will arrive in the future.

The resulting online optimization problems, generally called speed scal-
ing problems, have dual objectives as one both wants to optimize some sched-
ule quality of service objective and some power related objective. In this pa-
per we consider the first [10], and most well studied [10, 2, 6, 5, 4, 9, 8, 1, 7],
speed scaling problem in the algorithmic literature: where the scheduling
quality of service measure is a deadline feasibility constraint (each job must
be completed by its deadline), and where the power objective is to minimize
the total energy used.

This problem can be more formally described as follows. A problem
instance consists of n tasks. Task i has a release time ri, a deadline di > ri,
and work wi > 0. An online scheduler learns about a task only at its release
time; at this time, the scheduler also learns the exact work requirement and
the deadline of the task. A schedule specifies for each time a task to be run
and a speed at which to run the task. The speed is the amount of work
performed on the task per unit time. Thus, a task with work w run at a
constant speed s takes time w

s to complete. More generally, the work done
on a task during a time period is the integral over that time period of the
speed at which the task is run. A schedule is feasible if for each task i, work
at least wi is done on task i during [ri, di]. Note that the times at which
work is performed on task i do not have to be contiguous. Essentially all
of the algorithmic literature has assumed a power function, which specifies
the power P usage as a function of the speed s of the processor, as P = sα,
where α > 1 is some constant. Of particular interest is α = 3 since dynamic
power in CMOS based processors is approximately the speed cubed. The
energy used during a time period is the integral of the power over that time
period.

It is easy to see that without loss of generality one can adopt Earliest
Deadline First (EDF) as the job selection algorithm. So the problem reduces
to finding algorithms for speed scaling. Four online speed scaling algorithms
for this problem has been proposed in the literature. Table 1 summarizes
where each of these algorithms were proposed, and the best known bounds
on the competitive ratio for these algorithms. We now briefly describe these

2

algorithms:

Average Rate (AVR) runs each job at a constant speed between its release
and its deadline. The attraction of the algorithm AVR is that it is in some
sense fair to all jobs.

Optimal Available (OA) runs at the speed that would be optimal, given
the current state, and given that no more tasks will arrive. This speed can be
determined using the offline greedy algorithm YDS from [10] for computing
an optimal schedule.

BKP intuitively computes the least possible speed that optimal offline
schedule YDS might currently be running at given the tasks that have ar-
rived to date, and then runs at e times that speed. (If the algorithm ran at
some constant q < e times this lower bound, the deadline of some jobs may
be missed.)

qOA runs at speed equal to some constant q ≥ 1 times the speed that OA
would run in the current state.

Algorithm General α

Upper Lower

General eα−1/α[3]

AVR[10] 2α−1αα[10, 2] (2 − δ)α−1αα[2]

OA[10] αα[4] αα[10]

BKP[4] 2(α/(α − 1))αeα[4]

qOA[3] 4α/(2
√

eα)[3] 1
2qα4α(1 − 2

α)α/2[3]

when q = 2 − 1
α

α = 3

Upper Lower

General 2.4

AVR 108 48

OA 27 27

BKP 135.6

qOA 6.7
when q = 1.54

Table 1: Where the online algorithms in the literature were proposed, and
the best known bounds on the competitive ratios

Competitive analysis for online scheduling problems in particular, and
online problems in general, is sometimes criticized for a variety of reasons.

3

The most common criticism is that competitive analysis focuses on worst-
case performance, and thus may not predict the algorithm that performs
best in practice, or on average. However, competitive analysis likely will
not go away because it can be tractably applied to such a wide range of
problems, for which it is not clear how to obtain a useful average case anal-
ysis. Competitive analysis has applied to several reasonable algorithms for
this problem, and the search for optimally competitive algorithms has lead
to candidate algorithms that would not likely have been discovered by local
search and experimentation. Plausibly any of these candidate algorithms
might be the best experimentally.

So as a test case on the effectiveness of competitive analysis to predict
the best experimental online algorithm, we report on an experimental “horse
race” between these speed scaling algorithms. Our data was based on web
traces, which naturally gave release times and sizes for each job. We consider
several natural ways of adding deadlines to the jobs, and tweak the data to
produce inputs with workloads with different levels of spikiness. Based on
the best upper bound that can be proved on the competitive ratio, when
α is around 3, the ranking of the online algorithms from best to worst is:
qOA, OA, AVR, BKP. Our experimental results are essentially that over
the wide range of input instances we tried, the order of the algorithms from
best to worst was exactly the same order as predicted by the best known
upper bounds on the competitive ratio. Further, the differences between
the various algorithms was significant. So these experimental results can be
viewed as a victory for competitive analysis (or alternatively as a defeat for
critics of competitive analysis).

A priori we intuitively expected BKP to be the best experimental al-
gorithm, not the worst. We believed that the reason that the best known
competitive ratio for BKP was so high was that its non-local nature made
it more difficult to analyze accurately. To understand the conceptual dif-
ference between BKP and qOA, consider a situation where the current load
(unfinished work) is low, but the load in the recent past was high. In this
situation BKP may run at a high speed, while qOA definitely will not run at
a high speed. It seemed to us that BKP’s use of the historical load should
give it an advantage. Further, in the extreme, when α = ∞, the energy
optimal schedule is one that is optimal with respect to the maximum speed
that it reaches. [4] show that BKP is optimally e-competitive with respect
to maximum speed. This led us to believe that BKP is near optimally com-
petitive for large α. Further, there appears to be no obvious reason why
the relative performance of the algorithms should depend on α. Thus, we
expected that BKP would also be the best algorithm when the cube-root

4

rule (α = 3) holds.
Some other experimental observations that we believe are interesting are:

• The performance of qOA is not so sensitive to the value of q. Picking q
to be in the range [1.5, 2], as suggested by the competitiveness results,
gives performance reasonably close to the optimal q for each particu-
lar instance. We select q = 1.5 in comparison with other algorithms
because this is the value of q suggested by the competitive analysis of
qOA.

• The schedule produced by qOA uses less energy than the schedules
produced by AVR or BKP.

• There are two alternative formulations of the algorithm BKP given in
[4]. We find that the one that produces a better (higher) lower bound
for the speed of the optimal algorithm YDS at the current time, is the
worse performing of the two alternatives.

• The value of q is generally higher for moderately spiky workloads than
for flat ones. For flat and moderately spiky workloads, the optimal q
for the qOA algorithm is usually high— typically around 4 or higher.
This is significant because it shows that BKP loses to qOA even when
the multiplier q is relatively large (and bigger than the multiplier e
used in BKP). Intuitively this suggests that the main reason that
BKP loses relative to qOA is because of its consideration of load in
the recent past. Further, for these workloads, the optimal value of q
tends to increase as α is increased.

• For highly spiky workloads and workloads with a fixed time span for
all jobs, the optimal value of q for qOA is quite low— near 1. This
is true for fixed time span workloads regardless of the length of the
fixed time span. For these workloads, the optimal value of q usually
decreases as α is increased.

• [4] also showed that BKP and YDS are cooling oblivious, i.e. they are
simultaneously constant-competitive with respect to temperature for
all values of the cooling parameter assuming that the environment has
a fixed ambient temperature and that the device cools according to
Newton’s law of cooling. This led us to also compare the various al-
gorithms with respect to the objective of maximum temperature. The
relative ordering of the algorithms with respect to maximum temper-
ature is the same as their order with respect to energy consumption.

5

Further, the energy optimal schedule YDS is better than qOA with
respect to maximum temperature.

All of the implementations of the speed scaling algorithms, and related
programs, such as those for generating test instances, can be found at
http://www.cs.pitt.edu/∼kirk/SpeedScalingExperiments. We expect,
or at least hope, that these tools will be useful to future researchers.

It is important to note again that the purpose of this paper was to
determine how the performance of the candidate algorithms predicted by
competitive analysis compared to a generic experimental analysis. Thus we
based our input on web traces instead of program traces because these were
more readily available, and still served our purposes. We acknowledge that
the common abstract model for a processor, which we use in this paper, is a
significant simplification of a real processor, and that there are many signif-
icant issues that would have to be addressed in applying these algorithms in
a real setting. But these lower level implementation issues are beyond the
scope of this paper.

The rest of the paper is organized as follows. In section 2 we give more
formal definitions of the problem and algorithms. In section 3 we explain
our experimental setup. In section 4 we give our experimental observations.

2 Preliminaries

Newton’s Law of heat conduction states that the rate of cooling is pro-
portional to the difference in temperature between the object and its en-
vironment. We assume the environment has a fixed temperature and that
temperature is scaled so that the environmental temperature is zero. A
first-order approximation for the rate of change T ′ of the temperature T is
then T ′ = P − bT , where P is the power used at time t, and b is a constant.

A schedule is R-competitive, or R-approximate, for a particular objective
function if the value of that objective function on the schedule is at most
R times the value of the objective function on an optimal schedule. An
algorithm A is R-competitive, or has competitive ratio R, if A(I) is R-
competitive for all instances.

We now more formally define the algorithms that we consider in this
paper, along with related concepts. The span of a job i is di − ri. We
start with the offline speed scaling algorithm YDS proposed in [10]. Let
w(t1, t2) denote the work that has release time at least t1 and has deadline
at most t2. The intensity I(t1, t2) of the time interval [t1, t2] is defined to
be w(t1, t2)/(t2 − t1).

6

Algorithm YDS [10]: The algorithm repeats the following steps until all
jobs are scheduled:

1. Let [t1, t2] be the maximum intensity time interval.

2. The processor will run at speed I(t1, t2) during [t1, t2] and schedule all
the jobs comprising w(t1, t2), always running the released, unfinished
task with the earliest deadline.

3. Then the instance is modified as if the times [t1, t2] didn’t exist. That
is, all deadlines di > t1 are reduced to max(t1, di − (t2 − t1)), and all
release times ri > t1 are reduced to max(t1, ri − (t2 − t1)).

Algorithm qOA [3]: The speed is q ·maxt w(t)/t, where w(t) is the unfin-
ished work that has deadline within the next t units of time. Here q is some
constant that is at least 1. We set q = 1.5 when we compare qOA to other
algorithms. OA is just the algorithm qOA when q = 1.

Algorithm AVR [10]: The speed is
∑

i∈J(t)
wi

di−ri

, where J(t) is the collec-
tion of tasks i with ri ≤ t ≤ di.

Algorithm BKP [4]: For t1 ≤ t ≤ t2, let w(t, t1, t2) denote the amount of
work that has release time at least t1 and deadline at most t2 and that has
already arrived by time t. Let p(t) be defined by:

p(t) = max
t1,t2

w(t, t1, t2)

(t2 − t1)
such that t1 < t ≤ t2

Let v(t) be defined by:

v(t) = max
t′>t

w(t, et − (e − 1)t′, t′)

e(t′ − t)

In one variation of BKP in [4], the speed is e·v(t), and in the other variation,
it is e · p(t). Note that w(t, t1, t2), p(t) and v(t) may be computed by an
online algorithm at time t. It is easy to see that v(t) ≤ p(t).

3 Experimental Setup

We use the trace file epa-http.txt from the Internet Traffic Archive (http:
//ita.ee.lbl.gov/) to generate the workloads for our experiments. This
trace contains about 50,000 http requests received during one day by the

7

EPA’s webserver located at Research Triangle Park, NC. Each http request
has two main pieces of information: its time and the number of bytes in
the response. Some requests received 0 bytes in response, nearly always
corresponding to a 304 (page not modified since last download) or 404 (page
not found) response code. In these cases, we treat the response size as 50
bytes to approximate the header; this value is small relative to the responses
generated by other requests. We treat each http request as a job whose
release time is the same as the http request time, whose work requirement
is the number of transferred bytes in response to the request, and whose
deadline is generated in different ways to produce workloads with specific
characteristics.

Since our trace file contains a day’s worth of http requests, it has a peak
period and slow periods corresponding to high traffic and low traffic reaching
the website, respectively. Since we are interested in workloads with different
degrees of spikiness, we repeat the set of jobs we create based on the trace
file five times to simulate having requests of five days.

To allow us to run multiple experiments on this one trace, in each exper-
iment we only create a job for every 20th http request in the original trace.
This allows us to generate 20 different workloads where the first one starts
with the first http request in the file, the second workload starts with the
second http request, and so on. Each of these workloads contains different
jobs, but each spans the entire day and contains similar variations in re-
quest density. In addition to providing multiple input workloads, splitting
the trace this way also keeps the computation time of our simulator rea-
sonable. In our simulations, the results of the different workloads exhibited
similar trends, so we arbitrarily chose the workload generated starting with
the sixth job to present its simulation results.

We will now explain how the deadline is generated for each type of work-
load. Through these explanations the variable S will stand for a fixed scaling
factor, and N will denote some random number. We start with the flat and
fixed span workloads. These are the most natural since they correspond to
requiring a response time proportional to the request size, and requiring a
fixed response time for every request, respectively. After that, we consider
the moderately and highly spiky workloads. We include them because we
wanted to compare the algorithms on spikier workloads.

3.0.1 Flat Workload

The first workload we consider is the flat workload, in which the span of
each job is proportional to its amount of work. Although the amount of

8

 0

 20

 40

 60

 80

 100

 120

 140

 0 100000 200000 300000 400000 500000

sp
ee

d
(u

ni
t o

f w
or

k/
se

c)

time (sec)

Figure 1: Plot of YDS schedule for the flat workload.

work varies over time in this workload, it does not particularly strain the
processor. We call this work load flat because the optimal energy schedule
shows a relatively modest number and degree of speed changes. See Figure
1, which is typical of optimal schedules for this type of workload.1

We generate the deadlines of jobs in a flat workload using the equation
di = ri + Swi, with S = 0.4.

3.0.2 Fixed Span Workload

Our second workload is the fixed span workload, in which all jobs have the
same span, corresponding to a system that guarantees a worst-case response
time for each task. Since jobs vary in their work requirement, the amount of
work per unit time varies. The optimal schedule produced by YDS for this
kind of workload may have large or small variations in speed depending on
the job span and how much jobs overlap. Figure 2 plots the YDS schedule
for one of these workloads generated using a fixed span of 1000 seconds.

3.0.3 Moderately Spiky Workload

Our third workload is the moderately spiky workload, which has greater vari-
ation in the amount of arriving work. An optimal solution for a moderately
spiky workload is shown in Figure 3. To generate the deadlines for this
workload, we used the equation di = ri + Swi, with S = 0.1. Note that

1To make it easy to compare all figures, we displayed the same time interval (0–550,000
seconds) for all of them, trimming the plots to fit. From 550,000 seconds on, the speed
continues to decrease as the last set of active jobs complete.

9

 0

 100

 200

 300

 400

 500

 0 100000 200000 300000 400000 500000

sp
ee

d
(u

ni
t o

f w
or

k/
se

c)

time (sec)

Figure 2: Plot of YDS schedule for the fixed span workload.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100000 200000 300000 400000 500000

sp
ee

d
(u

ni
t o

f w
or

k/
se

c)

time (sec)

Figure 3: Plot of YDS schedule for the moderately spiky workload.

this is the same equation we used to generate a flat workload except for the
scaling factor. The change in the optimal schedule can be seen by comparing
Figures 1 and 3.

3.0.4 Highly Spiky Workload

For our last workload, which we call the highly spiky workload, we further
increased the variability of the amount of work arriving. Intuitively, a highly
spiky workload contains bursts of high work when several jobs arrive requir-
ing a lot of work that needs to be finished in a small time period. Therefore,
a highly spiky workload contains huge variations in speeds as illustrated by

10

 0

 100

 200

 300

 400

 500

 0 100000 200000 300000 400000 500000

sp
ee

d
(u

ni
t o

f w
or

k/
se

c)

time (sec)

Figure 4: Plot of YDS schedule for the highly spiky workload.

the optimal YDS schedule shown in Figure 4.
When generating this workload, we added additional jobs as well as

generating job deadlines. We did this as follows:

1. We divide the time line into intervals of two alternating lengths, L,H,
with L > H. L and H stand for light and high load intervals, respec-
tively. We used L = 200 and H = 50.

2. For any job, regardless of whether its release time falls in an L or H
interval, we compute its deadline using the equation: di = ri + Swi,
with S = 0.4.

3. For a job whose release time falls in an H interval we also create
zero to two additional jobs with the same release time and amount
of work. To compute their deadlines, we first compute the span of
the original job (after computing its deadline in the previous step)
as ti = di − ri. Then we use the following equation for computing
the deadline of each additional job: di = ri + Nti, where N is a
pseudorandom number selected uniformly over the range (0, 2]. To
decide how many additional jobs to create, we use a triangle shaped
function f over the high load interval with peak = 2, and we compute
the value f(x) at x = ri, the release time of the job; the number of
jobs we generate is then ⌈f(ri)⌉.

Note that we use a random number in computing the deadlines of these
jobs so that we do not have multiple identical jobs which would be equivalent

11

 1.46e+12

 1.48e+12

 1.5e+12

 1.52e+12

 1.54e+12

 1.56e+12

 1.58e+12

 1.6e+12

 1.62e+12

 1 2 3 4 5 6 7

C
on

su
m

ed
 E

ne
rg

y

q

Figure 5: Plot of consumed energy vs. q for qOA schedules of a flat workload.
(α = 3)

to just one job with the same release time and deadline and an amount of
work equal to the sum of their work.

4 Experimental Results

In this section we show the experimental results for the different types of
workloads.

Our first observation addresses one possible concern with using qOA:
how does one pick a good value of q? For each experiment we run qOA
with different values of q to find the value that results in the least amount
of consumed energy. We tried values of q from 1 to 9, increasing in steps of
0.1. It turns out that the performance of qOA is not highly sensitive to the
exact value of q. Figures 5 and 6 show the consumed energy as a function
of q for α = 3 for the flat and highly spiky workloads, respectively. The
curve for a moderately spiky workload is similar to Figure 5, though less
steep to the right of the minimum. The curve for a fixed time workload is
similar to Figure 6, but with the minimum at 1. In all cases, the curves are
relatively flat near the optimal value of q, implying that any value near the
optimal q produces a near optimal schedule. We set q = 1.5 when comparing
qOA to other algorithms because this is the value of q recommended by the
competitive analysis of qOA when α is about three.

Now that the choice of q has been addressed, we can compare the dif-
ferent algorithms. In our experiments, the schedule produced by qOA (with
optimal q) always consumed less energy than the schedules produced by

12

 3.3e+12

 3.4e+12

 3.5e+12

 3.6e+12

 3.7e+12

 3.8e+12

 3.9e+12

 1 1.5 2 2.5 3

C
on

su
m

ed
 E

ne
rg

y

q

Figure 6: Plot of consumed energy vs. q for qOA schedules of a highly spiky
workload. (α = 3)

���
��� ��	 ���
��������������������� ����� !"#$%&'(!"#$)&'(*+� * � �,-

Figure 7: Energy consumption for a flat workload.

AVR or BKP. In fact, BKP consistently used the most energy of the al-
gorithms we compared. Figures 7–10 show the energy consumed by each
algorithm’s schedule on typical instances of each type of workload. Since
the competitive ratio of BKP improves relative to the competitive ratio of
the other algorithms as α increases, we tried values of α up to 12 and found
that qOA still always used less energy than BKP.

What causes the relatively poor performance of BKP? For our inputs,
it seems to consistently choose a high speed at which to run. BKP needs
to use a high multiplicative factor e times its current estimated load in
order to guarantee a feasible schedule. In addition, BKP’s calculated speed
can be increased by jobs that have already finished. Observe the BKP
schedules depicted in Figures 11–14. The area under the curve appears
partially filled because the algorithm keeps switching between a high speed
and being idle (i.e. running at speed 0) because it has finished all released

13

..//.////.//////.////////.01./.01.2.01.3.01.4.01.5
672 678 6739:;<=>?@A;?BCDEF:C<GHF?I JKLMNOPQRSTUVWPQRSXUVWYZM Y 7 .[\

Figure 8: Energy consumption for a fixed span workload.

]]^^]^^^^]^^^^^^]^^^^^^^^]_`]^]_`]a]_`]b]_`]c
dea def debghijklmnoimpqrsthqjuvtmw xyz{|}~�������~���������{ � e]��

Figure 9: Energy consumption for a moderately spiky workload.

���
��� ��� ���������������� ¡¢���£¤¢�¥ ¦§¨©ª«¬®¯°±²³¬®¯´±²³µ¶© µ � �·¸

Figure 10: Energy consumption for a highly spiky workload.

14

 0

 50

 100

 150

 200

 250

 300

 350

 0 100000 200000 300000 400000 500000 600000

sp
ee

d

time

Figure 11: Plot of BKP ev(t) schedule for a flat workload.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100000 200000 300000 400000 500000 600000

sp
ee

d

time

Figure 12: Plot of BKP ev(t) schedule for a fixed span workload.

jobs. Comparison with Figures 1–4, which show the optimal schedule for
the same workloads, confirms that BKP does indeed use much higher speeds
than necessary.

Comparing the energy consumption of BKP schedules when speed is
computed using ep(t) and ev(t), we notice that less energy is consumed
when speed is computed using ev(t). This is demonstrated in Figures 7–10.
To see why this occurs, compare Figures 11 and 15, which respectively give
the BKP schedules using ev(t) and ep(t) for the flat workload. Notice that
the schedule using ep(t) has higher peaks. This is not surprising given that
it seems that both versions of BKP are running too fast at critical times,
and we know that v(t) ≤ p(t).

15

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100000 200000 300000 400000 500000 600000

sp
ee

d

time

Figure 13: Plot of BKP ev(t) schedule for a moderately spiky workload.

 0

 100

 200

 300

 400

 500

 0 100000 200000 300000 400000 500000

sp
ee

d
(u

ni
t o

f w
or

k/
se

c)

time (sec)

Figure 14: Plot of BKP ev(t) schedule for a highly spiky workload.

16

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100000 200000 300000 400000 500000

sp
ee

d
(u

ni
t o

f w
or

k/
se

c)

time (sec)

Figure 15: Plot of BKP ep(t) schedule for a flat workload.

Our next several observations concern the optimal value of q for algo-
rithm qOA on different workloads. As noted above, the performance of qOA
is not highly sensitive to the exact value of q, but its value nonetheless does
matter. Our explanation for why different workloads favor different values of
q focuses on the spikes in schedule speed. These spikes have disproportion-
ate affect on the energy consumption because raising speed to α causes the
power to be much higher at these times due to the convexity of the power
function. The spikes occur because the workload itself contains periods when
more work arrives, but their height is affected by two factors related to the
value of q. The first factor relates to the amount of work arriving before the
spike that must be finished during it. A higher value of q tends to reduce
the amount of this type of work because higher q causes qOA to run faster
before the spike, thereby reducing the optimal speed during the spike. The
second factor, which works against the first, is that qOA runs at q times
the optimal speed, including during the spike. Thus, a large value of q may
increase the speed of a spike even if the optimal speed during that time has
been reduced. We believe that the optimal value of q for different types of
workloads is largely explained by the interaction of these factors on each
type of workload.

First consider flat and moderately spiky workloads. For these workloads,
the optimal value of q is usually high— typically around 4 or higher. It
is generally higher for moderately spiky workloads than for flat ones, as
demonstrated in Figures 7 and 9. To explain these observations, we refer
back to the optimal schedules for these workloads shown in Figures 1 and 3.
These figures show that the spikes in the optimal schedule are fairly broad,

17

 0

 100

 200

 300

 400

 500

 0 100000 200000 300000 400000 500000

sp
ee

d
(u

ni
t o

f w
or

k/
se

c)

time (sec)

Figure 16: Plot of qOA schedule with q = 1.5 for a flat workload.

with the optimal schedule for the flat workload exhibiting smaller spikes than
the optimal schedule of the moderately spiky workload. The broad spikes
allow the benefits of higher q to be felt since finishing work early creates
a narrower (but taller) spike. The difference between the workloads occurs
because the flat workload, where the arrival rate of work varies less (smaller
spikes in the optimal schedule), does not benefit as much from increasing
q. The qOA schedules corresponding to the optimal schedules depicted in
Figures 1 and 3 are shown in Figures 16 and 17.

As occurs in Figures 7 and 9, we observed that optimal q usually increases
with increasing α for both flat and moderately spiky workloads. Increasing α
raises the penalty for having spikes in the schedule, so the workloads benefit
from a slightly higher q, which finishes work slightly earlier and shrinks the
spikes.

Now we turn our attention to the value of q in fixed span and highly spiky
workloads. For these workloads, optimal q is usually very low (near 1), as
demonstrated in Figures 8 and 10. To explain this, we again examine the
optimal schedules for these workloads; see Figures 2 and 4. These optimal
schedules have a number of very tall, very narrow spikes, indicating the
arrival of a large amount of urgent work. The narrowness of the spike
decreases the benefit of increasing q because the schedule quickly runs out
of urgent work. The height of the spike also increases the cost of large
q because running at a greater multiple of the optimal speed makes the
tall spikes even taller. The qOA schedules corresponding to the optimal
schedules depicted in Figures 2 and 4 are shown in Figures 18 and 19.

As α increases, the optimal value of q for fixed span and highly spiky

18

 0

 100

 200

 300

 400

 500

 0 100000 200000 300000 400000 500000

sp
ee

d
(u

ni
t o

f w
or

k/
se

c)

time (sec)

Figure 17: Plot of qOA schedule with q = 1.5 for a moderately spiky work-
load.

 0

 100

 200

 300

 400

 500

 0 100000 200000 300000 400000 500000

sp
ee

d
(u

ni
t o

f w
or

k/
se

c)

time (sec)

Figure 18: Plot of qOA schedule with q = 1.5 for a fixed span workload.

19

 0

 100

 200

 300

 400

 500

 0 100000 200000 300000 400000 500000

sp
ee

d
(u

ni
t o

f w
or

k/
se

c)

time (sec)

Figure 19: Plot of qOA schedule with q = 1.5 for a highly spiky workload.

workloads decreased in our experiments (as demonstrated in Figures 8 and
10), which is consistent with the observation that increasing α increases the
penalty for tall spikes.

Regarding the fixed span workload, the observation that optimal q is
near 1 holds for all the span lengths we tried. We offer a partial justification
for this by discussing the extreme cases. With a short fixed span, there is
little overlap between jobs and little reason to finish one before the next
arrives since they are largely independent. With a long fixed span, there is
a lot of overlap between the spans of jobs, allowing the optimal algorithm
enough knowledge to find a good schedule, which then does not benefit by
a speed increase. In both cases, the best q will tend to be low.

In addition to comparing the algorithms with respect to energy con-
sumption, we also compare them with respect to the maximum temperature
reached by the schedules they compute. Our temperature calculations use a
discrete approximation. We considered a range of values for the parameter
b, and a time step of 0.1 seconds for the discrete approximation. We com-
pared the algorithms using the parameters: α = 2, 3, 4, and a wide range
of cooling parameters b. We found that the performance of the algorithms
relative to each other with respect to temperature is the same as their rel-
ative performance with respect to energy consumption; from best to worst,
the order was YDS, qOA, AVR, BKP using ev(t), and BKP using ep(t). We
did observe that the optimal value of q for qOA could be slightly different
for minimizing temperature than for minimizing energy consumption. (Al-
though none of the algorithms take α into account when calculating speed,
variations in α do favor differently shaped schedules.) Figure 20 plots max-

20

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ax

im
um

 T
em

pe
ra

tu
re

Temperature Constant

BKP pt
qOA q=4

Figure 20: Plot of maximum temperature vs. cooling parameter for sched-
ules of BKP ev(t) and qOA with q = 1.5, for a moderately spiky workload
using α = 3

imum temperature as a function of the cooling parameter for the schedules
produced by BKP ev(t) and qOA (q = 1.5) for a moderately spiky workload
with α = 3.

5 Conclusion

In summary, if you order the candidate speed scaling algorithms in the
literature by the best competitive ratio that has been proved, this is exactly
the order that these algorithms finished in our experimental horse race.
We performed many more experiments than the representative sample that
we report here, and we saw the same ordering of the algorithms across a
wide range of different input distributions. So we don’t believe that these
experimental results are due to any particularities in the input distributions
that used. We thus believe that these experimental results can be viewed as a
victory for competitive analysis as a predictor of experimental performance,
even though that is the not the main goal of competitive analysis.

References

[1] S. Albers, F. Müller, and S. Schmelzer. Speed scaling on parallel pro-
cessors. In Proc. ACM Symposium on Parallel Algorithms and Archi-
tectures (SPAA), pages 289–298, 2007.

21

[2] N. Bansal, D.P. Bunde, H.-L. Chan, and K. Pruhs. Average rate speed
scaling. In Latin American Theoretical Informatics Symposium, 2008.

[3] N. Bansal, H.-L. Chan, and K. Pruhs. Improved bounds for speed scal-
ing in devices obeying the cube-root rule. In SODA, 2009. submitted.

[4] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy
and temperature. JACM, 54(1), 2007.

[5] N. Bansal and K. Pruhs. Speed scaling to manage temperature. In
STACS, pages 460–471, 2005.

[6] H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak, and
P.W. H. Wong. Energy efficient online deadline scheduling. In SODA
’07: Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 795–804, 2007.

[7] W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for
dynamically variable voltage processors. In Proc. ACM-IEEE Design
Automation Conf., pages 125–130, 2003.

[8] M. Li, B.J. Liu, and F.F. Yao. Min-energy voltage allocation for tree-
structured tasks. Journal of Combinatorial Optimization, 11(3):305–
319, 2006.

[9] M. Li and F.F. Yao. An efficient algorithm for computing optimal
discrete voltage schedules. SIAM J. on Computing, 35:658–671, 2005.

[10] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced
CPU energy. In Proc. IEEE Symp. Foundations of Computer Science,
pages 374–382, 1995.

22

