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Abstract
Train Routing is a problem that arises in the early phase of the passenger railway planning
process, usually several months before operating the trains. The main goal is to assign each train
a stopping platform and the corresponding arrival/departure paths through a railway station.
It is also called Train Platforming when referring to the platform assignment task. Railway
stations often represent bottlenecks and train delays can easily disrupt the routing schedule.
Thereby railway stations are responsible for a large part of the delay propagation in the whole
network. In this research we present different models to compute robust routing schedules and
we study their power in an online context together with different re-scheduling strategies. We
also design a simulation framework and use it to evaluate and compare the effectiveness of the
proposed robust models and re-scheduling algorithms using real-world data from Rete Ferroviaria
Italiana, the main Italian Railway Infrastructure Manager.
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1 Introduction

The Train Routing problem arises in the early phase of the passenger railway timetabling
process, after the departure and arrival times have been defined. The main goal is to route
the trains through a railway station, for example a busy station, and assign them a stopping
platform. Thus it is also known as Train Platforming. This problem represents a major issue
for medium and large sized stations. Such stations are rather common throughout Europe,
have complex topologies and can severely impact on the train schedule operation. More
precisely, solving a train routing problem for a given railway station means considering all
the trains (in the timetable) passing through it and assigning each of them (i) a stopping
platform and (ii) a pair of arrival and departure paths to reach and leave the platform,
respectively.

Unfortunately even an optimal plan can be rather useless in a real-life context when the
inevitable disturbances affecting the system modify the conditions we have optimised for.
For this reason the latest research projects have been focusing on dynamic aspects. These
approaches can be divided into two main branches: robust planning and online re-scheduling.
Robust planning, on one hand, is meant to reduce delay propagation in a railway system, i.e.,
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train conflicts, thus limiting the effect of disturbances on the system. Online re-scheduling, on
the other hand, deals with recovery strategies that can be used to react real-time, whenever
the disturbances of the system hinder the nominal plan and a new one is needed according
to the current conditions. Our goal is to use a simulation framework to investigate the
effectiveness of different combinations of robust plans and re-scheduling strategies for train
routing.

2 Motivation and Outline

Substantial research has been conducted on the train routing problem. For example, [1], [5],
[6], [9] [10], [13], and [14] presented optimisation models and algorithms for train routing,
whereas [8] proposed a theoretical study of the track assignment problem and show how
some variations can be solved as special classes of graph colouring problems. More recently,
[2] developed a model to find delay-tolerant train routes, while [7] considered a re-scheduling
setting. Both [3] and [12] described models to minimise the number of crossing train routes
(and the time overlap thereof). Finally [4] presented an exact (delay-)robust optimisation
framework for train routing. There is, however, very little literature available on robustness
and re-scheduling together. Our paper sets itself in this context.

The goal of this work is threefold. The first goal is to extend the routing model of
[3] to robustness considerations, describing some variations where robustness is enhanced
either by increasing the delay absorption capacity or by explicitly providing potential
recovery possibilities. The second goal is to design different exact re-scheduling algorithms
according to different recovery strategies. In particular, we consider three different recovery
strategies, implemented as Mixed Integer Programs (MIPs). The first strategy consists in
simply propagating the delay, the second strategy relies on robust extra-resources (backup
platforms), and the third strategy allows unlimited changes to the nominal plan. The
third goal is to assess the performance of the robust plans and re-scheduling strategies in
a simulation framework. In fact, robustness and recoverability are intriguingly difficult
notions to quantify. In this research we propose a simulation framework to compare different
combinations of routing plans and recovery strategies. More specifically, given a timetable
of an entire day, a routing plan and some randomly-generated delays, the re-scheduling
algorithms are applied to resolve the routing conflicts. In this way, the simulation allows us
to compare the robustness of different plans together with different recovery strategies, the
main criterion in the comparison being the global train delay.

This paper is organised as follows. In Section 3 we describe the Italian train routing
problem, that represents our real-world case study, and we also sketch the model of [3] that
represents the basis for our research. In Section 4 we describe some variants of the original
model and in Section 5 we introduce three different re-scheduling strategies, implemented
via MIPs. Finally we propose a simulation framework in Section 6. Section 7 is devoted to
computational results. In Section 8 we draw some conclusions and observations for future
research.

3 The Train Routing Problem

In this section we recollect the train routing problem presented in [3]. The problem, as
described by the main Italian Railway Infrastructure Manager (Rete Ferroviaria Italiana),
aims at defining a routing plan for a given railway station, after the corresponding timetable
has been defined. We are given a timetable containing a set T of trains that will either stop
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or travel through the railway station. The timetable defines arrival and departure times
and directions for every train t ∈ T . Information on the railway station topology is also
given. A railway station can be represented as a mesh of tracks connecting the railway
line directions to stopping platforms. A path is a sequence of tracks connecting a direction
to a stopping platform or vice versa. Different paths can share the same track or other
physical resources along their lines, and in this case they are considered incompatible. Hard
constraints forbid the assignment of incompatible resources at the same time or within a
safety limit (few minutes) one after another. The goal of the train routing problem is to
define for every train t ∈ T a stopping platform and two paths, connecting the platform to
the arrival and departure directions of train t. It is also possible to apply small changes to
the timetable, called shifts. Hence, the routing plan can define new arrival and departure
times for every train. In this way, the routing phase feeds back to the previous timetabling
phase. The model presented in [3] is based on the concept of patterns. A pattern encapsulates
all the information about the resources assigned to a train: stopping platform, arrival and
departure paths, arrival and departure shifts. Clearly, each train t ∈ T defines its own set of
feasible patterns Pt according to its arrival and departure directions. Incompatibilities are
represented using a graph whose nodes correspond to train patterns, and hard constraints are
expressed via a set K of cliques of incompatible patterns. Time is discretised in minutes. As
explained in [3] the model is solved using pricing and separation techniques due to the large
number of variables and constraints. This solution method is applied to all the three variants
that we will present in the next section. Thus, for details on how to solve the corresponding
MIP models, the reader can refer to [3].

4 Robust Planning

In this section we present three different variants of the model of [3]. Binary variables xt,P
represent the assignment of pattern P ∈ Pt to train t ∈ T , and st are binary variables used
to cancel (i.e., not assign) train t ∈ T . A large penalty Mt is associated with variable st in
the objective function to minimise such occasions. The cost ct,P of a pattern P for train t
represents the quality of the corresponding assignment for the given train (i.e., preference
platforms, changes with respect to the nominal scheduled times, etc.).

4.1 Basic Platforming
In the first (non-robust) variant of the routing model, called basic, we simplify the original
model of [3] by considering exclusively the cost of the patterns, without any additional fixed
cost for the platforms used. In fact, in a robust model it may be desirable for the trains to
spread platform occupation among different resources.

min
∑
t∈T

∑
P∈Pt

ct,P xt,P +
∑
t∈T

Mtst (1)

subject to

st +
∑
P∈Pt

xt,P = 1, t ∈ T, (2)

∑
(t,P )∈K

xt,P ≤ 1, K ∈ K, (3)

xt,P , st ∈ {0, 1}, t ∈ T, P ∈ Pt. (4)
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Constraints (2) either assign a pattern or cancel a train. Constraints (3) forbid resource
conflicts and use cliques K ∈ K in order to strengthen the formulation.

4.2 Increasing the Absorption Capacity
The most straightforward way to cope with small delays without any particular re-routing
strategy is to simply propagate the delay. This means resolving the given scenario by
preserving the nominal scheduled train order. If a train is delayed then all its resources
are locked and the subsequent trains, if allocated to one or more of these, are pushed-back,
waiting for the corresponding resource to be freed up. For this reason, it is important to
increase the delay absorption capacity of the routing plan. In fact, in the second variant,
robustness is captured by penalising the cases in which incompatible resources are utilised
by two trains in a short succession. These situations may give rise to conflicts in case of
delays and thereby lead to propagation of such delays. So the aim is to spread the load on
the infrastructure in time and space. A routing plan optimised for this criterion is expected
to cope with small delays, without substantial recovery actions. The MIP formulation that
we use has the following objective function:

min
∑
t∈T

∑
P∈Pt

ct,P xt,P +
∑
t∈T

Mtst +
∑

(t1,t2)∈T 2

∑
P1∈Pt1

∑
P2∈Pt2

ct1,P1,t2,P2 xt1,P1 xt2,P2 (5)

This objective function is subject to constraints (2)-(4). The cross-penalty ct1,P1,t2,P2

in the objective function depends on the distance (in time) among the utilisations of the
incompatible resources (platforms and paths) associated with the two patterns P1 and P2
assigned to trains t1 and t2 respectively: the closer in time, the higher the penalty. A detailed
discussion on how to linearise (5) in an effective way can be found in [3].

Even though the quadratic component can express a wide array of optimisation criteria,
each of them would require a fine-tuning of the coefficients in the objective function. A
common way to perform such a tuning is to apply scenario-based models such as stochastic
programming. Still, the performance of the overall method would strongly rely on the chosen
distribution. In this paper, we limit ourselves to a naive definition of these quadratic costs,
see [11] for details.

4.3 Backup Platforms
In this third version, we intend to fight delay propagation by allowing each train to use a
backup (i.e., recovery) platform for a given time period, whose length coincides with the
maximum delay we intend to prevent. In this model, each train is assigned a primary and a
backup platform. A platform can only be backup for a train if no other train simultaneously
uses it as primary at the same time. The primary platform is intended to be used whenever
possible, while the backup platform provides re-scheduling possibilities when the train is
delayed. Suppose that train t has arrival time a and departure time d, and let ` be a limit
on the delays that we are dealing with. Then train t occupies its backup platform during the
time interval [a; d+ `]. Note that the occupation of the backup platform does not depend
on the shift applied to the train, since this is generally small with respect to `. Platforms
that have nearly identical approach paths are called neighbouring platforms. Note that the
precise definition depends on the infrastructure of the studied railway station. We suggest to
choose neighbouring primary and backup platforms for each train. The reason for this choice
is that, if a train is moved to a neighbouring platform, it is very likely to use paths with
the same structure as the primary one, thus it will not introduce many additional conflicts
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with other paths already assigned. Moreover, passengers will be less disappointed if asked to
move to a close-by platform.

Backup platforms could be incorporated into the basic model (1)-(4) simply by extending
the notion of pattern. However, such an extension would significantly increase the complexity
of the pricing phase. This motivates a different approach. For each train t ∈ T , we define an
interval It corresponding to the time window during which the backup platform for train t
must be available, and we use binary variables uπ,t that take value 1 if train t can use backup
platform π in its corresponding time interval It. With this in mind we require for each train
t the assignment of a primary platform and of a backup platform in the neighbourhood of
the primary one:∑

π∈N(b)

uπ,t ≥
∑

P∈Pt(b)

xt,P , t ∈ T, b ∈ B, (6)

uπ,t ∈ {0, 1}, π ∈ B, t ∈ T. (7)

Here B is the set of platforms in the railway station, N(b) is the set of neighbouring platforms
of b and Pt(b) is the set of all the patterns associated with train t that use b as primary
platform. Of course, we also require the backup platform to be free from any primary
assignment for each possible arrival instant (minute) m ∈ It:∑

t′∈T−{t},P∈P
t
′ :πP
t
′=π,m∈[aP

t
′ ,d
P

t
′ ]

xt′ ,P ≤ 1− uπ,t, π ∈ B, t ∈ T,m ∈ It. (8)

Here the left-hand side considers all the patterns associated with trains t′ ∈ T −{t}, such that
π is their primary platform (πP

t′
= π) and their occupation time interval [aP

t′
, dP
t′
] contains

instant m ∈ It. Note that there is no cost associated to backup platforms. Moreover a backup
platform can be assigned simultaneously (as backup, not as primary) to several trains.

Hence, the overall model has objective function (1) and constraints (2)-(4) and (6), (7),
(8).

5 Online Re-scheduling

Once a (robust) routing plan is given, one has to test its effectiveness against delays by
applying to it a recovery strategy which may be a general one or may be tailored according
to the type of plan.

5.1 Recovery strategies
In this paper we consider three different recovery strategies.

Delay Propagation This is a general strategy in which each train keeps its nominally-assigned
resources and the order of the trains on the resources (paths and platforms) is not modified.
Thus conflicts are resolved by adjusting the arrival and departure times (i.e., by possibly
propagating the delay). This strategy can be applied to any of the plans described in the
previous section.

Backup Platform This strategy assigns trains either to their primary platform or to their
backup platform, whichever leads to less delays. The associated re-scheduling algorithm
tries to exploit the recovery resources provided by the plan in order to minimise the delay
propagation. This strategy is only applicable for the backup robust type of plan, since
we need specific information on the recovery resources.
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Full This general recovery rule is the most powerful one. It allows any kind of re-scheduling
action. Hence, trains may be assigned to completely different patterns with respect to
the nominal plan. Being a general strategy, it can be applied to all types of plans.

5.2 Re-scheduling algorithms
For each of these strategies, we implemented an optimisation-based re-scheduling algorithm
obtained by expressing mathematically the corresponding rules. This can be done by
extending model (1)-(4). The re-scheduling process is performed by solving the associated
mathematical program.

5.2.1 The objective function
The simulation process provides each train t ∈ T with the estimated arrival time ETA(t)
which is defined as the nominal arrival time plus the external delay. In our evaluation
framework, the values ETA(t) are provided by the simulation engine (as will be explained in
the next section). The objective function of all re-scheduling algorithms aims at minimising
the total propagated delay. We define the propagated delay for train t, ∆t, as the realised
departure time of t minus the nominal departure time of t. In other words, the propagated
delay is the delay upon departure, i.e., the delay with respect to the nominal release time of
the departure path. The reason for doing this is that the delay upon departure will affect
subsequent railway stations in the train schedule and represents the delay exported by the
railway station. Note that by minimising the delay upon departure we often also minimise
the delay upon arrival, i.e., the delay with respect to the nominal release time of the arrival
path, especially for tight train schedules. Clearly, the realised departure time of t depends
upon the pattern P assigned to t. ∆t,P represents the delay propagated by train t if assigned
to pattern P .

5.2.2 Shift constraints
The MIP models for the re-scheduling algorithms extend the original structure of (1)-(4).
Still, the re-scheduling models allow rather large additional arrival/departure shifts in order
to be able to deal with train delays. Hence, the number of admissible patterns is much
higher than in the planning models. Further, the queues of trains on the in-bound tracks
require additional constraints. In fact, trains that are delayed on arrival must wait outside
the railway station on some in-bound tracks, since overtaking among trains on arrival is
not possible. We model the in-bound queues by forbidding shift values that correspond
to a train overtaking another. In other words if δat is the shift on arrival for train t, then
ETA(t1) < ETA(t2) implies ETA(t1) + δat1 < ETA(t2) + δat2 for trains t1 and t2 entering
the station from the same direction. We can express this with constraints of the form:∑

(t,P )∈S

xt,P ≤ 1 S ∈ S (9)

These constraints forbid the simultaneous occurrence of a given set S of patterns, if these
together indicate that a train joins the queue of waiting trains earlier but leaves it later;
S denotes a family of all such sets. For illustration, consider an example with three
different trains (t1, t2, t3), whose estimated arrival times are respectively ETA(t1) =10:00,
ETA(t2) =10:02, ETA(t3) =10:05. For simplicity, suppose the maximum allowed shift
forward on arrival (max δat ) to be 5 minutes for all trains. Whenever we apply some shifts
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Figure 1 Shift incompatibility graph.

on these trains, we want to keep the original order corresponding to the ETA instants, i.e.,
in this case,: t1 ≺ t2 ≺ t3.

In Figure 1 each big oval represents a train, with all the possible arrival times (represented
by the associated nodes) according to the different shift values. An edge from one node to
another means that the corresponding two shift values are incompatible. This happens either
when the shifts make the two arrival times equal or change the order. Note an important
characteristic of this shift incompatibility graph: edges go from one train to the following one,
but because of the transitive property, we do not need to specify the edges connecting non
consecutive trains.

Each shift-node within a big oval represents all the patterns for the associated train that
use a particular shift value s. The weight of a node is defined as the sum of all pattern variables
associated with patterns that belong to the given node. Thus, separation of constraints (9)
can be done by looking for maximum weight cliques on this shift incompatibility graph. This
turns out to be easy by dynamic programming as explained in [11].

The overall re-scheduling model reads as follows:

min
∑
t∈T

∑
P∈Pt

∆t,P xt,P +
∑
t∈T

Mtst (10)

subject to (2)-(4) and (9).

6 Simulation Framework

In the previous section we presented several ways to create robust routing plans as well as
several re-scheduling strategies. In order to analyse the performance of these approaches,
we designed a simulation framework. Its input consists of (i) a nominal routing plan, (ii)
a re-scheduling strategy and (iii) a probability distribution for the train delays. Generally
speaking, the framework computes, using a rolling horizon, the outcome of the re-scheduling
process when the nominal plan is executed subject to the selected external delays. Then
the robustness of the nominal plan and the effectiveness of the re-scheduling strategy are
measured by the cumulative arrival and departure delays. In this section we discuss the
simulator in detail.

The simulator first generates the external delay for each train t ∈ T according to a given
probability distribution (discussed in the next section). The estimated arrival time ETA(t)
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equals the nominal arrival time of t plus the external delay of t. That is, ETA(t) is the
earliest time instant when train t can enter the station.

Once all the ETA values have been defined, the framework simulates a day, starting
at 0:00 and advancing the simulated time by 1 minute in each iteration. In one iteration,
the simulator collects the trains that are to arrive in the forthcoming 1 hour and passes
these trains to the re-scheduler algorithm. That is, the simulator works with a 1-hour
rolling horizon. The simulator also maintains the current schedule which is the train-pattern
assignment of the already re-scheduled trains. In particular, the simulator provides for each
train the ETA, the planned patterns as well as the pattern assigned by the current schedule
(if any). From this input, the re-scheduler assigns a pattern to each train, and the simulator
updates the current schedule accordingly. This process is repeated until the simulated time
reaches the end of the day. Since this requires the solution of the rescheduling model for
each simulated minute, in order to have reasonable computing times we stop as soon as the
first integer solution is found. This is essentially a diving heuristic as explained in [3].

The simulator framework addresses two issues that are important for realistic train routing
applications. The first issue is that some formerly taken decisions (such as those on the
platform of a certain train) may not be altered any more because the decision has already
been announced or because the train has already arrived. Therefore the simulator restricts
the re-scheduling possibilities as follows.

The platform assigned to a train can be modified (with respect to the current schedule)
only if more than 10 minutes are left till the train’s arrival.
The arrival shift (i.e., the additional delay added by the re-scheduler upon arrival) can
be changed only if the train has not arrived yet.
The departure shift can be changed only if the train has not departed yet.

The second issue concerns the accuracy of the delay estimates. In real-life applications,
the actual external delay is not known exactly till few minutes before the realised train arrival.
Instead, a gradually improving estimate is available. The simulator may incorporate this
uncertainty by providing distorted ETA values to the re-scheduler for trains that have more
than few minutes till their arrival. We note that our preliminary computational results do
not address this issue yet.

The quality of the re-scheduling process is measured by the cumulative departure (or
arrival) delay, defined as the difference between the realised and nominal departure (or
arrival) times, summed over all trains. We compare these values to the cumulative external
delay defined as the sum of all external delays. By this comparison, one can analyse the effect
of a combination of a nominal plan and a re-scheduling strategy have on the punctuality at
the considered railway station, and on the propagation of delays through the network.

7 Preliminary Computational Results

We performed our preliminary computations on a real-world instance of Rete Ferroviaria
Italiana associated with the station of Genova Porta Principe together with the corresponding
tentative timetable. The station has 10 platforms and the timetable concerns a 12 hour
period, contains 119 trains, and has an average dwell time of 5.4 minutes. The computations
have been carried out on a standard PC with an Intel Duo Core 3.33GHz processor and with
3GB of internal memory under Windows XP. The algorithms are implemented in C/C++
using CPLEX 11.1. First we compute the three nominal plans: Basic, using the basic
model of Section 4.1; AC, according to Section 4.2; and Backup, according to Section 4.3.
This is done using a branch-and-cut-and-price heuristic approach. Basic and Backup
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can be solved in less than 10 minutes. In particular backup constraints do not seem to
complicate the structure of the model. AC turns out to be more demanding (about 20
minutes of computation) since it requires many additional and complicating constraints for
the linearisation of the objective function (see [3]).

In order to investigate the online re-scheduling problem, we consider the three strategies
described in Section 5; we refer to the strategies as Prop, Backup and Full, respectively.
While the Full strategy lends itself to be applied to every nominal plan, the Backup
strategy can be used only for the Backup plan, whereas it does not make sense to apply the
Prop strategy to a Backup plan as it would not use backup platforms at all.

The external delays are generated using a truncated exponential distribution, that is, an
exponential distribution where large values are cut off and whose mean is 4 minutes. For the
sake of simplicity we assume that all the external delays follow the same distribution.

For each nominal plan and re-scheduling strategy, we consider 15 random realisations of
the random external delay values. Note that the number of trains varies a little as well as the
cumulated external delays. This is because a few trains are cancelled by the robust planners.
This may slightly affect the comparison of the delay propagation, but only marginally since
the number of cancelled trains is small, so in these preliminary computations we did not
consider this aspect. Table 1 presents the outcome of the simulation, showing the average of
the cumulative external, arrival and departure delays. Further, the last two columns indicate
the increment of the arrival and departure delays compared to the external delays.

Table 1 Preliminary computational results for Genova.

Plan Strategy Number of Cum. Cum. Cum. Incr. Incr.
trains external arr. dep. arr. dep.

AC Full 119 313 316 280 1% −11%
Backup Full 109 281 282 249 1% −11%
Basic Full 119 313 315 277 1% −11%
AC Prop 119 313 337 301 8% −4%
Backup Backup 109 281 293 270 4% −4%
Basic Prop 119 313 359 335 15% 7%

From the results, it turns out that the Full strategy is rather insensitive to the nominal
plan. On the other hand, for the Prop strategy the AC plan appears to be much better
than the Basic one with an increment of the cumulative arrival delay of 8% rather than
15% and a decrement of the cumulative departure delay of 4% rather than an increment of
7%. Finally, the Backup strategy (applied to the Backup plan) does better than the Prop
one applied to the AC plan, since the increment of the cumulative arrival delay is only 4%
(the decrement of the cumulative departure delay being approximately the same). Given
that the Full strategy appears to be mainly of theoretical interest in practice and the Prop
and Backup ones look closer to practice, these results suggest that the definition of backup
platforms may be fairly helpful.

The only significant computation times for the simulation are spent on the re-scheduler
and amount to 1-15 seconds for each call to the Prop-Backup re-schedulers and a couple
of minutes for the Full re-scheduler. This indicates that, after further fine-tuning, the
proposed method is suitable for real-time applications.
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8 Conclusions

In this paper we proposed robust routing models and re-scheduling algorithms for the train
routing problem. Further we designed a simulation framework to compare the robustness of
the nominal plans and the effectiveness of the re-scheduling algorithms.

We carried out preliminary computational results on a realistic instance of the main
Italian railway infrastructure manager. The results indicate that incorporating our robustness
considerations in the train routing problem, together with appropriately chosen online re-
scheduling algorithms, can indeed lead to better punctuality of the trains, with respect to
basic nominal planning. Further, the computation times are suitable both for robust nominal
planning (in early planning stages) and for online re-scheduling (in real-time operations).

In our future research we will fine-tune the proposed methods, extend our test-bed to
other instances, and we will consider novel heuristic recovery algorithms.
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