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Abstract. There are several methods for the synthesis and analysis of hybrid
systems that require efficient algorithms and tool for satisfiability checking. In
this paper we give examples of such synthesis and analysis methods, and discuss
decision procedures that can be used for this purpose.

1 Introduction

There are several methods for the synthesis and analysis of hybrid systems that require
efficient algorithms and tools for satisfiability checking. For analysis, e.g., bounded
model checking describes counterexamples of a fixed length by logical formulas, whose
satisfiability corresponds to the existence of such a counterexample. As an example
for parameter synthesis, we can state the correctness of a parameterized system by a
logical formula; the solution set of the formula gives us possible safe instances of the
parameters.

For discrete systems, which can be described by propositional logic formulas, SAT-
solvers can be used for the satisfiability checks. For hybrid systems, having mixed
discrete-continuous behavior, SMT-solvers are needed. SMT-solving extends SAT with
theories, and has its main focus on linear arithmetic, which is sufficient to handle, e.g.,
linear hybrid systems. However, there are only few solvers for more expressive but still
decidable logics like the first-order theory of the reals with addition and multiplication –
real algebra. Since the synthesis and analysis of non-linear hybrid systems requires such
a powerful logic, we need efficient SMT-solvers for real algebra. Our goal is to develop
such an SMT-solver for the real algebra, which is both complete and efficient.

The SMT-solvers Z3 [dMB08], HySAT [FHT+07], and ABsolver [BPT07] are
able to handle nonlinear real arithmetic constraints. The algorithm implemented in
HySAT and in its successor tool iSAT uses interval constraint propagation to check real
constraints. This technique is very efficient but incomplete, i.e., sometimes it returns
unknown as result. The structures of ABsolver and Z3 are more similar to our approach
but they do not support full real-algebra.

SMT-solvers combine a SAT-solver with a theory solver. Their input is a formula
being a Boolean combination of propositions and theory constraints (usually in conjunc-
tive normal form). The SAT-solver seaches for a set of theory constraints such that when
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they are consistent, then the formula is satisfied. The theory solver is invoked to check
the theory constraint set for consistency.

In practice, this full lazy approach is not very efficient. Less lazy variants invoke the
theory solver already for partial assignments with incomplete theory constraint sets. If
the constraint set is consistent, it gets extended by further constraints, and the extended
set is checked again for consistency. Therefore, one of the main requests on theory
solvers that must be fulfilled for their efficient embedding into a less lazy SMT-solver is
incrementality. Incrementality means, that the theory solver can check a set of theory
constraints for consistency, and can re-use the result for the check of an extended theory
constraint set. Incrementality is not supported by the currently available theory solvers
for real algebra. In this paper we address the extension of an existing theory-solving
algorithm, the virtual substitution method, to support incrementality.

In the following we give an introduction to the virtual substitution method in Section 2
and introduce our incremental virtual substitution algorithm in Section 3. We conclude
the paper in Section 4.

2 The Virtual Substitution Method

With the real numbers R as domain and with addition and multiplication as operators,
the set of all true real-algebraic sentences is the first-order theory of (R,+, ·, 0, 1, <),
called real algebra. In this paper we restrict to the existential fragment, i.e., to formulas
which can be transformed into the form ∃x1 . . . ∃xnϕ with ϕ being quantifier-free.

Even though decidability of real algebra is known for a long time [Tar48], the first
decision procedures were not yet practicable. Since 1974 it is known that the worst-case
time complexity is doubly exponential in the number of variables [DH88,Wei88]. Today,
several methods satisfying these complexity bounds are available, e.g., the cylindrical
algebraic decomposition (CAD) [CJ98] , the Gröbner basis, and the virtual substitution
method [Wei98]. Theory solvers based on these methods are, e.g., the stand-alone
application QEPCAD [Bro03] or the Redlog package [DS97] of the computer algebra
system Reduce. Though these theory solvers are efficient for conjunctions, they are
not suited to solve large formulas containing arbitrary combinations of real constraints
(which they usually handle by syntactic case splitting).

The virtual substitution method is a restricted but very efficient decision procedure
for a subset of real algebra. The restriction concerns the degree of polynomials. The
method uses solution equations to determine the zeros of (multivariate) polynomials in
a given variable. As such solution equations exist for polynomials of degree at most 4,
the method is a priori restricted in the degree of polynomials. In this paper we handle
polynomials of degree 2.

The decision procedure based on virtual substitution produces a quantifier-free
equivalent of a given existentially quantified input formula, by successively eliminating
all bound variables starting with the innermost one.

Let ∃y1 . . . ∃yn∃xϕ be the input formula where ϕ is a quantifier-free Boolean com-
bination of polynomial constraints of the form f ∼ 0, ∼∈ {=, <,>,≤,≥, 6=}, where f
is a polynomial that is at most quadratic in x with polynomial coefficients.
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Considering the real domain of a variable x, each constraint containing x splits
it into values which satisfy the constraint and values which do not. More precisely,
the satisfying values can be merged to a finite number of intervals whose endpoints
are elements of {∞,−∞} ∪ Lx, where Lx are the zeros of f in x. Given a constraint
f = ax2 + bx + c ∼ 0, ∼∈ {=, <,>,≤,≥, 6=}, the finite endpoints of its satisfying
intervals are the zeros of f = ax2 + bx+ c:

x0 = − c
b if a = 0 ∧ b 6= 0

x1 = −b+
√
b2−4ac
2a if a 6= 0 ∧ b2 − 4ac ≥ 0

x2 = −b−
√
b2−4ac
2a if a 6= 0 ∧ b2 − 4ac ≥ 0

A set of constraints has a common solution iff the intersection of their solution
intervals is not empty. If so, this intersection contains at least one left/right endpoint of a
left-/right-closed solution interval of a constraint, or a point infinitesimal greater/smaller
than the left/right endpoint of a left-/right-open solution interval of a constraint. We call
such points test candidates. Basically, the virtual substitution recursively eliminates x in
ϕ by (i) determining all test candidates for x in all constraints in ϕ that contains x, and
(ii) checking if one of these test candidates satisfies ϕ.

To check whether a test candidate e for x satisfies another constraint g ∼ 0 in ϕ, we
substitute all occurrences of x by e in g, yielding g[e/x] ∼ 0, and check the resulting
constraint under the solution’s side conditions for consistency. Standard substitution
could lead to terms not contained in real algebra, namely∞ or square roots. Furthermore,
it would introduce new variables for infinitesimals. Virtual substitution avoids these
expressions in the resulting terms: it defines substitution rules yielding formulas of real
algebra that are equivalent to the result of the standard substitution.

The virtual substitution method defines 30 such substitution rules: There are six
relation symbols and five possible types of test candidates corresponding to (1) the left
or right endpoint of a left- or right-closed interval, (2) the right endpoint of a right-open
interval, (3) the left endpoint of a left-open interval, (4) ∞, or (5) −∞. We refer to
[LW93,Wei97] for a complete description and give here one example to demonstrate the
idea: We show the case for a test candidate being an left- respectively right-endpoint of a
left- respectively right-closed interval used for substitution in an equation.

So let e be a test candidate for x of type (1) and assume the constraint g = 0
occurring in ϕ. If we use standard substitution to replace x by e in g = 0, the result
can be transformed to the general form r+s∗

√
t

q = 0, where q, r, s and t are polynomial
terms of the real algebra.

We distinguish between the cases of s being 0 or not, i.e., if there is a square root
in the term after substitution or not. In case s = 0 the equation r+s∗

√
t

q = 0 simplifies

to r
q = 0 and further to r = 0. In case s 6= 0, the constraint r+s∗

√
t

q = 0 is satisfied iff
r + s ∗

√
t = 0, or equivalently, iff either both r and s equal 0, or they have different

signs and |r| = |s
√
t|. Therefore the virtual substitution replaces the constraint g = 0 by

(s = 0 ∧ r = 0) ∨ (s 6= 0 ∧ r ∗ s ≤ 0 ∧ r2 − s2t = 0).

Assume T is the set of all possible test candidates for x. Given a test candidate e ∈ T
with side conditions Ce, the virtual substitution method applies the substitution rules to
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all constraints in the input formula ϕ and conjugates the result with Ce. Considering all
possible test candidates results in the formula

∃y1 . . . ∃yn
∨
e∈T

(ϕ[e/x] ∧ Ce).

The virtual substitution method continues with the elimination of the next variable yn.

3 Incremental Virtual Substitution

In this section we propose an incremental version of the virtual substitution method.
Assume that the original virtual substitution method checks the satisfiability of a for-
mula and eliminates a variable x. The elimination yields a list of test candidates with
corresponding side conditions. After the substitution step the result is a new formula
being the disjunction of the substitution results for each test candidate of each constraint
containing x. Note that this new formula, which does not contain the variable x any
more, gets exponentially large.

If we want to support the belated addition of further constraints, possibly containing
x, we must be able to belatedly substitute x in the new constraint using the previous test
candidates. Furthermore, we have to find the test candidates of the new constraint for x
and belatedly consider them for substitution. For this purpose we must firstly store all
the received constraints and secondly the list of all determined test candidates with their
corresponding side conditions.

A naive approach would be to mimic the original virtual substitution method: we
could store all the abovementioned information, apply all relevant previous substitutions
to new constraints, and extend the formula with new disjunctive components using test
candidates from the new constraint. However, this approach would lead to very large
formulas. To reduce the data to be stored and to support incrementality, we follow an
informed search instead of a breadth-first search. To understand how this can be achieved,
we first describe the data model underlying our search.

Remember that the virtual substitution starts with a formula and applies variable
elimination and substitutions to it. Both of these operations lead to branching on possible
solutions: the variable elimination branches on possible test candidates yielding pairs
of substitutions and corresponding substitution conditions, and the substitution itself
branches also on possible substitution cases. As we want to be able to belatedly apply
those operations to later arrived constraints, we must remember not only the current result
but also the history of operations executed. Therefore the current solver state is stored in
a tree. Each leaf corresponds to a possible solution of the constraints handed over to the
theory solver. Inner nodes represent an earlier term to that either variable elimination
or a substitution was applied, yielding the disjunction of the terms represented by its
children.

The nodes are indexed tuples (C,S)t with C a set of polynomial constraints, S a
set of substitutions, and t ∈ {⊥ ,∗} ∪ Var where Var is the set of real-valued variables
appearing in constraints. The substitution set S contains substitutions that were or still
should be applied to the constraints handed over to the solver in the branch leading to
the node. The constraints C result from the original constraints by applying substitutions
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Algorithm 1 The incremental virtual substitution algorithm (1)

bool add_new_constraint(constraint c)
begin

add_new_constraint(c,root); (1)
return is_consistent(root); (2)

end

void add_new_constraint(constraint c, element (C,S)t)
begin

if t = x then (1)
C := C ∪ {(c : f)}; (2)

else if t =⊥ then (3)
C := C ∪ {c}; (4)

end if (5)
for all children (C′,S′)t′ of (C,S)t do (6)

add_new_constraint(c,(C′,S′)t′ ); (7)
end for (8)

end

bool is_consistent(element (C,S)t)
begin

if (C,S)t is a leaf then (1)
return is_consistent_leaf((C,S)t); (2)

else (3)
return is_consistent_innernode((C,S)t); (4)

end if (5)
end

from S to them. The index t denotes the next operation applied to C which results in a
branching on the cases represented by the children of the node. An element (C,S)⊥ is
always a leaf, as the index ⊥ denotes that no operation was applied to the constraints
in C since the node was added. A node (C,S)x has children representing the cases for
the different test candidates for the elimination of the variable x; the substitution sets of
the children extend S with the corresponding substitution and the constraint sets of the
children extend C with the corresponding side conditions. An element (C,S)∗ is a node
in which a substitution was applied to a constraint in C; the result of the substitution
was stored in a number of generated children, which represent the different substitution
cases.

The search tree initially consists of a single node (∅,∅)⊥, storing the information that
the theory solver did not get any constraints yet, no substitution was yet applied, and no
next operation on the constraint set was determined yet.

When the theory solver gets a new constraint, the new constraint gets added to each
constraint set C of each node (C,S)t in the three with t 6= ∗. Why we do not need to
add new constraints to ∗-indexed nodes will become clear later (though it would not
be critical to add them, it is not necessary). Then we heuristically choose a leaf and
apply substitutions and variable eliminations to the constraint set until we either get a
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satisfying leaf, or all children turn out to correspond to unsatisfiable branches. In the first
case we are ready, whereas in the second case we delete the chosen node and continue in
other branches.

The incremental virtual substitution algorithm can be described by the pseudo-code
Algorithms 1 and 2. We explain the functioning of the algorithm on a small example.

Initially the search tree consists of a single node (∅, ∅)⊥. We call add_new_constraint
with the constraint c1 : x2 − y ≥ 0 as parameter to hand over the first constraint to the
theory solver. The method add_new_constraint adds the constraint c1 to the constraint
sets of all nodes that are not indexed by ∗. There is just one such node (∅, ∅)⊥, which
gets extended to ({c1}, ∅)⊥.

After the addition of the constraint a consistency check is performed by the method
is_consistent. Figure 1 shows the resulting tree after the check. At the beginning the
tree consists of the root node ({c1}, ∅)⊥ being leaf marked by ⊥, thus the method
is_consistent_leaf gets invoked. As there are no substitutions to consider yet, the root is
evaluated according to the second case in the method is_consistent_leaf. It markes the
root by the variable x, which gets eliminated based on c1 producing the test candidates:

1. −√y with side conditions 1 6= 0 ∧ 4y ≥ 0,
2.
√
y with side conditions 1 6= 0 ∧ 4y ≥ 0,

3. ∞ with no side conditions.

Note, that∞ is the test candidate representing the right endpoint of the right-unbounded
solution interval. The constraint c1 in the conditions of the root gets the marked by t,
which says that it was already involved to create test candidates for the elimination of x.
A leaf is created for each of the generated test candidates. In the side conditions we skip
tautologies. Note that if there were further constraints in the processed node they were
handed over to the children.

In the next step we choose one of the just created new leaves, e.g., the left one. It
still has a non-empty constraint set referring to the variable y that gets eliminated. The
node gets marked by the eliminated variable y and the constraint used to generate the
test candidates gets labeled by t. This step generates a leaf with an empty condition set,
thus the constraint is satisfiable and we can stop the search.

Figure 2 depicts the result of adding a further constraint c2 : x2 − 1 = 0. Again
it is appended to the constraint sets of all nodes in the search tree. Note, that the new
constraint is labeled in elimination nodes by f , denoting that is was not yet used to
generate test candidates. Next we select a leaf, which again is the left-most one. It has
a single constraint c2 in which we substitute −√y for x, leading to a single new child.
We apply the second substitution for [0/y] to the child’s constraint which results in a
contradiction. All three nodes up to the y-indexed node get deleted. We decide to take its
child corresponding to the test candidate∞ for y. Complete evaluation leads again to
inconsistency, and also this path gets deleted up to the y-indexed node. This node now is
a leaf and we create new test candidates for y using the f -labeled constraint c2, which
now gets the label t. There is just one new test candidate for y, namely 1. Its substitution
leads to a satisfying node, and the method terminates.
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(
{c1 : t}
∅

)
x

(
{4y ≥ 0 : t}
{[−√y/x]}

)
y

(
∅

{[−√y/x][0/y]}

)
⊥

(
∅

{[−√y/x][∞/y]}

)
⊥

(
{4y ≥ 0}
{[√y/x]}

)
⊥

(
∅

{[∞/x]}

)
⊥

Fig. 1: Solver state after adding the constraint c1 : x2 − y ≥ 0.

(
{c1 : t, c2 : f}

∅

)
x

(
{4y ≥ 0 : t, c2 : t}
{[−√y/x]}

)
y

(
{c2}

{[−√y/x][0/y]}

)
∗

(
{y − 1 = 0}
{[−√y/x][0/y]}

)
∗(

{−1  
= 0}

{[−√y/x][0/y]}

)
⊥

(
{c2}

{[−√y/x][∞/y]}

)
∗

(
{y − 1 = 0}

{[−√y/x][∞/y]}

)
∗(

{∞  
= 0}

{[−√y/x][∞/y]}

)
⊥

(
{4y ≥ 0}

{[−√y/x][1/y]}

)
∗

(
{4y ≥ 0}

{[−√y/x][1/y]}

)
∗

(
∅

{[−√y/x][1/y]}

)
⊥

(
{4y ≥ 0, c2}
{[√y/x]}

)
⊥

(
{c2}
{[∞/x]}

)
⊥

Fig. 2: Solver state after adding the constraints c1 : x2 − y ≥ 0 and c2 : x2 − 1 = 0.

4 Conclusion

In this paper we proposed an incremental adaptation of the virtual substitution method.
As to future work, we are already working on the efficient embedding of the incremental
theory solver into an SMT solver. The next step will be the development of an incremental
adaptation of the CAD method. This allows us to combine those decision procedures
in a style as done in Redlog, to be able to handle full real algebra. The generation of
minimal infeasible subsets is another important feature we are working on.
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Algorithm 2 The incremental virtual substitution algorithm (2)

bool is_consistent_leaf((C,S)t)
begin

if t =⊥ and exists substitution s ∈ S applicable to a c ∈ C then (1)
t := ∗; (2)
substitute s in c yielding

∨
i=1,...,n

∧
j=1,...,ki

ci,j ; (3)
for all i = 1, . . . ,n do (4)

add child (C\{c} ∪ {ci,j |j = 1, . . . ,ki},S)⊥ to (C,S)∗ (5)
end for (6)

else if (t =⊥ and exists c ∈ C containing a variable x) or (7)
(t = x and exists (c : f) ∈ C containing x) then (7)

if t =⊥ then (8)
t := x; (9)
C := {(c′ : f)|c′ ∈ C, c′ 6= c} ∪ {(c : t)}; (10)

else (11)
C := C\{(c : f)} ∪ {(c : t)}; (12)

end if (13)
solve c for x yielding test candidates ei, i = 1, . . . ,n, with (14)

side conditions
∧

j=1,...,ki
ci,j for each i; (15)

for all i = 1, . . . ,n do (16)
C′ := {c′|(c′ : t) ∈ C, c′ 6= c} ∪ {ci,j |j = 1, . . . ,ki}; (17)
S′ := S ∪ {[ei/x]}; (18)
add child (C′,S′)⊥ to (C,S)x (19)

end for (20)
end if (21)
if (C,S)t is still a leaf then (22)

return (C is empty); (23)
else (24)

return is_consistent((C,S)t); (25)
end if (26)

end

bool is_consistent_innernode((C,S)t)
begin

for all children (C′,S′)t′ of (C,S)t do (1)
if is_consistent((C′,S′)t′ ) then (2)

return true; (3)
else (4)

remove child (C′,S′)t′ ; (5)
end if (6)

end for (7)
return is_consistent((C,S)t); (8)

end
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