
Instantiation-Based Interpolation for Quantified Formulae
Jürgen Christ

Albert-Ludwigs-Universität,
79110 Freiburg, Germany

christj@informatik.uni-freiburg.de

Jochen Hoenicke
Albert-Ludwigs-Universität,

79110 Freiburg, Germany
hoenicke@informatik.uni-freiburg.de

Abstract

Interpolation has proven highly effective in program analysis and verification, e. g., to derive
invariants or new abstractions. While interpolation for quantifier free formulae is understood quite
well, it turns out to be challenging in the presence of quantifiers. We present in this paper modi-
fications to instantiation based SMT-solvers and to McMillan’s interpolation algorithm in order to
compute quantified interpolants.

1 Introduction

While SMT solvers have been used in verification and model checking for many years [9], recent ap-
proaches use Craig interpolation [2], e. g., to compute new predicates during the refinement step of
predicate abstraction [15] or to compute image operators in symbolic model checking [19, 16, 21, 23,
5, 13, 14]. Model checkers like ARMC [23] or SLAB [5] for example use interpolation during their
abstraction refinement phase. Furthermore, interpolants can be used in automated invariant generation
[22].

Current interpolation algorithms either are not able to handle quantified input formulae [20, 24] or
cannot be integrated into recent SMT solvers based on quantifier instantiation [2, 22, 17]. As verification
requires the ability to reason about quantifiers which arise from various sources like framing axioms or
theories that are not equipped with an own decision procedure, interpolation procedures that can deal
with quantified input formulae are needed.

We combine instantiation based proof generators with McMillan’s interpolation algorithm presented
in [20]. The combination allows arbitrary quantifier alternation in its input and produces a valid Craig
interpolant. It can easily be integrated into existing SMT solvers [3, 11, 8] and adapted to different inter-
polation schemes [7, 6]. To our knowledge, this is the first method that allows for efficient interpolation
of quantified formulae from an instantiation based resolution proof given by a state of the art SMT solver.

The contributions of this paper are a generic, satisfiability preserving modification to quantifier in-
stantiation procedures and an additional step during resolution to generate a valid interpolant.

2 Notation

We assume the usual notions and terminology of first order logic. Let Σ be a signature consisting of a set
of function and predicate symbols. Each symbol is assigned a non-negative arity. We call 0-ary function
symbols constants and denote them by a, b, and s. In the context of quantifiers we also consider 0-ary
variable symbols which we will denote by x, y, and z. We abbreviate sets of variables bound by one
quantifier by x.

We call a quantifier in formula φ positive if it is not negated after converting φ into Negation Normal
Form (NNF) and negative otherwise. Each quantifier binds a positive number of distinct variables.

For a formula φ , the set syms(φ) contains all function and predicate symbols occurring in φ . The set
vars(φ) contains all unbound variables occurring in the formula. With a slight abuse of notation, given a
term t, we use syms(t) and vars(t) to denote the set of symbols resp. the set of free variables in t.

1

Dagstuhl Seminar Proceedings 10161
Decision Procedures in Software, Hardware and Bioware
http://drops.dagstuhl.de/opus/volltexte/2010/2735

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
christj@informatik.uni-freiburg.de
hoenicke@informatik.uni-freiburg.de

Instantiation-Based Interpolation Christ and Hoenicke

Definition 1. Given two closed formulae A and B whose conjunction is unsatisfiable, a Craig Interpolant
is a closed formula I such that

1. A |= I

2. B∧ I is unsatisfiable and

3. syms(I)⊆ syms(A)∩ syms(B).

Given two formulae A and B in CNF, we decompose every clause C into the set of literals that occur
only in A (denoted by localA(C)), the set of literals occurring only in B (denoted by localB(C)), and the
set shared(C) of literals that occur in A and B. We use inB(C) to abbreviate shared(C)∪ localB(C).

Let C1∨ l and C2∨¬l be two clauses. Applying the resolution rule yields the resolvent clause C1∨C2.
The literal l is called the pivot of the resolution. A resolution proof or resolution refutation is a sequence
of applications of the resolution rule to input clauses and resolvents that results in the empty clause.

3 Preliminaries

This section presents basic techniques which we extend and combine in section 4. In 3.1, we present a
strategy to prove unsatisfiability of quantified formulae. Section 3.2 describes McMillan’s interpolation
algorithm [20].

3.1 Instantiation Based Refutation

This section gives an overview of state of the art SMT solving. Since we cannot compute interpolants
for satisfiable formulae, we bias our presentation towards refutations.

To prove unsatisfiability of a formula φ , we first transform φ into conjunctive normal form (CNF)
using a Tseitin-style encoding [26]. We use skolemization for every positive existential and for every
negative universal quantifier. Remaining quantified formulae get transformed into proxy literals [4].
Those proxy literals are propositional abstractions of the corresponding quantified formulae. I. e., for a
formula ∀x. φ(x), we introduce a proxy l∀x.φ(x), which represents the truth value of ∀x. φ(x).

Next, we use DPLL(T) [10] as proof search strategy to check the skolemized formula for satisfia-
bility. The set of clauses used as input to DPLL(T) contains only ground and proxy literals. Quantifier
reasoning is done by an instantiation strategy which, given a quantified formula, detects instantiations
needed to prove unsatisfiability of the input formula. Whenever a proxy literal l∀x.φ(x) is asserted, an
instantiation procedure is used to produce instantiations for the formula ∀x.φ(x). For every instantiation,
an instantiation clause is added which connects the proxy literal representing the quantified formula with
the instantiation. If, e. g., the proxy literal l∀x.φ(x) is asserted and the formula ∀x.φ(x) gets instantiated
by x← c, the clause ¬l∀x.φ(x)∨φ(c) is added to the proof system.

Instantiation procedures might, e. g., be guided by patterns [4] or by instantiation sets based on a
structural analysis of the input formula like array properties [1] or local theory extensions [12, 18]. All
these methods replace a quantified formula ∀x.φ(x) by a finite conjunction

∧
ci

φ(ci).
In the remainder of this paper, we do not assume any specific instantiation procedure. Every proce-

dure that replaces a quantified formula by a conjunction of instantiations can be modified as described in
4.1.

Example 1 (Refutation of a quantified formula). Take the formula

(∀x. f (g(x)) = a)∧ f (s) 6= a∧g(b) = s.

2

Instantiation-Based Interpolation Christ and Hoenicke

It first gets transformed into the clause set

{{l∀x. f (g(x))=a}, { f (s) 6= a}, {g(b) = s}}

which only contains unit clauses. Hence, every literal gets asserted and, since l∀x. f (g(x))=a is asserted, an
instantiation procedure is used to produce instantiations for ∀x. f (g(x)) = a. This procedure then detects
the instantiation x← b which is needed to prove unsatisfiability of the original formula.

If we instantiate x← b, we get a resolution refutation like presented in Figure 1. Blue color indicates
additional theory lemmata that were derived during proof generation, green depicts input clauses, and
yellow boxes represent instantiation clauses.

⊥

¬l∀x. f (g(x))=a

f (g(b)) 6= a

g(b) = s f (g(b)) 6= a,g(b) 6= s

f (s) 6= a f (g(b)) 6= a,g(b) 6= s, f (s) = a

¬l∀x. f (g(x))=a, f (g(b)) = a

l∀x. f (g(x))=a

Instantiation Clause

Theory-Lemma
Resolvent

Input Clause

Legend:

Figure 1: Refutation by resolution for example 1

3.2 Quantifier Free Interpolation

Algorithms to compute interpolants from resolution proofs of unsatisfiability were proposed, e. g., in
[24] or [20]. These algorithms both assign a partial interpolant to every clause occurring in the proof.
Correctness of these algorithms is ensured by an invariant for partial interpolants. We will here give a
short overview over McMillan’s version presented in [20].

To compute an interpolant from a resolution refutation of A∧B, the algorithm annotates every clause
with a partial interpolant. For input clauses C in A, its partial interpolant is set to shared(C). Clauses in
B are annotated with >. Theory specific interpolators annotate theory lemmata with partial interpolants.
Every resolution step combines the partial interpolants of the premises depending on the pivot element:
If the pivot occurs in at least one clause in B, the partial interpolants from the input clauses are combined
by conjunction, otherwise by disjunction. The partial interpolant assigned to the empty clause is returned
as Craig Interpolant.

Theorem 1 (Correctness of McMillan’s Interpolation Algorithm). McMillan’s interpolation algorithm
constructs valid Craig interpolants.

A proof for Theorem 1 is given in [20]. This proof relies on following invariants for a clause C with
partial interpolant IC:

A |= IC ∨ localA(C)
B∧ IC |= inB(C)

syms(IC) ⊆ syms(A)∩ syms(B)

3

Instantiation-Based Interpolation Christ and Hoenicke

4 Interpolation for Quantified Formulae

This section presents the contributions of this paper. It combines quantifier instantiation with McMillan’s
interpolation procedure to derive quantified interpolants for any formula that can be proven unsatisfiable.
First, in 4.1, we show how to modify instantiations in order to support interpolation. Next, in 4.2 we
describe a method to infer quantified interpolants whenever they are needed. Finally, in 4.3, we give a
correctness and termination proof of our algorithm.

4.1 Instance Purification

An interpolation problem consists of two closed formulae A and B. Interpolants as defined in definition
1 only contain symbols shared between A and B. Every term occurring in an input clause either is local
to A if it contains at least one symbol that does not occur in B, local to B if it contains at least one symbol
that does not occur in A, or shared. Instantiation produces new terms by substituting variables. Resulting
terms might neither be local to A or B, nor shared. If the variable, e. g., is an argument to an A-local
function symbol and it gets substituted by a B-local term, the resulting term contains a mixture of local
symbols and is neither local to A or B, nor shared. We call such a term mixed.

For resolution based interpolation algorithms, it is important to have a function symbol and all its
arguments in the same partition. Otherwise, we get a mixed term which is difficult to use during interpo-
lation. But we do not want to restrict an instantiation procedure to only instantiate quantifiers such that
the instantiation does not create a mixed term. This would significantly reduce the number of formulae
we could refute. Hence we give an algorithm to purify an instantiation term according to the partition of
the quantifier which gets instantiated. This step introduces new variables which are shared between both
parts of an interpolation problem and auxiliary equalities assigning meaning to these variables.

Inputs to purification are an instantiation term t ≡ f (t1, . . . , tn) (recall that constants are 0-ary func-
tions) and a target partition P ∈ {A,B}. The algorithm proceeds as follows:

1. If f occurs in the target partition, return f applied to the instance purification of t1, . . . , tn onto P.

2. Otherwise, f occurs in the other partition P′. Create a fresh variable that represents f . Add to P′

the equality between this variable and the application of f to t1, . . . , tn purified onto P′. Return the
newly created variable.

Example 2 (Instance Purification). Let f /1 and a be symbols occurring only in partition A and g/2 and b
symbols occurring only in B. Tables below show the purification of f (g(a,b)) onto A resp. B. They show
every step in the algorithm including the term t currently purified, the target partition P, the additional
equalities (Aux EQs) introduced during this step, and the result.

t P Aux EQs Result
f (g(a,b)) A f (v2)
g(a,b) A v2 = g(v1,b) v2

a B v1 = a v1

b B b

t P Aux EQs Result
f (g(a,b)) B v3 = f (v2) v3

g(a,b) A v2 = g(v1,b) v2

a B v1 = a v1

b B b

4.2 Quantifier Introduction

The instance purification described above introduces new variables which are shared between both par-
titions and hence may occur in an interpolant. Since these variables are not part of the original input
formula, we have to remove them by introducing quantifiers. Although it would be possible to cre-
ate an unquantified interpolant containing auxiliary variables and introduce the quantifiers as last step

4

Instantiation-Based Interpolation Christ and Hoenicke

[20] (yielding Prenex Normal Form), we propose a modification to the interpolation engine in order to
introduce quantifiers as soon as possible.

We say a literal supports a variable, if and only if the variable occurs inside the literal. A variable v1
depends on v2 if v2 occurs in the auxiliary equality defining v1. If v is defined by the equality v = t, the
set of variables v depends on is deps(v) = vars(t). Its inverse, ideps(v), denotes all variables v′ such that
v ∈ deps(v′). By ideps∗ we denote the reflexive transitive closure of ideps.

We have to order quantifier introduction such that dependencies between variables are translated into
dependencies between the quantifiers. If a variable v1 depends on v2, an auxiliary equality v1 = φ(v2)
exists. This equality tells us to first choose a value for v2 and then compute the value for v1. According
to this observation, the quantifiers should occur in dependency order. But our interpolation procedure
puts quantifiers in front of a previously constructed partial interpolant. Hence, the procedure introduces
quantifiers in inverse dependency order which is a topological order on the inverse dependency graph.

One has to be careful if a variable becomes unsupported and at least one variable that depends on it
is still supported by the clause. In this case we cannot introduce a quantifier for the unsupported variable
immediately, but have to delay introduction until quantifiers for all inverse dependencies of this variable
are introduced.

The new algorithm to annotate a resolution tree containing auxiliary variables is shown below. It
adds steps 3, 4 and 5c to McMillan’s algorithm:

1. Annotate each input clause C with a partial clause interpolant IC like in McMillan’s algorithm.

2. For each theory lemma Cl , generate a theory specific interpolant ICl (using a theory specific inter-
polator).

3. For each unit clause U containing an auxiliary equality, set IU to > if the equality was added to B
and to ⊥ otherwise.

4. Treat every instantiation clause like a regular input clause.

5. On Resolution of C1 ∨ l with interpolant I1 and C2 ∨¬l with interpolant I2 to C3 ≡ C1 ∨C2 with
interpolant I3:

(a) If l occurs in B, set I3 to I1∧ I2. Otherwise, set I3 to I1∨ I2.

(b) Build quantification set QS = ideps∗(vars(l))\ ideps∗(vars(C3)).

(c) For each variable v ∈ QS in inverse dependency order:

i. If v is mapped to an A-local term, set I3≡∃v.I3 and to I3≡∀v.I3 otherwise. The quantifier
might be omitted if v does not occur in I3.

Example 3. We use our algorithm to interpolate the formula presented in example 1. We partition the
interpolation problem into

A ≡ (∀x. f (g(x)) = a)∧ f (s) 6= a

B ≡ g(b) = s

Since the quantified formula is in A and the instantiation term b is in B, we introduce a variable vb
and the equality vb = b to B. The annotated resolution tree is shown in Figure 2. The leaves are colored
according to where the clause originated. Green depicts clauses coming from A, red come from B, theory
lemmata are blue, and yellow represent instantiation clauses and auxiliary equalities. It is easy to see that
the annotation for the bottom clause is a valid interpolant.

5

Instantiation-Based Interpolation Christ and Hoenicke

⊥ ∀vb.g(vb) 6= s

¬l∀x. f (g(x))=a ∀vb.g(vb) 6= s

f (g(vb)) 6= a g(vb) 6= s

g(b) = s > f (g(vb)) 6= a,g(b) 6= s g(vb) 6= s

f (s) 6= a ⊥ f (g(vb)) 6= a,g(b) 6= s, f (s) = a g(vb) 6= s

f (g(vb)) 6= a,vb 6= b,g(b) 6= s, f (s) = a g(vb) 6= s vb = b >

¬l∀x. f (g(x))=a, f (g(vb)) = a ⊥

l∀x. f (g(x))=a ⊥

Instantiation Clause

Theory-Lemma
Resolvent

Input Clause from B

Input Clause from A

Legend:

Figure 2: Refutation by resolution for Example 1 annotated by partial interpolants.

The previous example presents the simple story. It does not include variable dependencies and hence
does not have to deal with ordering of quantifier introductions. Hence, we present an example which is
more involved and shows the importance of dependency tracking:

Example 4. In this example we will derive an interpolant for

A = ∀x. h(x) 6= a

B = ∀y. h(g(y)) = y

For a refutation, we need to instantiate x with g(a) and y with a. But g is B-local and a is A-local.
Hence, our instantiation procedure instantiates x with vg and y with va. Additionally, the equality va = a
is added to A and vg = g(va) is added to B. Figure 3 shows the resolution tree for one possible refutation.
Again, green depicts clauses coming from A, red come from B, theory lemmata are blue, and yellow ones
represent instantiation clauses and auxiliary equalities.

Since va has an inverse dependency on vg, we cannot introduce a quantifier for va before a quantifier
for vg is introduced. During the last resolution step vg becomes unsupported and we can add the quanti-
fiers for both vg and va. Inverse order requires to first quantify over vg (producing ∀vg. h(vg) 6= va) and
then quantify over va. Correctness of the resulting interpolant ∃va. ∀vg. h(vg) 6= va can easily be verified.

Notice that ∀vg. ∃va. h(vg) 6= va is not a valid interpolant since it is not inconsistent with B. Consider a
universe consisting of two distinct elements c0 and c1. Furthermore, let h and g be the identify function.
We have to show that ∀y. h(g(y)) = y∧ ∀vg. ∃va. h(vg) 6= va is unsatisfiable. Skolemization yields
∀y. h(g(y)) = y∧∀vg. h(vg) 6= skva(vg). This formula should be unsatisfiable, but we can extend the
interpretation above by skva(ci) = c1−i and end up with a satisfying model.

4.3 Correctness

In this section, we show correctness of the algorithm presented above. We start by showing that our
instantiation modification preserves unsatisfiability and finally show that our algorithm yields a valid
interpolant.

Theorem 2 (Purification preserves unsatisfiability). If a set of quantifier instantiations is sufficient to
show unsatisfiability of a formula, the corresponding set of purified instantiations suffices, too.

6

Instantiation-Based Interpolation Christ and Hoenicke

⊥ ∃va.∀vg.h(vg) 6= va

h(vg) 6= a ⊥

l∀x.h(x)6=a ⊥ ¬l∀x.h(x)6=a,h(vg) 6= a ⊥

h(vg) = a h(vg) 6= va

h(vg) = a,vg 6= g(va) h(vg) 6= va

h(vg) = a,vg 6= g(va),va 6= a h(vg) 6= va

h(g(va)) = va >

l∀y.h(g(y))=y > ¬l∀y.h(g(y))=y,h(g(va)) = va >

h(vg) = a,vg 6= g(va),va 6= a,h(g(va)) 6= va h(vg) 6= va

va = a ⊥

vg = g(va) >

Instantiation Clause

Theory-Lemma
Resolvent

Input Clause from B

Input Clause from A

Legend:

Figure 3: Refutation by resolution for Example 4 annotated by partial interpolants.

Proof for this theorem is trivial since quantifier instantiation and purified quantifier instantiation yield
equisatisfiable formulae.

Lemma 1 (Inverse dependency order). Inverse dependencies of variables introduced during purification
of instances induce a strict order on these variables.

Proof is trivial since we defined inverse dependency order as topological order on the inverse depen-
dency graph of all auxiliary variables.

Theorem 3 (Termination). The interpolation procedure presented in this paper terminates if a finite
resolution proof is used.

Proof of this theorem follows from the fact that the resolution proof is finite and that we only add a
finite number of quantifiers.

Theorem 4 (Valid Interpolant). Our method presented above yields a valid interpolant for an unsatisfi-
able pair of closed formulae (A,B).

Proof for this theorem is given in appendix A.

5 Implementation

We implemented the interpolation algorithm presented in this paper in an experimental SMT solver. As
optimization, if the same term is purified multiple times, we reuse the auxiliary variable representing this
term.

Upon instantiation, we add an instantiation clause and auxiliary equalities produced during purifi-
cation. In all literals introduced this way, we remember the variables supported by this literal. This
information is used during clause creation to compute support for a clause.

We need to keep track of all variables supported by a clause. This produces some memory overhead
which can be reduced by lazy initialization and aggressive sharing of these sets.

7

Instantiation-Based Interpolation Christ and Hoenicke

6 Related Work

McMillan presented in [20] a short overview of how to infer quantified interpolants. While his presenta-
tion only presented an informal proof, we gave a complete proof for a different interpolation system. His
system introduces fresh symbols for every instantiation and adds auxiliary equalities. Our approach also
captures mixed instantiations where a function symbol comes from a different partition than some of its
arguments. His interpolants are in Prenex Normal Form while we push quantifiers as far as possible into
the formula. This has different effects on instantiation based solvers (see [4, page 46]).

In [22], McMillan shows how to use saturation based solvers to generate universally quantified inter-
polants. Since we also want to have existentially quantified interpolants, such an interpolation procedure
is not powerful enough. Furthermore, instantiation based approaches to deal with quantifiers yield a
better performance than saturation based ones on many software model checking problems.

In [17], Kovàcs and Voronkov give a more general version of interpolation for saturation based
solvers than [22]. Their technique uses a separating term ordering which prevents mixed terms during
inference. In contrast to our method, they explicitly prevent such terms while we purify all instantiations
such that we get a separated proof.

[25] provides an interpolation procedure for a decidable set of theory extensions. They consider
quantifier free formulae over local theory extensions. Such extensions provide axioms for new symbols
which can then be replaced using a set of rewriting and instantiation rules. Resulting interpolants are
quantifier free modulo theory extensions. Our method does not give such guarantees. Nevertheless the
algorithm presented in this paper is able to generate an interpolant for all inputs the method described in
[25] can compute an interpolant for.

7 Conclusions

We presented a method to obtain interpolants for quantified formulae from state of the art SMT solvers
based on quantifier instantiation. This method always delivers a valid interpolant if a proof of unsatisfi-
ability can be generated. The main design goal of the method presented in this paper is easy integration
into existing solvers based on quantifier instantiation.

Although our presentation focuses on McMillan’s interpolation algorithm [20], it is not limited to
this approach. Instantiation purification can be done in general and the quantifier introduction step can
be done after every interpolation step of resolution based interpolation systems like the generic one
presented in [7] which can be instantiated to produce McMillan’s or Pudlák’s system.

Acknowledgments

This work was partly supported by the German Research Council (DFG) as part of the Transregional
Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR14
AVACS). See www.avacs.org for more information.

This work was partially funded by the German Federal Ministry of Education and Research (BMBF)
in the framework of the Verisoft XT project under grant 01 QS 07 008. The responsibility for this article
lies with the authors.

We thank Viorica Sofronie-Stokkermans for helpful comments and discussions.

References
[1] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What ’s decidable about arrays? In VMCAI’06,

volume 3855 of lncs, pages 427–442, Charleston, SC, January 2006. Springer Verlag.

8

Instantiation-Based Interpolation Christ and Hoenicke

[2] William Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J.
Symb. Log., 22(3):269–285, 1957.

[3] Leonardo M. de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS’08, pages 337–340,
2008.

[4] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program checking. J. ACM,
52(3):365–473, 2005.

[5] Klaus Dräger, Andrey Kupriyanov, Bernd Finkbeiner, and Heike Wehrheim. SLAB: A certifying model
checker for infinite-state concurrent systems. In TACAS’10, Lecture Notes in Computer Science. Springer-
Verlag, 2010.

[6] Vijay D’Silva. Propositional interpolation and abstract interpretation. In Proceedings of the European Sym-
posium on Programming (ESOP’10). Springer, 2010.

[7] Vijay D’Silva, Daniel Kroening, Mitra Purandare, and Georg Weissenbacher. Interpolant strength. In VM-
CAI’10, pages 129–145, 2010.

[8] Bruno Dutertre and Leonardo De Moura. The YICES SMT solver. Technical report, 2006.
[9] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata.

Extended static checking for Java. In PLDI’02, pages 234–245, 2002.
[10] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. DPLL(T): Fast

decision procedures. In CAV’04, pages 175–188, 2004.
[11] Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified verification conditions using satisfiability

modulo theories. In CADE’07, pages 167–182, 2007.
[12] Robert Givan and David A. McAllester. New results on local inference relations. In KR, pages 403–412,

1992.
[13] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction. In SAS’09, number 5673 in

LNCS, pages 69–85. Springer, 2009.
[14] M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In POPL’10, pages 471–482. ACM, 2010.
[15] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. Abstractions from proofs.

In POPL’04, pages 232–244, 2004.
[16] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. Abstractions from proofs.

In POPL’04, pages 232–244, 2004.
[17] Laura Kovács and Andrei Voronkov. Interpolation and symbol elimination. In CADE’09, pages 199–213,

2009.
[18] David A. McAllester. Automatic recognition of tractability in inference relations. J. ACM, 40(2):284–303,

1993.
[19] Kenneth L. McMillan. Interpolation and SAT-based model checking. In CAV’03, pages 1–13, 2003.
[20] Kenneth L. McMillan. An interpolating theorem prover. Theor. Comput. Sci., 345(1):101–121, 2005.
[21] Kenneth L. McMillan. Lazy abstraction with interpolants. In CAV’06, pages 123–136, 2006.
[22] Kenneth L. McMillan. Quantified invariant generation using an interpolating saturation prover. In TACAS’08,

pages 413–427, 2008.
[23] Andreas Podelski and Andrey Rybalchenko. ARMC: The logical choice for software model checking with

abstraction refinement. In PADL’07, pages 245–259, 2007.
[24] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations, 1996.
[25] Viorica Sofronie-Stokkermans. Interpolation in local theory extensions, October 2008. Special issue of

LMCS dedicated to IJCAR 2006.
[26] G. S. Tseitin. On the complexity of derivation in propositional calculus. In J. Siekmann and G. Wrightson,

editors, Automation of Reasoning 2: Classical Papers on Computational Logic 1967-1970, pages 466–483.
Springer, Berlin, Heidelberg, 1983.

9

Instantiation-Based Interpolation Christ and Hoenicke

A Proof of Theorem 4

The proof follows the algorithm presented in 4.2. We first give some definitions and lemmata needed
during the proof.

Definition 2 (Auxiliary Equalities). Let S be a set of variables introduced during purification. By
auxeqs(S) we denote the set of all equalities whose left-hand-side is a variable from S:

auxeqs(S) = {v = φ | v ∈ S}

Given an interpolation problem (A,B), we partition auxeqs(S) into auxeqsA(S), the conjunction of all
auxiliary equalities added to A, and into auxeqsB(S), the conjunction of those equalities added to B.

Lemma 2 (Auxiliary Equalities and Ordering). Let S be a set of auxiliary variables and v be a mini-
mal element according to inverse dependency order. Then, v = φ is the only equality containing v in
auxeqs(S).

Proof. Suppose auxeqs(S) contains a second equality v′ = ψ(v) for some v′ ∈ S. According to inverse
dependency ordering, v′ would be less than v, contradicting our premises.

Next we prove the interpolant resulting from the algorithm presented in 4.2 correct. The proof relies
on vars and ideps∗ being closed under set union.

Proof. Every partial interpolant IC annotating a clause C satisfies following invariants:

A∧auxeqsA(ideps∗(vars(C))) |= localA(C)∨ IC (1)

B∧auxeqsB(ideps∗(vars(C)))∧ IC |= inB(C) (2)

syms(IC) ⊆ syms(A)∩ syms(B) (3)

vars(IC) ⊆ ideps∗(vars(C)) (4)

Correctness of input, auxiliary equality, and instantiation clauses is trivial to show. The intermediate
interpolant produced in step 5a, however, does not satisfy these invariants. We provide different invariants
and show that the quantifier introduction steps reconstruct a valid partial interpolant. Let QS be the
quantification set as defined in step 5b in the algorithm. We use following invariants for step 5c:

A∧auxeqsA(ideps∗(vars(C)))∧auxeqsA(QS) |= localA(C)∨ IC (5)

B∧auxeqsB(ideps∗(vars(C)))∧auxeqsB(QS)∧ IC |= inB(C) (6)

syms(IC) ⊆ syms(A)∩ syms(B) (7)

vars(IC) ⊆ ideps∗(vars(C))∪QS (8)

Invariants (5)-(8) hold after 5b. We split cases on the membership of the pivot l of the resolution step.

Case 1: If l occurs in B, we know that l 6∈ localA(C∨ l). From premises A∧auxeqsA(ideps∗(vars(C1∨
l))) |= localA(C1 ∨ l)∨ I1 and A∧ auxeqsA(ideps∗(vars(C2 ∨¬l))) |= localA(C2 ∨¬l)∨ I2 we derive in-
variant 5 as follows:

Given A∧auxeqsA(ideps∗(vars(C1∨ l)))∧auxeqsA(ideps∗(vars(C2∨¬l))), we know localA(C1)∨ I1
and localA(C2)∨ I2 hold. This implies localA(C3)∨ (I1∧ I2) holds, too.

10

Instantiation-Based Interpolation Christ and Hoenicke

Since vars(C∨ l) = vars(C)∪ vars(l), auxeqs and ideps∗ are closed under set union and vars(l) =
vars(¬l), we can split the premises. By definition of QS we know that ideps∗(vars(C3))∪ideps∗(vars(l))=
ideps∗(vars(C3))∪QS holds and we can transform the premises into

A∧auxeqsA(ideps∗(vars(C3)))∧auxeqsA(QS)

Hence, we get invariant 5 from premises satisfying 1.
Since l ∈ inB(C1 ∨ l) and ¬l ∈ inB(C2 ∨¬l), resolution on l and ordering of the premises yields

following formula:

B∧auxeqsB(ideps∗(vars(C3)))∧auxeqsB(ideps∗(vars(l)))∧ (I1∧ I2) |= inB(C3)

We split ideps∗(vars(l))) into QS and a part already contained in ideps∗(vars(C3)) and get invariant 6.
Invariant 7 is trivial and 8 holds by definition of QS. Hence, I3 ≡ I1∧ I2 satisfies invariants 5–8.

Case 2: If l does not occur in B, we know l ∈ localA(C∨ l) holds. We get invariant 5 by resolution on
l and reformulation of the premises like above.

Given B∧ auxeqsB(ideps∗(vars(C3)))∧ auxeqsB(ideps∗(vars(l))) we know I1 |= inB(C1) and I2 |=
inB(C2) holds. This implies I1∨ I2 |= inB(C3). Reformulation of the premises proves invariant 6.

Invariant 7 is trivial and 8 holds by definition of QS. Hence, partial interpolant I3 ≡ I1∨ I2 satisfies
invariants 5–8.

Step 5a in the algorithm transforms partial interpolants satisfying invariants 1–4 into interpolants
satisfying 5–8.

Step 5c preserves invariants (5)-(8). The algorithm iteratively removes a minimal elements v, accord-
ing to inverse dependency ordering, from inference set QS. According to lemma 2, this variable only
occurs in the auxiliary equality defining this variable. Additionally it occurs in the partial interpolant I3.

Case 1: If the equality has been added to A, we have premises

A∧auxeqsA(ideps∗(vars(C)))∧auxeqsA(QS\{v})∧ v = φ |= localA(C)∨ IC(v) (9)

B∧auxeqsB(ideps∗(vars(C)))∧auxeqsB(QS\{v})∧ IC(v) |= inB(C) (10)

Since 9 is a tautology, it holds for all possible values of v, in particular for v = φ . Hence, the formula

A∧auxeqsA(ideps∗(vars(C)))∧auxeqsA(QS\{v}) |= localA(C)∨∃v. IC(v)

is a tautology as well. Hence, ∃v. IC(v) satisfies 5 after removing v from QS.
In 10, v occurs only in the partial interpolant. Furthermore, this formula is a tautology and, hence,

has to hold for every value of v. We get the tautology

∀v. B∧auxeqsB(ideps∗(vars(C)))∧auxeqsB(QS\{v})∧ IC(v)→ inB(C)

Pushing the quantifier in front of IC(v) yields

B∧auxeqsB(ideps∗(vars(C)))∧auxeqsB(QS\{v})∧∃v. IC(v) |= inB(C)

Hence, ∃v. IC(v) satisfies 6 after removing v from the inference set.
Since we do not introduce new symbols invariant 7 is trivially satisfied. Quantification removes v

from vars(I) in the next iteration. Therefore, invariant 8 is also satisfied after removing v from QS.
Removing a variable mapped to A from the inference set and adding an existential quantifier yields a

partial interpolant still respecting invariants 5–8.

11

Instantiation-Based Interpolation Christ and Hoenicke

Case 2: If the auxiliary equality has been added to B, we have the premises

A∧auxeqsA(ideps∗(vars(C)))∧auxeqsA(QS\{v}) |= localA(C)∨ IC(v) (11)

B∧auxeqsB(ideps∗(vars(C)))∧auxeqsB(QS\{v})∧ v = φ ∧ IC(v) |= inB(C) (12)

Variable v in 11 occurs only in IC. Since this formula holds tautologically, it holds for every possible
value of v. Adding a universal quantifier and pushing it in front of IC yields the tautology

A∧auxeqsA(ideps∗(vars(C)))∧auxeqsA(QS\{v}) |= localA(C)∨∀v. IC(v)

Hence, ∀v. IC(v) satisfies invariant 5 after removing v from QS.
From 12, we know that

B∧auxeqsB(ideps∗(vars(C)))∧auxeqsB(QS\{v})∧ IC(v)→ inB(C)

holds for at least one value of v, namely v = φ . Adding an existential quantifier in front of the implication
and pushing it inwards yields

B∧auxeqsB(ideps∗(vars(C)))∧auxeqsB(QS\{v})∧∀v. IC(v) |= inB(C)

Invariant 6 holds, therefore, after removing v from QS.
Invariant 7 holds trivially and invariant 8 holds after removing v from QS since quantification removes

v from vars(I).
Hence, we can remove a variable, that is mapped to a B-local term, from QS by putting a universal

quantifier in front of the current partial interpolant.

Invariants (5)-(8) imply (1)-(4) on termination. After this procedure terminates, the inference set QS
is empty and the partial interpolant satisfies the desired invariants 1–4.

For the empty clause C3 ≡ ⊥, we have vars(C3) = /0 and localA(C3) ≡ inB(C3) ≡ ⊥. Invariants 1–4
show, using above results, that the annotation for the empty clause is a valid Craig interpolant.

12

	Introduction
	Notation
	Preliminaries
	Instantiation Based Refutation
	Quantifier Free Interpolation

	Interpolation for Quantified Formulae
	Instance Purification
	Quantifier Introduction
	Correctness

	Implementation
	Related Work
	Conclusions
	Proof of Theorem 4

