
The Complexity of Integrating Routing Decisions

in Public Transportation Models

Marie Schmidt and Anita Schöbel

Institute of Numerical and Applied Mathematics

University of Göttingen {m.schmidt,schoebel}@math.uni-goettingen.de

Abstract

To model and solve optimization problems arising in public transportation, data about the pas-

sengers is necessary and has to be included in the models in any phase of the planning process.

Many approaches assume a two-step procedure: in a first step, the data about the passengers

is distributed over the public transportation network using traffic-assignment procedures. In a

second step, the actual planning of lines, timetables, etc. takes place. This approach ignores

that for most passengers there are many possible ways to reach their destinations in the public

transportation network, thus the actual connections the passengers will take depend strongly

on the decisions made during the planning phase. In this paper we investigate the influence of

integrating the traffic assignment procedure in the optimization process on the complexity of

line planning and aperiodic timetabling. In both problems, our objective is to maximize the

passengers’ benefit, namely to minimize the overall travel time of the passengers in the network.

We present new models, analyze NP-hardness results arising from the integration of the routing

decisions in the traditional models, and derive polynomial algorithms for special cases.
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1 Passenger-oriented planning using OD-data

Decisions in public transportation depend strongly on the behavior of the passengers who

want to travel in the public transportation network. Thus integrating passenger data in

public transportation models in a realistic way is crucial. Until now, many approaches

assume a two-step procedure: in a first step, the data about the passengers is distributed

over the public transportation network using traffic assignment procedures. In line planning,

e.g., one ends up with so called traffic loads we giving an (approximate) number of passengers

who want to use edge e. Also in timetabling it is usually assumed that the number of

passengers who want to take a certain vehicle at a certain station is known beforehand. In

a second step, the actual planning of lines, timetables, etc. takes place. This reduces the

complexity of the models but is not realistic from a practical point of view since the routing

decisions of the passengers depend on the lines or timetables which are not known before

the optimization problem is solved.

Only a few approaches integrate the routing decisions. In line planning this has been

done in [1, 13, 10, 8]. In periodic timetabling this has been studied recently in [4, 6, 3].

In this paper we reformulate some of the common models for line planning and timetabling

taking into account origin-destination data and including the routing of the passengers in

the optimization process. Thereby we assume that we have passenger data given as a set

of origin-destination-pairs (OD-pairs) with weights representing the number of passengers

traveling from an origin to a destination.
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The remainder of this paper is structured as follows. We start in Section 2 describing

the model we use for the line planning problem integrating the routing decisions, in the

following called line planning with OD-pairs. As planning with OD-pairs is NP-hard even in

special cases, we restrict ourselves to the case of only one OD-pair in Section 2.1 and show

its similarity to a Resource-Constrained Shortest Path problem, hence still being a hard

problem. In Section 2.2 we furthermore restrict the structure of the public transportation

network to be linear. We present polynomial and pseudo-polynomial algorithms for special

cases of this problem, and extend them in parts to the case of OD-pairs all having the same

origin in Section 2.3.

In Section 3 we introduce a model for aperiodic timetabling, that does not fix passenger

weights before the optimization step but integrates the passenger routing into the optimiza-

tion process. In the following we will call this problem (aperiodic) timetabling with OD-pairs.

Surprisingly, if the origin events and destination events of the passengers are given the prob-

lem turns out to be as easily solvable as the classical timetabling problem, see Section 3.2.

However, if origins and destinations of the OD-pairs are given as stations, integrating the

passenger routing results again to be strongly NP-hard even if all passengers start at the

same station.

2 Line planning with OD-pairs

In line planning we consider a public transportation network PTN = (S,E) with stations

S = {si : i = 1 . . . , n} and passengers’ demand for traveling. The goal of line planning is to

determine a set of lines L′ and their frequencies. There exist cost-oriented and passenger-

oriented objective functions, where the latter may consider the number of direct passengers

or the travel time of the passengers. A few recent approaches allow that passengers are

freely routed (see [13, 10, 8]).

In our study we investigate the following model. We are given a line pool L from which

lines can be chosen. Every line in the pool is given by a directed path in the network that

contains every edge at most once. The cost of building a line l is bl. We also have a set of

OD-pairs OD = {(ui, vi) : i = 1, . . . ,m}, where (u, v) ∈ OD represents passengers who want

to travel from station s(u) to station s(v). There is a weight wuv assigned to each OD-pair

representing the number of passengers who want to travel from s(u) to s(v). For the sake

of simplicity we neglect capacity restrictions in this model, and we assume that all chosen

lines run with the same frequency. So our objective is

min
∑

(u,v)∈OD

wuvW (s(u), s(v)) s.t.
∑

l∈L′

bl ≤ B

where W (s(u), s(v)) stands for the travel time of OD-pair (u, v). This travel time typically

includes the riding time and a penalty for every transfer. Given a length dij for every edge

{si, sj} ∈ E and a velocity factor αl for every line l ∈ L the driving time clij of line l on edge

{i, j} can be determined as clij := αldij . The transfer penalties pl1l2i are assumed to depend

on the station si where the transfer takes places and on the lines l1 and l2 between which

it is performed. In the constraint we require that the cost of the line system, obtained by

summing up the costs bl for all lines l which are chosen, does not exceed a given budget B.

In order to depict the various travel possibilities from the origins to the destinations, we

construct a change&go network N = (V,A) from the public transportation network PTN

(based on [13]). The node set V consists of nodes [si, l] for every node si ∈ S and every

line l that contains station si. For every line l given by the node sequence s1l , . . . , skl we
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connect [sjl , l] to [sj+1l , l] by a directed arc of length c([s
jl
,l],[s

j+1l
,l]) = cls

jl
s
j+1l

for every j =

1, . . . kl − 1, representing the driving time for using line l on edge {sjl , sj+1l}. Additionally

every pair of nodes [si, l1], [si, l2] is connected by two directed transfer arcs ([si, l1], [si, l2])

and ([si, l2], [si, l1]) which represent the transfer possibilities between the lines l1 and l2
at station si. Thus their arc lengths are c([si,l1],[si,l2]) = pl1l2i and c([si,l2],[si,l1]) = pl2l1i ,

respectively. To model the passengers’ demand we add extra nodes u, v for every origin u

and every destination v and connect them by directed arcs of travel time and cost 0 to the

nodes [s(u), l] and [s(v), l] for all l ∈ L respectively. In Figure 1 you can find an example:

The public transportation network is depicted in Fig. 1a. The nodes represent stations,

the edges represent possible direct rides. We have a line pool L = {l1 : A − B − C, l2 :

D−E −F, l3 : A−D−E −B−A, l4 : C −F} and OD-pairs (A,F ) and (D,C). In Fig. 1b

the change&go network is shown. The dotted lines represent the origins and destinations of

the passengers, the dashed lines stand for the transfer possibilities between two lines.

A B C

D E F

5

3

4

2 4

6 3

(a) Public transportation network.

A A− l1 B− l1 C− l1 C

A− l3 B− l3 C− l4

D D− l3 E− l3 F− l4 F

D− l2 E− l2 F− l2

2.5 2

2 1

3 6 2
5

5

(b) Constructed change&go network.

Figure 1 Construction of the network N from an instance of line planning with OD-pairs.

In [13] it has been shown that line planning with OD-pairs is NP-hard even for the case

of a linear graph PTN with edge lengths de = 0 for all e ∈ E, and line costs, transfer

penalties and passenger weights all equal to 1. It was also mentioned that line planning

stays NP-hard, if all possible lines are included in the line pool.

In order to understand the border between NP-hardness and polynomially computability

we will hence make restrictions on the set of OD-pairs. We will start in Section 2.1 with

the case where there is only one OD-pair. In Section and 2.2 we further restrict ourselves to

the case of linear networks. We will then extend some of the results to the case with several

OD-pairs having the same origin and going to the same direction.

2.1 Line Planning with one OD-pair

For solving the line planning problem with one OD-pair, we assign to each transfer arc

a = ([si, l1], [si, l2]) and each origin arc a = (u, [s(u), l2]) in the change&go network a second

label ba that represents the line cost ba = bl2 . For the driving arcs and the destination arcs

this cost label is set to ba = 0.

Now in this modified change&go network N , we have to find a path from the OD-pair’s

origin to its destination that satisfies the budget constraint and minimizes the path length

which represents the travel time on the path. Thus at first glance our problem looks like a

Resource-Constrained Shortest Path problem in the change&go network N , where “shortest”

is meant with respect to the travel time and the “resource” is the budget B. But still there is

a difference: in the line planning problem with one OD-pair, the line cost has only to be paid

once, even if a line is entered more often. Nevertheless, we can benefit from known results
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u v

s1 s2 s3

M M

M −m1M −m2

(a) Public transportation network.

bl0 = 0 s1, l0 s2, l0 s3, l0

bl1 = m1 u s1, l1 s2, l1 v

bl2 = m2 s2, l2 s3, l2

M M

M −m1

M −m2

(b) Change&go network.

Figure 2 Reduction from Partition to line planning with one OD-pair with equal line speed and

without transfer penalties.

about the Resource-Constrained Shortest Path problem. Modifying a proof for NP-hardness

of this problem (see [14]) shows NP-hardness of line planning with one OD-pair. We then

modify a procedure proposed by [9] for the Resource-Constrained Shortest Path problem to

solve the line planning problem with one OD-pair in pseudo-polynomial time.

◮ Theorem 1. Line Planning with one OD-pair is NP-hard, even if

the speed of all lines is equal and

there are no transfer penalties.

Proof. An instance of the decision problem Partition [2] consists of a setM of n numbers

that sum up to a number M . The question is whether there is a subsetM′ ofM such that

the sum of all elements inM′ is M2 . LetM = {m1, . . . ,mn} be an instance of Partition.

We construct the following instance of line planning with one OD-pair: The public

transportation network consists of of n + 1 stations s1, s2, . . . , sn+1. For j = 1, . . . n sj is

connected to sj+1 by two edges, ej and ej . The length of ej is set to M , the length of ej
to M −mj . The line pool consists of n+ 1 lines, l0 = (s1, e

1, s2, e
2, . . . , en, sn+1) with cost

0 and lj = (sj , ej , sj+1) for j = 1, . . . , n with cost mj . Figure 2 shows the PTN and the

change & go graph N for an example withM = {m1,m2}.

Note that for every path from u to v in N we have that the sum of its costs b(P ) and its

time c(P ) is nM . Now we will show that if and only if there is a path with line cost ≤ M2
and time ≤ nM − M2 there is a solution to the given instance of Partition. Let P be such

a path from the origin u to the destination v in the change&go network N , and let EP be

its edge set. From b(P ) + c(P ) = nM , b(P ) ≤ M2 and c(P ) ≤ nM − M2 we may conclude

that b(P ) = M
2 holds. Hence, the subsetM′ := {mi : i ∈ I ′} ofM is a solution to the given

instance of Partition. Vice versa for a solutionM′ to Partition we define

L′ := {li : mi ∈M
′} ∪ {l0} and E := {ei : mi ∈M

′} ∪ {ei : mi 6∈ M
′}.

Then E forms a path P in PTN which uses exactly the lines of L′ (sinceM′ 6=M) and it

holds that

b(P ) =
∑

l∈L′

bl =
∑

mi∈M

mi =
M

2
, and c(P ) =

∑

e∈E

ce =
∑

mi∈M′

(M−mi)+
∑

mi 6∈M′

M =M−
M

2
,

thus opening all lines that are used by P is a solution to the line planning problem. ◭

Although the Resource-Constrained Shortest Path problem is NP-hard, there exist sev-

eral pseudo-polynomial algorithms (see e.g. [9]). To solve the line planning problem with
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one OD-pair, we will proceed analogously to [9], that is we will construct a search graph in

which we are able to run a modified Dĳkstra’s algorithm in pseudo-polynomial time.

We construct the search graph GCS = (VCS ,A
C
S ) from N in the following way: For every

i ∈ V \ {u, v} and every c ∈ {1, 2, . . . , C} with C =
∑

a∈A ca we introduce a node [i, c]. For

every arc (i1, i2) in A \ {(u, i), (i, v) : i ∈ V } and every c ∈ {1, 2, . . . , C} with c+ c(i1,i2) ≤ C

we draw an arc ([i1, c], [i2, c + c(i1,i2)]) and assign a cost of b([i1,c],[i2,c+c(i1,i2)]) := b(i1,i2) to

it. We introduce a node [u, 0] that is connected to all nodes [i, 0] for which (u, i) ∈ A by an

arc of length and cost 0. For every c ∈ {1, 2, . . . , C} we add a node [v, c] and connect it to

all [i, c] for which (i, v) ∈ A by an arc of length and cost 0.

We now run a modified Dĳkstra’s algorithm in this graph to find shortest paths from

[u, 0] to all nodes [i, c]. The traditional Dĳkstra’s algorithm is modified in the following way:

for each node i, for which a path of minimal cost B(i) is already known, a list of the lines that

were used to reach this node is stored. Let P(k) denote the set of nodes for which a minimal

cost path is already found in step k. Then for every node j in the set of nodes that are not

in P(k) but adjacent to a node in P(k), a temporary cost B̃(j) = mini∈P(k)B(i) + b̃(i,j) is

assigned, where

b̃(i,j) =

{

0 if the line associated to j is in the list associated to i

b(i,j) otherwise .

Now, like in the traditional Dĳkstra’s algorithm, the node j with smallest B̃(j) is included in

P(k+1) and B(j) = B̃(j). Among the paths from [u, 0] to [v, c] for some c with B([v, c]) ≤ B

we choose a path P̃ with minimal c and transform it to a path P in N with length a and cost

B([v, a]) by taking the vertices and arcs corresponding to the ones in P. The result is the

calculation of an optimal path in time O(n2
NC

2) (as in [9]) where nN denotes the number

of nodes in the network N .

Similarly for B̂ = min{B,
∑

a∈A ba} we can construct a modified search graph GB̂S =

(VB̂S ,A
B̂
S ) where there is a node for every possible combination of nodes in N and cost

values and find a solution using Dĳkstra’s algorithm in this graph in O(n2
N B̂

2).

Thus we obtain the following theorem:

◮ Theorem 2. Let PTN be a public transportation network with n nodes and N the cor-

responding change&go network with nN nodes. Then the line planning problem with one

OD-pair in N is solvable in pseudo-polynomial time

1. O(n2
NC

2) with C =
∑

a∈A ca, or

2. O(n2
N B̂

2) with B̂ = min{B,
∑

a∈A ba}.

2.2 Line planning with one OD-pair in a linear network.

In this section we will restrict ourselves to public transportation networks PTN = (S,E) that

are linear, that means S = {s1, s2, . . . , sn} and E = {{s1, s2}, {s2, s3}, . . . , {sn−1, sn}}. In

this case, if all lines have the same speed, it makes no sense for a passenger to leave a line and

enter it again later. We hence can apply the solution methods for the Resource-Constrained

Shortest Path problem without any modifications.

For linear networks where all lines have the same speed, we can also perform modified

Resource-Constrained Path calculations in a the following reduced networkNL: Let S(l) ⊂ S

denote the stations that are visited by line l. We define the directed network NL = (VL, AL),

called line network. VL = L∪ {u, v}, that means the nodes of this network are given by the

lines of the original problem and the origin and destination node. We set AL = {(li, lj) :
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u s1 s2 s3 s4 s5 v

l1

l2

l3

l4

l5

(a) Linear public transportation network.

l1 l5

u l3 v

l2 l4

(b) Line network.

Figure 3 Example for the construction of the line network.

S(li) ∩ S(lj) 6= ∅} with b(li,lj) = blj , b(u,lj) = blj and b(li,v) = c(u,li) = c(li,v) = 0. See

Figure 3 for an example. NL can be generated from PTN in O(n|L|).

The arcs in the line network NL depict the transfer possibilities between the lines, thus

we want the length of a path PL from u to v in NL to reflect the transfer penalties on this

path. As these penalties do not only depend on the lines, but also on the stations where the

transfers take place, these penalties are path dependent.

For every path P from u to v in the change&go network N we can find a corresponding

path P ′

L
= PL(P ) from u to v in NL. We define the costs of P ′L to be

c(P ′L) = min{c(P ) : PL(P ) = P ′L} −
∑

e∈PPTN

ce,

for the path PPTN from s(u) to s(v) in PTN. Because of the equal line speed,
∑

e∈PPTN
ce

is the driving time for every path P from u to v in N , thus c(P ′L) indeed reflects the transfer

penalties on a path P in N which is minimal among all paths using the line sequence given

by P ′L. Note that also for the budget labels ba it holds that
∑

a∈PL
ba =
∑

a∈P (PL)
ba.

Thus a path PL from u to v inNL of minimal costs c(PL), fulfilling the budget constraints,

corresponds to an optimal path P in N with costs c(P ) = c(PL) +
∑

e∈PPTN
ce.

This correspondence enables us to improve the run time O(n2
NC

2) or O(n2
N B̂

2) for the

line planning problem with one OD-pair (u, v) in a linear network PTN with all lines having

the same speed by solving a modified Resource-Constrained Shortest Path problem in NL:

◮ Theorem 3. A line planning problem with one OD-pair (u, v) in a linear network PTN

with equal line speed can be solved in pseudo-polynomial time O(n|L| + |L|2(Q + 1)2) or

O(n|L|+|L|2B̂2) with Q =
∑

s∈S

∑

{li,lj},li,lj∈L(s) p
lilj
s and B̂ = min{B,

∑

{li,lj}∈AL
b{li,lj}}.

Proof. We construct the line search graph GQS = (VQS ,A
Q
S ) from the line network NL =

(VL, AL) in the following way: Let L(s) denote the set of all lines that visit station s.

For every l ∈ VL \ {u, v} and every q ∈ 1, 2, . . . , Q with Q =
∑

s∈S

∑

{li,lj},li,lj∈L(s) p
lilj
s

we introduce a node [l, q]. For every arc (l1, l2) in AL \ {(u, l), (l, v) : l ∈ VL} and every

0 ≤ q ≤ q̃ ≤ Q we draw a potential arc from [l1, q] to [l2, q̃]. We introduce a node [u, 0] that

is connected to all nodes [l, 0] for which (u, l) ∈ AL by an arc of length and cost 0. For every

q ∈ {1, 2, . . . , Q} we add a node [v, q] and connect it to all [l, q] for which (l, v) ∈ AL by an

arc of length and cost 0.

We now run a modified Dĳkstra’s algorithm in this graph to find shortest paths from

[u, 0] to all nodes [l, q]. For each node l, for which a path of minimal cost B(l) is already

known, a station s(l), representing the current transfer station in the corresponding path P
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162 Integrating routing decisions

in N is stored. Let P(k) denote the set of nodes for which a minimal cost path is already

found in step k. Let T (k) denote the set of nodes [l2, q̃] such that ([l1, q], [l2, q̃]) ∈ A
Q
S for an

[l1, q] ∈ P(k) and q̃ = q+minŝ≥s(l1),ŝ∈S(l1)∩S(l2) p
l1l2
ŝ with S(l) containing all stations that are

visited by line l.That means for given [l1, q] and l2, among the potential arcs ([l1, q], [l2, q̃])

we choose the one that reflects the lowest transfer penalty that is possible for a transfer

between l1 and l2 after station s(l1) and include it in P(k). To every node [l2, q̃] in T (k) a

temporary cost B̃([l2, q̃]) = min[l,q]∈P(k)B([l, q]) + bl2 is assigned. Now the node [l2, q̃] with

smallest B̃([l2, q̃]) is included in P(k + 1) and B([l2, q̃]) := B̃([l2, q̃]). Furthermore, we set

s(l2) := ŝ for the ŝ chosen as a transfer station from l1 to l2.Among the paths from [u, 0] to

[v, q] for some q with B([v, q]) ≤ B we choose a path PS with minimal q and transfer it to

a path PL in NL with length q and cost B([v, q]).

Like in the original Dĳkstra’s algorithm we have to consider every arc in the line search

graph at most once, so the run time is quadratic in the number of nodes of GQS . Similarly

we can construct a modified line search graph GB̂S = (VB̂L ,A
B̂
L ) where there is a node for

every possible combination of node in N and cost value and find a solution using Dĳkstra’s

algorithm in this graph in O(|L|2B̂2). ◭

Note that if the transfer penalties do not depend on the stations where the transfers take

place, they can be assigned directly as lengths to the arcs of the line network such that the

problem can be solved directly as a Resource-Constrained Shortest Path problem.

But still, line planning in a linear network with one OD-pair is NP-hard.

◮ Theorem 4. Line Planning with one OD-pair in a linear public transportation network is

NP-hard, even if the speed of all lines is equal.

◮ Theorem 5. Line Planning with one OD-pair in a linear public transportation network is

NP-hard, even if there are no transfer penalties.

For the proofs of these two results we refer to [12].

Combining the two restrictions from Theorems 4 and 5, due to Theorem 3 we however

obtain a polynomial run time of O(n|L| + |L|2) in the case without transfer penalties and

O(n|L|+ |L|6) with equal penalties which can further be improved as follows.

◮ Lemma 6. Line planning with one OD-pair in a linear public transportation network with

equal line speed can be solved in

1. O(n|L|+ |L|2) if there are no transfer penalties.

2. O(n|L|+ |L|4) if the transfer penalties are all equal.

Proof. The first statement follows directly from Theorem 3 or by applying the Dĳkstra’s

algorithm in NL to find a cost optimal solution.

For the second statement, without loss of generality we can assume cchange = 1. NL has

|L|+ 2 nodes. As a shortest path in NL visits every node at most once, the optimal travel

time in NL is bounded by Q = |L|. So according to Theorem 3 given the line network NL
the problem can be solved in O(|L|4). ◭

2.3 Line planning with OD-pairs having the same origin in linear
networks

In this section we investigate if the results of the previous section can be generalized. We still

stick to the restriction that the underlying network is linear but relax the strong assumption

of only one OD-pair by allowing a set of OD-pairs which all have the same origin and start
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traveling into the same direction. We will see that in some cases we still can apply the

algorithms for one OD-pair from Sections 2.1 and 2.2 so that we can solve some problems

easily. However, having several OD-pairs with the same origin, line planning is even NP-

hard if all lines have the same speed and if all transfer penalties are equal (which for one

OD-pair can be solved in polynomial time, see Lemma 6).

◮ Theorem 7. Line Planning with OD-pairs having the same origin and going to the same

direction in a linear public transportation network is NP-hard, even if

the speed of all lines is equal and

all transfer penalties are equal.

Proof. The proof is a reduction from Partition similar to Theorem 2, see [12] for details. ◭

In the following lemma we will show that in the situation of Theorem 7, there is an

optimal solution such that the paths of all OD-pairs are nested. This property will enable

us to solve the problem analogously to a line planning problem with only one OD-pair with

equal line speed in a linear network in pseudo-polynomial time.

◮ Lemma 8. Consider a line planning problem with all OD-pairs having the same origin

and going to the same direction in a linear public transportation network with

equal line speed and

equal transfer penalties.

There is always an optimal line set L′ together with a set of paths {P ∗i } in N(L′), P ∗i being the

path for OD-pair (u, vi) without origin and destination arc, such that P ∗ :=
⋃

(u,vi)∈OD P
∗
i

is a path in N .

Proof. Because of the equal line speed, the driving time for the OD-pairs is not path de-

pendent. Thus instead of the total travel time, we can regard only the weighted sum of the

transfers.

Suppose that {Pi : i = 1, . . . ,m} is the path set of an optimal solution where Pi is

the path from s(u) to s(vi). Now (assuming that the OD-pairs are ordered such that the

distance from s(u) to s(vi) increases with increasing i) we will show that for every Pm that

is contained in such a set, there exist paths P ∗i for i = 1, . . . ,m− 1 such that P ∗i ⊂ Pm and

{P ∗i : i = 1, . . . ,m− 1} ∪ {Pm} is also an optimal path set for the problem.

Suppose that this is not the case. Then in every optimal path set there exists an index

i such that Pi 6⊂ Pm. Let Pmi be the path from s(u) to s(vi) contained in Pm. For

a subgraph G of N we denote by b(G) the sum of the costs of all lines used by G and

by t(G) the number of transfers in G. Concerning the line costs we first observe that

b(Pi ∪ Pm) ≥ b(Pm) = b(Pm ∪ P
m
i ). Thus t(Pmi ) > t(Pi), because otherwise changing Pi to

Pmi would lead to an optimal set. As p
lilj
s := p for all transfers we have t(Pi) + p ≤ t(Pmi ).If

we denote by P̂m the path consisting of Pi, possibly a transfer and the part Pm(vi) of Pm
starting in station s(vi), we obtain

t(P̂m) ≤ t(Pi) + p+ t(Pm(vi)) = t(Pi) + p+ t(Pm)− t(Pmi ) ≤ t(Pm)

and thus for the transfer costs weighted with the passenger numbers it holds that

wit(Pi) + wmt(P̂m) < wit(Pi) + wmt(Pm).

Thus the total transfer costs for path set {Pj : j = 1, . . . ,m − 1} ∪ {P̂m} are smaller than

the total transfer costs for path set {Pi : i = 1, . . . ,m}. From b(Pmi ∪ Pm) ≥ b(Pmi ∪ P̂m) it

follows that

b({Pi : i = 1, . . . ,m}) ≥ b({Pj : j = 1, . . . ,m− 1} ∪ {P̂m}),
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thus the path set {Pj : j = 1, . . . ,m − 1} ∪ {P̂m} is feasible. Thus {Pi : i = 1, . . . ,m} was

not an optimal path set. ◭

This property enables us to find an optimal solution reducing the problem to a line

planning problem with one OD-pair and applying Theorem 3.

◮ Theorem 9. The line planning problem with all OD-pairs having the same origin and

going to the same direction in a linear public transportation network with

equal line speed for all lines and

equal transfer penalties

is solvable in pseudo-polynomial time O(n|L|+ |L|2B̂2) or O(n|L|+ |L|2W 2) where

B̂ = min{B,
∑

a∈A

ba}, and W =
∑

s∈S

∑

{li,lj},li,lj∈L(s)

∑

(u,vj)∈OD,s<s(vj)

wuvj .

Proof. Consider an instance I1 of the described problem with OD-pairs (u, vi) ∈ OD1 labeled

in increasing order of s(vi). Let N1 denote the associated change&go network. Let I2 denote

the instance of the line planning problem in the same public transportation network with

the same costs, with the only OD-pair (u, vm) ∈ OD1 for which the distance between s(u)

and s(vj) is maximal and where the transfer penalties are given as

pliljsk := psk :=
∑

j=1,...,m:(u,vj)∈OD:sk<s(vj)

wuvj .

Let N2 denote the associated change&go network. We will now show that there is a bĳection

between solution paths P 2 in N2 and sets of solution paths {P 1
i : i = 1, . . . ,m} in N1 with

P 1 :=
⋃

(u,vi)∈OD P
1
i being a path in N1, both having the same line costs and the same

solution value. Let b(G) denote the line costs of a subgraph G of a change&go network

and t(P ′) the number of transfers on a path P ′. For a path P 2 in N2 define P 1
i (P 2) to

consist of the path P 2 seen as path in N1 ending as soon as the station s(vi) is reached.

We directly obtain b(P 2) = b(
⋃m
i=1 P

1
i (P 2)). Furthermore it can be justified that t(P 2) =

∑m
j=1 wuvj t(P

1
j (P 2)).Vice versa, for a set of paths {P 1

i : i = 1, . . . ,m} in N1 for which

P 1 :=
⋃

(u,vi)∈OD P
1
i is a path, we define P 2(P 1) as the path P 1 regarded in N1. Then like

above we have

b(P 2(P 1)) = b(P 1) = b(

m
⋃

i=1

P 1
i ) and t(P 2(P 1)) =

m
∑

j=1

wuvj t(P
1
j ).

Thus there is a bĳection between solution paths P 2 in N2 and sets of solution paths {P 1
i :

i = 1, . . . ,m} in N1 with P 1 :=
⋃

(u,vi)∈OD P
1
i being a path in N2, both having the same

line costs and the same solution value. Finally, Theorem 9 follows by applying Theorem 3 to

the instance I2 of the line planning problem for one OD-pair and all lines having the same

speed that is constructed in the way described above. ◭

In Lemma 6.1 it has been shown that the line planning problem with one OD-pair in a

linear public transportation network can be solved by a Dĳkstra’s algorithm regarding the

line costs if all lines have the same speed and there are no transfer penalties, because in this

case the value of the objective function does not depend on the choice of L′. For the case of

multiple OD-pairs with the same origin, we obtain a minimal cost solution by applying the

algorithm from Lemma 6.1 for the OD-pair with longest travel time.

◮ Lemma 10. A line planning problem with all OD-pairs having the same origin and going

to the same direction in a linear public transportation network
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with equal line speed and

without transfer penalties

can be solved in O(n|L|+ |L|2).

Similar to these results we can also use Theorem 2 to derive a pseudo-polynomial algorithm

for the case of arbitrary line speed and no transfer penalties.

Our results of line planning in linear networks are summarized in the following table.

Restrictions Restrictions Complexity Complexity

line speed transfer penalties one OD-pair same origin

equal no penalties O(n|L|+ |L|2) (6.1) O(n|L|+ |L|2) (10)

equal equal penalties O(n|L|+ |L|4) (6.2) NP-hard (7), solvable

in O(n|L| + |L|2W 2) or

O(n|L|+ |L|2B̂2) (9)

equal arbitrary NP-hard (4), solvable in

O(n|L| + |L|2(Q + 1)2) or

O(n|L|+ |L|2B̂2) (3)

NP-hard (4, 7)

arbitrary no penalties NP-hard (5), solvable in

O(n2

NC
2) or O(n2

N B̂
2) (2)

NP-hard (5), solvable in

O(n2

N B̂
2) or O(n2

N C̃
2) [12]

arbitrary equal penalties or

arbitrary

NP-hard (5), solvable in

O(n2

NC
2) or O(n2

N B̂
2) (2)

NP-hard (5)

where

C =
∑

a∈A ca,

C̃ :=
∑n−1
i=1 (
∑

j=1,...,m:(u,vj)∈OD:si+1<s(vj)
wuvj ) · c[si,l],[si+1,l],

B̂ = min{B,
∑

a∈A ba},

Q =
∑

s∈S

∑

{li,lj},li,lj∈L(s) p
lilj
s , and

W =
∑

s∈S

∑

{li,lj},li,lj∈L(s)

∑

(u,vj)∈OD,s<s(vj)
wuvj .

Note that the case of equal line speed and without transfer penalties can still be solved

in polynomial time for general OD-pairs, see [12].

3 (Aperiodic) Timetabling with OD-pairs

Given a line plan, the timetabling process searches for the arrival and departure times for all

lines at all stations. To this end the public transportation network PTN is extended to a so-

called event-activity-network N = (E ,A) (see e.g. [7, 5]). Every arrival and every departure

of a vehicle is modeled as an arrival or departure event e ∈ E = Earr ∪ Edep. The events are

connected by driving activities Adrive, waiting activities Await, or changing activities Achange.

If πi denotes the time of event i, and a = (i, j) an activity linking event i and event j, a

timetable (πi)i∈E is feasible if every activity a = (i, j) satisfies la ≤ πj − πi ≤ ua for some

given lower and upper bounds la and ua on the duration of activity a. While in periodic

timetabling (see [5] and references therein) it is required that the resulting timetable is

periodic which causes NP-hardness even for the feasibility problem, aperiodic timetabling

drops the assumption of feasibility which in general results in an easier problem. Given a

fixed number of passengers wa for every activity a, the goal of traditional timetabling is

to minimize the sum of the travel times. The problem can be solved efficiently by linear

programming [11]. In our model we again do not start with such fixed weights wa but with

a set of OD-pairs which can be freely routed through the network. For integer programming

as well as heuristic approaches for periodic timetabling with OD-pairs see [4, 6, 3].
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3.1 Integrating OD-pairs in the model

Let a set of OD-pairs OD = {(u, v)} with weights wuv be given. Every path from a departure

event i at station u to a departure event j at station v represents a possible journey from

u to v. As in general πi 6= πi′ and πj 6= πj′ for departure events i and i′ at station u and

arrival events j and j′ at station v, the travel time depends on the path that is chosen for

the OD-pair (u, v). To integrate the routing procedure we add the origins and destinations

to the network by introducing origin nodes Eorg = {uorg : (u, v) ∈ OD} and destination

nodes Edest = {vdest : (u, v) ∈ OD}. We connect every uorg ∈ Eorg to all departure events i

at station u by an origin arc (uorg, i) and every arrival event j at station v to vdest ∈ Edest

by a destination arc (j, vdest). The arc sets are denoted by Aorg and Adest respectively.

Our objective is to find a feasible timetable π and for every OD-pair (u, v) a path

Puv = (uorg, iuv1 , i
uv
2 , . . . , i

uv
uv, v

dest) from uorg to vdest such that the sum of all travel times
∑

(u,v)∈OD wuv(πiuvuv − πiuv1
) is minimal.

Finding an optimal solution to the described problem turns out to be strongly NP-hard:

◮ Theorem 11. The timetabling problem with OD-pairs is strongly NP-hard, even if all

OD-pairs have the same origin.

Proof. An instance of the decision problem Minimum Cover ([2]) consists of a finite set S,

a collection C of subsets of S and a positive integer K ≤ |C|. The question to decide is

whether there is a subset C ′ of C with |C ′| ≤ K such that every element of S is contained

in at least one member of C ′.

Let m = |S| and n = |C|. To reduce an instance (S,C,K) of Minimum Cover to the

timetabling problem with OD-pairs for every si ∈ S we will represent the elements si ∈ S

by OD-pairs (u, vi) with wuvi = n and the sets cj ∈ C by a structure consisting of two

trains tr1j and tr2j , five stations a1
j , a

2
j , a

3
j , a

4
j , a

5
j and an OD-pair (u, vj) with wuvj = 1 in the

way depicted in Figure 4. Here, the square nodes are the departure and arrival events. The

origin and destination events are represented by ovals. The dotted lines are the origin and

destination arcs, the solid lines represent driving and waiting activities, changing activities

are represented by dashed lines. The gray lines indicate where it will be possible to enter

and to leave this structure.

Note that for each of these structures stri when making the timetable we have to choose

either to assign a length of 1 to the arc (a2
j −D, a

3
j − A) or to the arc (a3

j −D, a
4
j − A). If

we assign a length of 1 to the latter, the travel time of OD-pair (u, vj) will be 1 and because

of wuvj = 1 it will contribute an amount of 1 to the objective function.

a2
j − D a4

j − A

a1
j − D a2

j − A a2
j − D a3

j − A a3
j − D a4

j − A a4
j − D a5

j − A

uorg vdest
j

[0, 0] [0, 0] [0, 1] [0, 0] [0, 1] [0, 0] [0, 0]

[1, 1]

[0, 0] [0, 0]

Figure 4 The structure strj representing a set cj in the reduction from Minimum Cover to the

timetabling problem with OD-pairs.

We identify a1
j and uorg for all stations a1

j , that means we connect every a1
j by an origin
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activity to the origin node uorg. For every si ∈ cj we connect (a3
j −A) to a departure event

(a3
j −Dep) of a train trij that by a driving activity is connected to the arrival event of train

trij in vi. The upper and lower bound for all arcs outside of the structure strj are set to

[la, ua] = [0, 0]. See Figure 4 and 5 for an example of the construction for an instance of

Minimum Cover with S = {1, 2, 3, 4} and C = {{2, 3, 4}, {1, 4}, {2, 3}}. The square nodes

are the departure and arrival events. The origin and destination events are represented by

ovals. The dotted lines are the origin and destination arcs, the solid lines represent driving

and waiting activities, changing activities are represented by dashed lines. The nodes strucj
represent the structures from Figure 4.

(tr21 − a3
1 − D) (tr21 − v2 − A) v1dest

str1 (tr31 − a3
1 − D) (tr31 − v3 − A)

(tr41 − a3
1 − D) (tr41 − v4 − A) v2dest

uorg str2 (tr12 − a3
2 − D) (tr12 − v1 − A)

(tr42 − a3
2 − D) (tr42 − v4 − A) v3dest

str3 (tr23 − a3
3 − D) (tr23 − v2 − A)

(tr33 − a3
3 − D) (tr33 − v3 − A) v4dest

Figure 5 Reduction from Minimum Cover.

We observe that if for an OD-pair (u, vi) there is a structure strj such that uorg is

connected to strj and there is a length of 1 assigned to (a3
j − D, a

4
j − A), the OD-pair

will arrive at its destination in time 0 while if there is no such structure, there will be a

contribution of n to the objective function. Thus as K < |C| = n in a feasible solution for

every OD-pair there must be at least one structure strj such that u is connected to strj and

there is a length of 1 assigned to (a3
j −D, a

4
j −A).

We conclude that C ′ := {cj1 , . . . , cjk} is a solution to the Minimum Cover problem if

and only if assigning a length of 1 to (a3
j − D, a

4
j − A) for all j such that cj ∈ C

′ and to

(a2
j −D, a

3
j −A) for all other j leads to a solution of the timetabling problem with OD-pairs

with solution value ≤ K. ◭

3.2 Timetabling with routing between events

Let’s assume that instead of having a set of OD-pairs consisting of pairs of stations we have

a set of OD-pairs that consists of departure and arrival events as origins and destinations.

I.e., the passengers not only fix the location of their origins and destinations but also the

departure and arrival events (the first and the last train they wish to take). Thus OD =

{(i, j)}, where i ∈ Edep represents the departure of the train a passenger wants to take at a

certain station and j ∈ Earr represents the arrival of the train at the end of the passenger’s

journey. Again we assign a weight wij to (i, j). Note that there may be several paths in

N connecting a departure event i to an arrival event j, thus given OD-pair (i, j) we do not

know the specific path this OD-pair will take. Nevertheless, the choice between these paths

does not really matter because in the resulting timetable these paths will all have the same
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length of πj − πi. Our objective is to minimize the weighted sum of the travel times of all

OD-pairs:

min
∑

(i,j)∈OD

wij · (πj − πi) (1)

s.t. πh − πg ∈ [lgh, ugh] ∀(g, h) ∈ A (2)

πg ∈ Z ∀g ∈ E (3)

◮ Theorem 12. Aperiodic timetabling with OD-pairs given as origin and destination events

can be solved by linear programming.

Proof. The coefficient matrix of the problem is the transposed of a node-arc-incidence matrix

and hence totally unimodular. ◭

We can envision the minimization of the weighted sum of the πj−πi in terms of the orig-

inal problem by introducing virtual edges from i to j for every OD-pair (i, j) and assigning

weights wij to these edges and wa = 0 to all other edges. Formulating the original aperiodic

timetabling problem in this modified network leads to the formulation (1)-(3).

Note that the travel time of an OD-pair (i, j) only depends on the time at node i and

node j and not on the path from i to j. If for every OD-pair (i, j) we chose a path Pij from i

to j, set wa :=
∑

(i,j)∈OD:a∈Pij
wij , solving the aperiodic timetabling problem with weights

wa leads again to the same integer program since the objective functions are equal.

We can use the result from Theorem 12 to solve the general timetabling problem with

OD-pairs: Let N be a network and OD = {(ui, vi) : i = 1, . . . , n} be a set of OD-pairs. In

the network N for every OD-pair (ui, vi) we define E idep := {e ∈ Edep : (uorg
i , e) ∈ Aorg} and

E iarr := {e ∈ Earr : (e, vdest
i ) ∈ Adest}.

◮ Lemma 13. The timetabling problem with OD-pairs can be solved by solving every dif-

ferent instance (N , ÕD) of the timetabling problem with OD-pairs OD := {(eidep, e
i
arr) : i =

1, . . . , n} with eidep ∈ E
i
dep, e

i
arr ∈ E

i
arr and comparing the solution values. In particular

1. If for every (ui, vi) ∈ OD it holds that |E idep| = |E iarr| = 1 an optimal solution to the

timetabling problem with OD-pairs can be found by solving one linear program.

2. If OD = {(u1, v1)} an optimal solution to the timetabling problem with OD-pairs can be

found by solving at most |E1
dep| · |E

1
arr| linear programs.

4 Conclusions and Further Research

In this paper we integrated the routing of the passengers in the optimization process in

line planning and timetabling problems. We showed that solving the line planning problem

with OD-pairs is NP-hard even in simplified cases, but were able to give polynomial time

algorithms for several special cases. Although timetabling with fixed passenger paths can

be solved easily by linear programming, including the routing decisions results in an NP-

hard problem. However, if the start and destination event of every OD-pair are known, the

problem can be solved as efficiently as aperiodic timetabling itself.

In our further research, we will generalize the algorithms for line planning with one

OD-pair in linear networks to develop heuristics for the general case. An important next

step will be to include capacity restrictions and frequencies in the line planning model.

Concerning timetabling, we are interested in finding further restrictions on the problem

structure that make the problem easily solvable and to develop heuristics based on these

approaches. Another promising heuristic idea, both for line planning and timetabling, is to
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iterate routing and optimization steps to successively improve the solution; we are currently

testing such a procedure numerically. We furthermore will investigate the benefit of such an

integrating, e.g., the improvement of the passengers’ travel time when integrating routing

in the optimization process.
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