
Capacity Constrained Routing Algorithms for Evacuation Route Planning

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 06-017

Capacity Constrained Routing Algorithms for Evacuation Route

Planning

Qingsong Lu, Betsy George, and Shashi Shekhar

May 04, 2006

Dagstuhl Seminar Proceedings 10121 
Computational Transportation Science 
http://drops.dagstuhl.de/opus/volltexte/2010/2721

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




1

Capacity Constrained Routing Algorithms for

Evacuation Route Planning

Qingsong Lu, Betsy George, Shashi Shekhar

This work was supported by Army High Performance Computing Research Center contract number DAAD19-01-2-0014 and

the Minnesota Department of Transportation contract number 81655. The content of this work does not necessarily reflect the

position or policy of the government and no official endorsement should be inferred. Access to computing facilities was provided

by the AHPCRC and the Minnesota Supercomputing Institute.

April 30, 2006 DRAFT



2

Abstract

Evacuation route planning identifies paths in a given transportation network to minimize the time
needed to move vulnerable populations to safe destinations. Evacuation route planning is critical for nu-
merous important applications like disaster emergency management and homeland defense preparation.
It is computationally challenging because the number of evacuees often far exceeds the capacity,i.e. the
number of people that can move along the road segments in a unit time. Linear Programming(LP) based
methods using time expanded networks can take hours to days of computation for metropolitan sized
problems. In this paper, we propose a new approach, namely a capacity constrained routing planner
which models capacity as a time series and generalizes shortest path algorithms to incorporate capacity
constraints. We characterize the design space for reducing the computational cost. Analytical cost model
and experiment results show that the proposed algorithm is faster than the LP based algorithms and
requires less memory. Experimental evaluation using various network configurations also shows that the
proposed algorithm produces solutions that are comparable to those produced by LP based algorithms
while significantly reducing the computational cost.

Index Terms

evacuation planning, routing and scheduling, transportation network

I. I NTRODUCTION

Many disasters, natural or man-made, can lead to situations where people need to be moved

from impacted areas to safe destinations. In such scenarios, it is critical to identify routes such

that evacuation can be completed in the shortest possible time. Evacuation route planning aims

at finding routes in the given transportation network that would minimize the evacuation time.

This is a critical step in disaster emergency management and homeland defense preparation.

The recent catastrophes caused by hurricanes on the Gulf coast underscore the importance of

evacuation planning. Route planning in these circumstances is challenging because of the capacity

constraintsi.e. the limit on the number of people that can move along the road segments

in unit time. Effective evacuation route planning that honors the capacity constraints of the

transportation network has the potential to reduce congestion during large scale evacuations.

A comprehensive approach which addresses capacity constraints and their time-dependence is

critical for the effectiveness of any evacuation plan.

Previous approaches [12], [19], [20], [23], [27], [28] to evacuation route planning use linear

programming (LP) based methods to generate evacuation plans. These methods incorporate

capacity constraints by using time expanded networks and require a user-provided upper bound

on the total evacuation time. Although these evacuation planning algorithms generate optimal

plans, they are expensive with respect to memory and take a long time (order of hours to days)
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to solve problems of the sizes usually encountered in urban evacuation scenarios. An overview

of LP based methods is given in Appendix III.

There is an immediate need for a scalable algorithm that quickly generates high quality

evacuation plans for metropolitan sized networks. This paper presents a new approach, namely

a Capacity Constrained Routing (CCRP) approach, to evacuation route planning. The proposed

approach makes use of well known shortest path algorithms and extends them by incorporating

capacity constraints. It models capacity as a time series to account for the time dependent nature

of the networks. It uses only the original evacuation network instead of the time-expanded

network used by the LP based approach and thus requires less memory.

In this paper, we characterize the design space available in the context of the Capacity Con-

strained Route Planner (CCRP) algorithm and evaluate the performance of the CCRP algorithm

for each dimension in the design space. The paper presents analytical cost models for the various

design options. Performance evaluation of CCRP was done by conducting experiments on various

network configurations. Analytical evaluation and experimental results show that the proposed

CCRP algorithm produces high quality solutions, and significantly reduces the computational

cost compared to the LP-based approach, which produces optimal but expensive solutions.

A. Application Domain

Evacuation route planning has been identified as a critical step in emergency management. A

recent Executive Summary [15] issued by the US Homeland Security Council listed 15 kinds of

scenarios, ranging from natural disasters to terrorist attacks, for which government agencies are

urged to develop emergency plans and most of these scenarios would require evacuation plans to

evacuate large populations to safe areas. Currently, local emergency management authorities often

identify evacuation routes by hand using a committee of experts. They do not have computerized

tools to consider capacity constraints of the transportation network and thus seldom avoid

congestion during evacuation. For example, when Hurricane Andrew was approaching Florida in

1992 (see Figure 14), the lack of effective planning caused tremendous traffic congestion, general

confusion and chaos (see Figure 15) [1]. This experience was echoed in the words of Mayor Tim

Lott of Morgan City, Louisiana when Hurricane Andrew later headed for that state: ”We packed

up Morgan City residents to evacuate in the a.m. on the day that Andrew hit coastal Louisiana,

but in early afternoon the majority came back home. The traffic was so bad that they couldn’t get
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through Lafayette.” [1]. These events illustrate the complexity of evacuation route planning and

the fact that the problem extends beyond computing the shortest routes from evacuation points

to safe destinations. A comprehensive approach which includes capacity constraints and their

time-dependence is critical for the effectiveness of the solution. In very recent times, Hurricane

Katrina and Hurricane Rita (see Figure 16) caused similar problems [21]. Figure 17 shows the

traffic congestion caused by Hurricane Rita during the Houston evacuation on highway I-45.

Other types of disasters, such as accidents or terrorist attacks (e.g. bio-chemical attack) may

also result in the need for massive and rapid evacuations of people from metropolitan areas [10],

[11], [15], [17]. In other cases, a disaster may require the evacuation of large buildings (e.g.

Pentagon, the Sears Tower).

Thus, efficient tools are needed to produce evacuation plans that identify routes and schedules

to quickly evacuate affected populations to safety in the event of natural disasters, terrorist attacks

or other types of large-scale emergencies.

B. Problem Formulation

We formulate the evacuation route planning problem as follows:

Given: A transportation network with non-negative integer capacity constraints on nodes and

edges, non-negative integer travel times on edges, the total number of evacuees and their initial

locations, and locations of evacuation destinations.

Output: An evacuation plan consisting of a set of origin-destination routes and a scheduling of

evacuees on each route. The scheduling of evacuees on each route should observe the capacity

constraints of the nodes and edges on this route.

Objective: (1) Minimize the evacuation egress time, which is the time elapsed from the start

of the evacuation until the last evacuee reaches the evacuation destination. (2) Minimize the

computational cost of producing the evacuation plan.

Constraint: (1) Edge travel time preserves the FIFO (First-In First-Out) property. (2) Edge travel

time reflects delays at intersections. (3) Limited amount of computer memory.

Example 1- An Evacuation Network: Figure 1 shows an example evacuation network.

Each node is shown by an ellipse and has two attributes: maximum node capacity and initial

node occupancy. For example, at node N1, the maximum capacity is 50, which indicates that
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this node can hold at most 50 evacuees at any time instant. The initial occupancy is shown to

be 10, which means there are 10 evacuees at this node when the evacuation starts. In Figure 1,

each edge, shown as an arrow, represents a link between two nodes. Each edge also has two

attributes: maximum edge capacity and travel time. For example, at edge N4-N6, the maximum

edge capacity is 5, which means at each time point, at most 5 evacuees can start to travel from

node N4 to N6 through this link. The travel time of this edge is 4, which means it takes 4

time units to travel from node N4 to N6. This approach of modeling an evacuation scenario to

a capacitated node-edge graph is similar to those presented in Hamacher [20], Kisko [28] and

Chalmet [12].
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Fig. 1. Node-Edge Graph Model of Example Evacuation Network

As shown in Figure 1, suppose we initially have 10 evacuees at node N1, 5 at node N2, and

15 at node N8. The task is to generate an evacuation plan that evacuates the 30 evacuees to the

two destinations (node N13 and N14) using the least amount of time.

Example 2- An Evacuation Plan: Table I shows an example evacuation plan for the

evacuation network in Figure 1. In this table, each row shows one group of evacuees moving

together during the evacuation with a group ID, source node, number of evacuees in this group,

the evacuation route with time schedule, and the destination time. The route is shown by a series

of node numbers and the time schedule is shown by a start time associated with each node on

the route. Take source node N8 for example; initially there are 15 evacuees at N8. They are
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divided into 3 groups: Group A with 6 people, Group B with 6 people and Group C with 3

people. Group A moves from node N8 at time 0 to node N10, then moves from node N10 at

time 3 to node N13, and reaches destination N13 at time 4. Group B follows the same route as

group A, but has a different schedule due to capacity constraints of this route. This group moves

from N8 at time 1 to N10, then moves from N10 at time 4 to N13, and reaches destination N13

at time 5. Group C takes a different route. It moves from N8 at time 0 to N11, then moves

from N11 at time 3 to N14, and reaches destination N14 at time 5. The procedure is similar for

other groups of evacuees from source node N1 and N2. The whole evacuation egress time is 16

time units since the last groups of people (Groups H and I) reach destinations at time 16. This

evacuation plan is an optimal plan for the evacuation scenario shown in Figure 1.

Alternate problem formulations of the evacuation problem are available by changing the objective

TABLE I

EXAMPLE EVACUATION PLAN

Group of Evacuees
ID Source No. of Evacuees Route with Schedule Dest. Time
A N8 6 N8(T0)-N10(T3)-N13 4
B N8 6 N8(T1)-N10(T4)-N13 5
C N8 3 N8(T0)-N11(T3)-N14 5
D N1 3 N1(T0)-N3(T1)-N4(T4)-N6(T8)-N10(T13)-N13 14
E N1 3 N1(T0)-N3(T2)-N4(T5)-N6(T9)-N10(T14)-N13 15
F N1 1 N1(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14 15
G N2 2 N2(T0)-N3(T1)-N5(T4)-N7(T8)-N11(T13)-N14 15
H N2 3 N2(T0)-N3(T3)-N4(T6)-N6(T10)-N10(T15)-N13 16
I N1 3 N1(T1)-N3(T2)-N5(T5)-N7(T9)-N11(T14)-N14 16

of the problem. The main objective of our problem formulationis to minimize the evacuation

egress time. Two alternate objectives are: (1) Maximize the number of evacuees that reach

the destination for each time unit; (2) Minimize the average evacuation time for all evacuees.

Jarvis and Ratliff presented and proved thetriple optimization theorem[25], which illustrates

the properties of the solutions that optimize the above objectives of the evacuation problem.

C. Related Work and Our Contribution

The previous approach for evacuation route planning uses a linear programming (LP) based

method. It models the evacuation problem as a network flow problem [6], [18] and finds the

optimal solution using LP based method solvers. Hamacher and Tjandra [20] gave an extensive
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literature review of the models and algorithms used in these LP based methods. Based on the

triple-optimization results by Jarvis and Ratliff [25], the LP based method for evacuation route

planning works as follows. First, it models the evacuation network into a graph, as shown by

networkG in Figure 19, and it requires the user to provide an estimated upper boundT of the

evacuation egress time. Second, it converts evacuation networkG to a time-expanded network�,
by duplicating the original evacuation networkG for each discrete time unitt = 0, 1, : : : , T .

Then, it defines the evacuation problem as a minimum cost network flow problem [6], [18]

on the time-expanded networkGT . Finally, it feeds the expanded networkGT to minimum

cost network flow solvers, such as NETFLO [26], to find the optimal solution. For example,

EVACNET [12], [19], [27], [28] is a computer program based on this approach which computes

egress time for building evacuations. It uses NETFLO code to obtain the optimal solution.

Hoppe and Tardos [23], [24] gave a polynomial time bounded algorithm by using the ellipsoid

method of linear programming to find the optimal solution for the minimum cost flow problem.

Theoretically, the ellipsoid method has a polynomial bounded running time.

Limitations of Related Work: The LP based approaches can produce optimal solutions for

evacuation route planning. It is useful for evacuation scenarios with small size networks(several

hundreds of nodes and edges), such as building evacuation. However, this approach has the

following limitations. First, it significantly increases the problem size because it requires time-

expanded networkGT to produce a solution. As can been seen in Figures 19 and 20, if the

original evacuation networkG hasn nodes and the time upper bound isT , the time-expanded

networkGT will have at least(T + 1)n nodes. This approach may not be able to scale up to

large size (tens of thousands of nodes and edges) transportation networks in urban evacuation

scenarios due to high computational run-time caused by the tremendously increased size of the

time-expanded network. Second, the LP based approach requires the user to provide an upper

boundT of the evacuation time in order to generate the time-expanded network. It is difficult,

however, to precisely estimate the evacuation time for an urban scenario where the number of

evacuees is large and the transportation network is complex. An under-estimated time boundT
will result in failure of finding a solution. In this case, the user will have to increase the value of�Details of time-expanded network are available in Appendix II-A.
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T and re-run the algorithm until a solution can be reached. On the other hand, an over-estimatedT will result in an over-expanded networkGT and hence lead to unnecessary storage and run-

time and would adversely affect the scalability to large networks.

Our Contributions: To begin to address the limitations of the previous methods, Lu, Huang and

Shekhar [31] proposed a heuristic capacity constrained routing algorithm CCRP03 (formerly

called MRCCP in [31]) for evacuation route planning. It has a computational complexityO(p �n2logn) (wheren the is number of nodes andp is the number of evacuees). Lu, George and

Shekhar [30] presented an improved algorithm CCRP05, which reduced the run-time toO(p �nlogn) by optimizing the shortest path search in CCRP03. In this paper, we propose an improved

heuristic algorithm (CCRP06), based on CCRP05 [30], by exploring available design decisions

for CCRP05. We characterize the design space available in the contextof the CCRP algorithms

and evaluate the performance of the CCRP algorithms for each of the design decisions. Since the

shortest path computation is the bottleneck step in CCRP, a wide range of shortest path algorithms

and related data structures [13], [14], [16], [34], [36] are explored. Experiment results show

that Dijkstra’s algorithm with double-bucket data structure gives the best performance for CCRP.

We prove that CCRP06, which uses Dijkstra’s algorithm with double-bucket, hasan improved

run-time of O(p � (m + 2Cn)), which is faster than the LP based method in real evacuation

scenarios. We also show that CCRP06 requires less memory than the LP based algorithm.

Experimental evaluation of CCRP06 was conducted using various network configurations to

test the performance and the solution quality under different network parameters. Results show

that CCRP06 produces high quality solutions and is much more computationally efficient than

the LP based algorithm. It is also shown that CCRP06’s advantage over the LP based algorithm

increases with increase in the number of destination nodes in the network.

We also developed an optimal algorithm using A* search [33], [35]. This algorithm addresses

the limitations of the LP based approach by using only the original evacuation network to find

the optimal solution and it does not require a user-provided upper bound on evacuation time.

We provide the proof of monotonicity and admissibility of this A* search algorithm. However,

our experiments showed that this method is not scalable to large size networks. For interested

readers, we have included the details of this approach in Appendix VI.
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D. Scope and Outline of the Paper

The main focus of the paper is on the analysis of a heuristic algorithm which effectively

extends a shortest path algorithm to account for the capacity constraints of a road network and

thus provides a simpler and computationally efficient solution to evacuation route planning. In

this framework, the evacuation network will be modeled as a graph and the capacities of the

edges and nodes will be modeled using time series. In our problem formulation, we allow time

dependent node capacity and edge capacity, but we assume that edge capacity does not depend

on the actual flow amount in the edge. We also allow time dependent edge travel time, but we

require that the network preserve the FIFO (First-In First-Out) property. Though the model cannot

handle travel times represented as continuous functions of time, a dynamic model represented

by a discrete function can be easily incorporated in this model.

Outline of the Paper: The rest of the paper is organized as follows. Section 2 presents our

heuristic approach to the problem. This section explains the heuristic algorithm and lists the

various design choices available in the context of the heuristic algorithm. Sections 3 and 4

deal with the evaluations of the various design choices; Section 3 gives an analytical evaluation

of various candidates pertaining to every design decision relevant to the performance of the

evacuation route planning algorithm. In Section 4, we present an experimental study to assess

the relative merits of various options available in every design decision. We give the conclusions

and discuss future work in Section 5.

II. PROPOSEDHEURISTIC APPROACH

As discussed in Section 1, the LP based methods to solve the evacuation route planning

problem use time expanded networks that require a large amount of memory; these methods also

require a prior knowledge of the upper bound of evacuation time. We formulated the evacuation

route planning problem as a search problem implemented as an A* search as a new approach to

generate optimal solution without using time-expanded networks (See Appendix VI). Though

this method finds optimal routes, its performance evaluation raises some questions about its

scalability to metro-sized networks. We do not expect any drastic change in scalability unless we

can formulate another heuristic which would require less computation and memory. The urgent

need for high quality, scalable solutions in evacuation route planning is thus the motivation

behind the exploration of heuristic methods in evacuation. This section discusses in detail the
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CCRP algorithms, which have demonstrated very high scalability.

A. Algorithm Framework

The algorithm discussed in this section uses a heuristic method to solve the evacuation route

planning problem. The basic idea behind the heuristic is to send the largest possible number of

evacuees on the shortest route to the nearest destination. Though the method relies on shortest

path algorithms to accomplish this, it contributes considerably in terms of extension of these

algorithms to account for the capacity constraints encountered in real world evacuation networks.

Though the algorithm does not always yield an optimal solution (with minimum evacuation time),

the scalability and time complexity of this method show drastic improvement over the optimal

methods.

B. Representation of the Temporal Network

In this representation, the edge capacity and node capacity are modeled as a time series instead

of fixed numbers. This time series stores the available capacity at each time instant for a given

edge or node. The next section discusses a heuristic approach which uses this representation to

extend the shortest path algorithms [14], [16] to account for capacity constraints of the network.

This representation is clearly illustrated in Tables V and VI (Appendix II)which show the

time series representation of node and edge capacities of the network shown in Figure 19.

C. Heuristic Approach - CCRP Algorithms

In this section, we present a generic description of the Capacity Constrained Route Planner

(CCRP). CCRP is a heuristic algorithm which is based on an extension of shortest path algo-

rithms [14], [16] to account for capacity constraints of the network.

The CCRP algorithm uses an iterative approach. In each iteration, the algorithm first searches for

routeR with the earliest destination arrival time from any source node to any destination node,

taking previous reservations and possible waiting time into consideration. Next, it computes

the actual number of evacuees that will travel through routeR. This number is affected by

the available capacity of routeR and the remaining number of evacuees. Then, it reserves the

node and edge capacity on route R for those evacuees. The algorithm continues to iterate until

all evacuees reach the destination. An outline of the algorithm is shown in Algorithm 1. The

detailed pseudo-code and algorithm description are given in Appendix IV.
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Algorithm 1 Capacity Constrained Route Planner (CCRP)
Input:

1) G(N;E): a graph G with a set of nodes N and a set of edges E;
define type nn non-negative integer
Each node n 2 N has two properties:Maximum Node Capaity(n),Initial Node Oupany(n) : nn
Each edge e 2 E has two properties:Maximum Edge Capaity(e),Travel time(e) : nn

2) S: set of source nodes, S � N;
3) D: set of destination nodes, D � N;

Output: Evacuation plan : Routes with schedules of evacuees on each route
Method:

(1)while any source node s 2 S has evacuee do f
(2) closest pair shortest path();
(3) compute flow();
/* k is the number of nodes on the shortest path */
(4) for i = 0 to k � 1 do f
(5) reserve flow();gg

Output evacuation plan with routes and schedules of evacuees on each route;

The CCRP algorithm keeps iterating as long as there are still evacuees left at any source node

(line 1). Each iteration starts by finding the routeR with the earliest destination arrival time

from any source node to any destination node based on the current available capacities (line 2).

This is done by generalizing Dijkstra’s shortest path algorithm [14], [16] to work with the time

series node and edge capacities and edge travel time. RouteR is the route that starts from a

source node and gets to a destination node in the least amount of time, and available capacity

of the route allows at least one person to travel through routeR to a destination node. Given

the evacuation network in Figure 1, the example execution trace of CCRP is as follows:

Example 3- CCRP Execution Trace: At the very first iteration, routeR will be N8-N10-N13.

Evacuees from source node N8 can take this route to reach destination N13 at time 4 using the

time schedule N8(T0)-N10(T3)-N13. At algorithm line 3, the actual number of evacuees that

will travel through routeR is determined by taking the smallest number among the number of

evacuees at the source node and the available capacities of each nodes and edges on routeR
based on the time schedule that evacuees will travel through each node and edge. Thus, at the first

iteration, this flow amount ofR will be 6, which is the available edge capacity of edge N8-N10 at

time 0. The next step is to reserve capacities for the evacuees on each node and edge of routeR
based on the time schedule(lines 4-7). At the first iteration, the algorithm makes a reservation for
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the 6 evacuees by reducing the available capacity of each node and edge at corresponding time

points. This means that available capacities are reduced by 6 for edge N8-N10 at time 0, for node

N10 at time 3, and for edge N10-N13 at time 3. The 6 evacuees arrive at destination N13 at time

4. Then, the algorithm goes back to line 1 for the next iteration(line 8). The iteration terminates

when the occupancy of all source nodes is reduced to zero, which means all evacuees have

been sent to destination nodes. Line 9 outputs the evacuation plan, as shown in Table I. A more

detailed illustration of the iterations of the algorithm on the network is shown in in Appendix V.

D. Design Decisions in the CCRP Algorithm

The CCRP algorithm uses shortest path computation as one of its key steps to generate

the evacuation plan. This section evaluates the choices that are available in the context of this

computation. For details on the design space in the context of evacuation planning algorithms, the

reader can refer to Appendix II. This section also lists the design options available specifically

in the context of the proposed CCRP algorithm.

1) Choice of Algorithm to Identify Closest Source-Destination Pair:The performance of the

heuristic algorithm depends heavily on the efficiency in computing the shortest paths from source

nodes to destination nodes. The run time increases in proportion to the number of runs of the

algorithm. The CCRP06 algorithm makes a major improvement in the algorithm used to find

the quickest route between the closest source-destination pair. In CCRP05, finding the quickest

route R is done by running generalized shortest path searches from each source node. Each

search is terminated when any destination node is reached. In CCRP06, this step is improved

by adding a super source nodes0 to the network and connectings0 to all source nodes. This

allows us to complete the search for routeR by using only one single generalized shortest path

search, which takes the super sources0 as the start node. This search terminates when any

destination node is reached. Since the super sources0 is connected to each source nodes by an

edge with infinite capacity and zero travel time, it can be easily proved that the shortest route

found by this search is the routeR that we need. This improvement significantly reduces the

computational cost of the algorithm by one degree of magnitude compared with CCRP05.

2) Algorithms Used in the Shortest Path Computation:The most computationally intense task

in the CCRP algorithms is the computation of the shortest path from a source to destinations.
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The performance of the CCRP algorithm depends significantly on the shortest path algorithm

used. Although a number of evaluations of the existing shortest path algorithms are available,

there is no clear answer as to which algorithm would perform the best in our case. In this section

we explore a set of shortest path algorithms that belong to the groups of label setting and label

correcting algorithms [13] and try to evaluate them in the context of evacuation route planning.

These two types of algorithms differ in the criteria used in the selection of nodes for scanning.

This leads to a difference in the ways they update the estimate of the shortest path distance(label)

associated with each node and in the ways in which they converge to the optimal shortest path

distance.

Dijkstra’s algorithm is one of the most widely used label setting algorithm. This paper evaluates

the performance of the evacuation route planning algorithm when Dijkstra’s algorithm is used

to compute the shortest path. Since this algorithm selects the node with the shortest distance

estimate as the next node to be scanned, the algorithm performs well when the destination node

is ”close” to the source node. Label correcting algorithms, when implemented with suitable

data structures can outperform Dijkstra’s implementations when the destination nodes are ”far

away” from the source nodes. The performance of these algorithms depends on the number of

destination nodes in the problem formulation and the length of the shortest path from the source

to the destination relative to the longest, shortest path in the network. Since we do not always

know these parameters in advance, the performance of label correcting algorithms, in addition

to label setting algorithms, needed to be evaluated in the context of the CCRP algorithm.

3) Data Structures Used in the Shortest Path Computation:Here we describe two different

versions of Dijkstra’s algorithm and two versions of a label correcting algorithm. These algo-

rithms are reported [40] to give the best performance among all shortest path algorithms on

road networks. They differ in the data structures used to maintain the set of labeled nodes.

The double bucket implementation of Dijkstra’s algorithm is a modified version of Dial’s im-

plementation. The details of this implementation are given in Appendix II-E.The complexity of

the algorithm isO(m+n(�+C=�)). This implementation of Dijkstra’s algorithm is especially

suitable for networks with non-negative arc lengths, which is the case for road network used

in evacuation route planning. Since the CCRP algorithms use the shortest path algorithm to

find the shortest path from a single source to a single destination, there is a likelihood that

the double bucket implementation would outperform any label setting algorithm since it can
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terminate as soon as the destination node is reached. The difference in the running times of

various implementations of the label setting algorithms is due to the difference in the computation

involved in selecting a labeled node with the minimum label. In contrast to dense graphs, where

this computation is small compared to the work involved in node scans, the selection process

would be a significant part in sparse graphs. Bucket implementations appear to be cheaper than

heap implementations since heap operations are expensive unless the number of nodes in the heap

is small. Among the bucket implementations, double bucket implementation is preferred since

it uses less memory than Dial’s implementation. Road networks are generally sparse (m � 4n)

and hence the bucket implementation of the algorithm would be efficient. Dijkstra’s algorithm

using Fibonacci heaps qualifies as a candidate because of its best, worst-case complexity. The

asymptotic complexity of the algorithm isO(m+ nlogn).
Despite the worse asymptotic performance (O(n2m) of the Two-Q algorithm, it has the potential

of performing better if the destination node is sufficiently far away from a given source node.

The Two-Q algorithm is a good choice as a candidate algorithm since at each iteration of the

CCRP algorithms we do not have the prior knowledge about the shortest path distance from

the(super)source to a destination node relative to the longest shortest path distance in a shortest

path tree rooted at the source node. But, it must be noted that in some iterations, we would have

cases where the shortest path distance from the source to the destination is a small fraction of

the longest shortest path distance in the shortest path tree. This prompts the choice of Dijkstra’s

algorithm in addition to the label correcting algorithm. Also, since the CCRP algorithm computes

the shortest path from a single source to multiple destinations, the relative performance of the

shortest path algorithms can depend on the number of destination nodes relative to the total

number of nodes. The label correcting methods may have an edge over the label setting methods

in scenarios where the number of destinations is a significant fraction of the total number of

nodes.

III. A NALYTICAL EVALUATION OF CCRP DESIGN DECISIONS

In this section, we give an analytical evaluation of the different options available for each

of the design decisions of the CCRP algorithm. Each subsection evaluates the options for one

CCRP design decision. The options are listed in Figure 21.
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A. Heuristic vs Optimal Algorithms

Here, we compare the computational cost of optimal algorithms and heuristic algorithms by

providing analytical evaluation of both methods.

Optimal methods using Linear Programming:

The computational cost of the LP approach depends on the method used to solve the minimum

cost flow problem. Hoppe and Tardos [23] showed that this problem can be solved using the

ellipsoid method, which is theoretically polynomial time bounded. However, the computational

complexity of the ellipsoid method is at leastO(N6) [9](whereN is the number of nodes in the

network). Since the LP approach requires a time-expanded network, in whichN equals(T +1)n
(wheren is the number of nodes in the original evacuation network andT is the user-provided

evacuation time upper bound), the optimal algorithm using LP based runs in at leastO((T �n)6)
time.

Heuristic Method:

We now provide the algebraic cost model for the computational cost of the heuristic algorithm

presented in Lu, George, and Shekhar [30]. The CCRP algorithm is an iterative approach. In

each iteration, the route for one group of people is chosen and the capacities along the route

are reserved. The total number of iterations equals the number of groups generated. In the worst

case, each individual evacuee forms one group. Therefore, the upper bound of the number of

groups isp, i.e. the number of iterations isO(p). In each iteration, the computation of the routeR with earliest destination arrival time is done by running one generalized Dijkstra’s shortest

path search. The worst case computational complexity of Dijkstra’s algorithm isO(n2) for dense

graphs [14]. Various implementations of Dijkstra’s algorithm have been developed and evaluated

extensively [6], [13], [40]. Many of these implementations can reduce the computational cost by

taking advantage of the sparsity of the graph. Transportation road networks are very sparse graphs

with a typical edge/node ratio around 3. In this paper, we implement the shortest path search

in the CCRP06 algorithm using Dijkstra’s algorithm with double bucket data structures, which

runs inO(m+n(�+C=�)) time [13], where� is the bucket size andC is the maximum edge

weight. In our implementation,� is set to the biggest power of two that is less than
pC [13].
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The time complexity is henceO(m+2Cn). The generalization of Dijkstra’s algorithm to account

for capacity constraints affects only how the shortest distance to each node is defined. It does

not affect the computational complexity of the algorithm. Therefore, the search for routeR in

CCRP06 takesO(m+2Cn) time. The reservation step is done by updating the node and edge

capacities along routeR, which has a cost ofO(n). Each iteration of the CCRP06 algorithm is

done inO(m + 2Cn) time. It takesO(p) iterations to complete the algorithm. The cost model

of the algorithm isO(p � (m + 2Cn)). The LP based approach produces optimal solutions but

suffers from high computational cost. A heuristic method reduces the computation cost though

it produces a sub-optimal solution.

Lemma 1: CCRP06 is asymptotically faster than LP based algorithm whenp < T 63+2Cn5.
Proof: The cost model for CCRP06 is inO(p � (m+ 2Cn)). Transportation road networks are

very sparse graphs with a typical edge/node of less than 3, i.e.m � 3n. This means CCRP06

runs inO(p � (3 + 2C)n) time on road networks. The optimal algorithm using LP runs in at

leastO((T � n)6) time. Therefore, CCRP06 is asymptotically faster than LP algorithm whenp < T 63+2Cn5. This condition is almost always true in a real evacuation scenario, in whichn
(number of nodes in the network) ranges from hundreds to millions andT (upper-bound on

evacuation time) can be hundreds of minutes.

B. Temporal Network Framework - Time Expanded Network vs Time Series Representation

Another design decision is to choose a framework to represent the temporal network. The two

available choices are time expansion and time series representation. In this section, we compare

the two temporal network frameworks by providing an analytical evaluation of the memory

requirements.

Time Expanded Network:

Let G be the original graph that represents the evacuation network.

The size of the time expanded networkGT = (NT ; AT ) would be as follows:

Number of nodesjNT j = (T + 1)n, wheren is the number of nodes in the original network.

Number of edgesjAT j = T (m+ d), wherem is the number of edges inG, andd is the number

of destination nodes.

According to the analysis in [28], the minimum memory requirement (number of bytes) for the
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time expanded network is at least(52+36T )n+(20+12T )m. Since T is always a large number

(at least hundreds) in real evacuation scenarios, it can be simplified asT (36n+ 12m).
Time Series Representation:

Let graphG be the evacuation network,n the number of nodes inG, and m the number

of edges inG. Instead of the time expanded networkGT used in time expansion, the time

series representation used by the CCRP06 algorithm needs to work only with the original

networkG. CCRP06 needs data structures to store a network withn node andm edges. In our

implementation, the number of bytes used to store the network is8n+ 12m.

In addition, the time series representation incorporates capacity constraints by building a time

series for each node and each edge to keep track of the available node capacity and edge capacity

at each time instant during the evacuation. In our implementation, the number of bytes used for

the time series is4tn+ 4tm, wheret is the evacuation egress time.

Therefore, the memory requirement (number of bytes) for the CCRP06 algorithm is(8+4t)n+(12 + 4t)m. As T is always a large number (at least hundreds) in real evacuation scenarios, we

can simplify it as4t(n+m).
Lemma 2: The time series representation used in CCRP06 requires less memory than the time

expanded network used in LP algorithm ift < 3T .

Proof: The number of bytes required by the time expanded network and time series repre-

sentation areT (36n + 12m) and 4t(n +m). Therefore, the time series representation used in

CCRP06 requires less memory than the time expanded network used inthe LP algorithm ift < 3T . Our experiments show that evacuation timet produced by the CCRP06 algorithm is

within ten percent of the optimal evacuation time (see details in Section IV-A.3), which meanst is within five percent larger thanT . Therefore, the condition is almost always true.

C. Choice of Algorithm to Identify Closest Source-Destination Pair

The most critical step in the heuristic algorithm presented in Section II-C is the computation

of the shortest paths between all source-destination pairs. This step is key in determining the

route each group would be assigned to minimize the evacuation time. Since there are various

ways to formulate the ”closest pair problem”, there is a need to evaluate the performance with

respect to the choices listed in Section 2.4.
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TABLE II

COMPARISON OFCOMPUTATIONAL COSTS(n: NUMBER OF NODES, p: NUMBER OF EVACUEES, T : USER-PROVIDED

UPPER-BOUND ON EVACUATION TIME, C : MAXIMUM EDGE WEIGHT ); SOURCE [30]

Algorithm Computational Cost

CCRP06 O(p � (m+ 2Cn))
CCRP05 O(p � n2logn)

Linear Programming Approach at leastO((T � n)6)

Table II provides a comparison of the LP based approach and theheuristic algorithm withk shortest path computations and single shortest path computation. CCRP05 is the version of

the heuristic algorithm which runs the shortest path algorithm multiple times and CCRP06 runs

the shortest path algorithm just once in an iteration. As can be seen, the LP-based approach

produces optimal solutions but suffers from high computational cost. Both versions of the

heuristic algorithm reduce the computation cost.

Lemma 3: CCRP06 is strictly faster than CCRP05.

Proof: CCRP06 runs inO(p � (m+ 2Cn)) time and CCRP05 runs inO(p � n2logn) time ( II.

Transportation networks are sparse and the number of edges(m) is generally a linear factor of

the number of nodes(n) (usuallym � 3n). Therefore, it is easy to see that CCRP06 is strictly

faster than CCRP05.

D. Shortest Path Algorithms/Data Structures

Valuable insight into the performance of the candidate algorithms is provided by Table III,

which lists the asymptotic complexities of the algorithms when used in conjunction with various

data structures. The implementations of Dijkstra’s algorithm using various data structures have

the best asymptotic complexities. In the double bucket implementation of the algorithm, if the

bucket size (�) is set to the biggest power of two less than
pC, whereC is the maximum edge

weight, the time complexity of this implementation would beO(m+ 2Cn). In a transportation

network, since the edge weight represents the travel time,C is small (of the order of tens

of units). Since in a metropolitan sized network the factorn lnn would be larger than2Cn,

it can be concluded that the double bucket implementation of the Dijkstra’s algorithm would

perform better compared to the other implementations. Despite a worse asymptotic performance
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TABLE III

ASYMPTOTIC COMPLEXITIES (n: NUMBER OF NODES, m: NUMBER OF EDGES, �: BUCKET SIZE, C : MAXIMUM EDGE

WEIGHT) ; SOURCE [13]

Algorithm Dijkstra- Dijkstra- Dijkstra- Two Q
binary- Fibonacci Double-

heap heap bucket
Asymptotic Complexity O(m logn) O(m+ n logn) O(m+ n(� + C=�)) O(mn2)

compared to Dijkstra’s algorithm, the TwoQ algorithm has the potential of performing better

if the closest destination node is sufficiently far away from the source node [13]. Since the

shortest path distance is not known in advance in a transportation network, the TwoQ algorithm

also qualifies to be a candidate algorithm.

E. Solution Quality of CCRP

Since CCRP is a heuristic algorithm, it does not produce optimal solutions for all evacuation

scenarios. Experiments show that the evacuation time produced by CCRP is slightly (within 10%)

longer than the optimal evacuation time in all test cases (detailed results given in Section IV-A.3).

However, it can be shown that, under certain conditions, CCRP can produce optimal solutions.

We define the bottleneck capacity of the evacuation network as the number of evacuees which can

travel simultaneously using shortest paths without any wait during their entire travel between

respective source-destination pairs. For example, a trivial though very loose lower bound on

bottleneck capacity is the minimum of the maximum edge capacity and maximum node capacity.

Lemma 4: CCRP produces an optimal solution if the number of evacuees is less than or equal

to the bottleneck capacity of the network.

Proof: It is easy to see that when the total number of evacuees is no more than the bottleneck

capacity of the network, there will be no wait time for any evacuees traveling along a route

because waiting only occurs when the number of evacuees need to use a route is greater than

the maximum node or edge capacity on this route. In this case, the evacuees from each source

can be sent through the quickest route to a destination without any delay on the route. This

means that the problem is reduced to first finding the shortest path from each source node to

any destination node and then sending all evacuees from each source node as one group to

a destination using the shortest path found. In this case, all the routes used are the shortest
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path from each source to a destination and there is no delay along the routes. Therefore, the

evacuation plan found must be the optimal plan.

IV. EXPERIMENTAL EVALUATION OF CCRP06 DESIGN DECISIONS

Performance evaluation of CCRP06 design decisions consisted of the following tasks: 1)

Compare the algorithm run-time and solution quality of the CCRP06 algorithm and the LP

based algorithm, 2) Compare two versions of the the CCRP algorithms, namely CCRP with

multiple shortest search (CCRP05) and CCRP with single shortest path search (CCRP06) and

3) Compare the performance of different implementations of CCRP06 using different shortest

path search algorithms.

A. Comparison of CCRP06 and Linear Programming Approach

The purpose of this section is to compare the performance of the heuristic CCRP06 algorithm,

with the optimal LP based algorithm. The linear programming software used in this experiment

was RelaxIV [8], which is widely considered as one of the fastest minimum cost flow solvers.

The experiment was done by comparing the algorithm run-time of CCRP06 and RelaxIV by

using various network configurations. It should be noted that the CCRP06 algorithm used in this

experiment was implemented with Dijkstra’s shortest path algorithm using the double-bucket data

structure. The reason for choosing Dijkstra’s algorithm with double-bucket is that experiments

show that it results in best CCRP06 performance among available shortest path algorithms. We

present a detailed analysis of this choice in Section IV-B.2.

1) Experiment Design:Figure 2 illustrates the experiment design to compare the performance

of CCRP06 and RelaxIV. First, NETGEN [29] was used to generate evacuation networks

with capacity constraints and evacuees. NETGEN is a software that generates transportation

networks with capacity constraints and initial supplies based on a set of input parameters. In our

experiments, the following four were selected as independent parameters to test their impacts on

the performance of the algorithms: 1) network size represented by number of nodes; 2) number

of evacuees initially in the network; 3) number of source nodes; and 4) number of destination

nodes. Number of edges is treated as a dependent parameter. We set the number of edges to be

equal to 3 times the number of nodes because the typical edge/node ratio for real transportation

road networks is around 3. Next, the evacuation network generated by NETGEN was fed to

the CCRP06. Before feeding the network to RelaxIV, we needed to use a network converter to
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Fig. 2. Experiment Design

transform the evacuation network into a time-expanded network, which is required by minimum

cost flow solvers (such as RelaxIV) to solve evacuation problems [12], [20]. This conversion

requires an input parameter T, which is an estimated upper-bound on the optimal evacuation

egress time. If the evacuation cannot be completed by time T, RelaxIV will return no solution.

In this case, T needs to be increased to create a new time-expanded network and to run RelaxIV

again until a solution can be reached. In the experiments, we avoided under-estimation of T

by setting T equal to the egress time produced by CCRP06. Since CCRP06 is a heuristic

algorithm, its evacuation egress time can be used as an upper-bound of the optimal solution.

After CCRP06 and RelaxIV produced solutions for each test case, the algorithm run-times were

collected and analyzed in the data analysis module. This same experiment design was also used

to evaluate the solution quality of CCRP06; we present the results and analysis in Section

IV-A.3.

The experiments were conducted on a workstation with Intel Pentium 4 2.8GHz CPU, 2GB

RAM and Linux operating system. Each experimental result reported in the following sections

is the average over 5 experiment runs with networks generated using the same input parameters.

2) Experiment Results for Algorithm Run-time:We wanted to answer four questions: (1)

Are the algorithms scalable to the size of the network, particularly will they handle large size

transportation networks as in urban evacuation scenarios? (2) How does the number of evacuees
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affect the performance of the algorithms? (3) How does the number of source nodes affect

the performance of the algorithms? (4) How does the number of destination nodes affect the

performance of the algorithms?

a) Experiment 1: Are the algorithms scalable to the size of the network?

In this experiment, we evaluated how the network size affects the performance of the algorithms.

We fixed the other three independent parameters and varied the network size to observe the run-

time of the algorithms. The experiment was done using networks with 5000 evacuees, 20 source

nodes, and 10 destination nodes. We varied the number of nodes in the work from 50 to 50000.

Figure 3 shows the run-times of the two algorithms with an accompanying data table. Both the
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Fig. 4. Run-time With Respect to Number of Evacuees

x-axis(number of nodes) and y-axis(run-time) of Figure 3 are on a logarithmic scale rather than

linear. It can be seen that the CCRP06 algorithm runs in time that is proportional to a small

polynomial in the size of the network while the run-time of RelaxIV grows much faster. This

shows that CCRP06 is much more computationally efficient than LP RelaxIV. This experiment

also shows that the run-time of CCRP06 is scalable to the size of the network.

b) Experiment 2: How does the number of evacuees affect the performance of the algorithms?

The purpose of this experiment was to evaluate how the number of evacuees affects the perfor-

mance of the algorithms. We fixed the other independent parameters and varied the number of

evacuees to observe the algorithm run-time of CCRP06 and RelaxIV.

The experiment was done using networks with 5000 nodes, 2000 source nodes, and 10
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destination nodes. We varied the number of evacuees from 5000 to 50000. Figure 4 shows

the run-times of the two algorithms. As can be seen, in each test case, the run-time of CCRP06

remains less than half that of RelaxIV. In addition, the CCRP06 run-time is scalable to the

number of evacuees while the run-time of RelaxIV grows much faster. This experiment shows:

(1) CCRP06gives much less run-time than that of RelaxIV. (2) The run-time of CCRP06 is

scalable to the number of evacuees.

c) Experiment 3: How does the number of source nodes affect the performance of the algo-

rithms?

In this experiment, we evaluated how the number of source nodes affects the performance of the

algorithms. We fixed the other three independent parameters and varied the number of source

nodes to observe the algorithm run-time. In this experiment setup, by varying the number of

source nodes, we actually create different evacuee distributions in the network. A higher number

of source nodes means that the evacuees are more scattered in the network.

The experiment was done using networks with 5000 nodes, 5000 evacuees, and 10 destination

nodes. We varied the number of source nodes from 1000 to 4000. As shown in Figure 5, the run-

times of both algorithms are scalable to the number of source nodes. However, in all test cases,

the run-time of CCRP06 remains less than half of the run-time of RelaxIV. This experiment

also shows that the run-time of CCRP06 is scalable to the number of source nodes.
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Fig. 6. Run-time With Respect to Number of Destination
Nodes

d) Experiment 4: How does the number of destination nodes affect the performance of the
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algorithms?

In this experiment, we evaluated how the number of destination nodes affects the performance

of the algorithms. We fixed the other three independent parameters and varied the number of

destination nodes to observe the algorithm run-time. The experiment was done using networks

with 5000 nodes, 5000 evacuees, and 2000 source nodes. We varied the number of destination

nodes from 10 to 50. Figure 6 shows the run-times of the two algorithms.

As can be seen, the run-time of the CCRP06 algorithms actually decreases as the number

of destination nodes grows, while the run-time of RelaxIV increases. This is due to the fact

that CCRP06 uses shortest path searches in each iteration to find the quickest route from any

source node to any destination node and we implemented the shortest path search with Dijkstra’s

algorithm [16]. It is known that Dijkstra’s algorithm finds the shortest path from the source to any

node as soon as the node is permanently labeled [14]. In CCRP06, this means that the quickest

route is found as soon as any destination node is reached and Dijkstra’s algorithm can terminate.

This property enables the CCRP06 algorithm to take advantage of more destination nodes

because more destinations result in less time for Dijkstra’s algorithm to reach a destination node

and hence it reduces the CCRP06 run-time when the number of destination nodes increases. By

contrast, the RelaxIV algorithm, which does not uses Dijkstra’s algorithm, cannot take advantage

of more destination nodes. As Figure 6 shows, more destination nodes make the problem harder

for RelaxIV to solve because its run-time actually increase as the number of destination nodes

grows.

This experiment shows that the run-time of CCRP06 decreases as the number of destination

nodes grows, while the run-time of RelaxIV increases. The CCRP06 algorithm has a clear

advantage over RelaxIV on algorithm run-time when there is need to add more destination

nodes to an evacuation scenario.

3) Experiment Results for Quality of Solution:In this experiment, we used the same experi-

ment design as shown in Figure 2 After CCRP06 and RelaxIV produced solutions for each test

case, the solution quality of the two algorithm were collected and analyzed in the data analysis

module.

We wanted to compare the solution quality of the CCRP06, which is a heuristic algorithm,

with that of the RelaxIV, which produces optimal solutions. We conduct the comparison by

examining how the following four parameters affect the solution quality of CCRP06: (1) network
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size represented by number of nodes in the network; (2) number of evacuees; (3) number of

source nodes; and (4) number of destination nodes.

a) Experiment 1: How does the network size affect the the solution quality of CCRP06?

In this experiment, we evaluated how the network size affects the performance of the algorithms.

We fixed the other three independent parameters and varied the network size to observe the

quality of solutions.

The experiment was done using networks 5000 evacuees, 20 source nodes, and 10 destination

nodes. We varied the number of nodes in the work from 50 to 50000. Figure 7 shows the solution

quality represented by evacuation egress time.

In each of the test cases, CCRP06 produced high quality solutions (within 10 percent longer

than optimal evacuation time) and the solution quality of CCRP becomes very close to the

optimal solution produced by RelaxIV as the network size increases. This means CCRP06 can

produce close-to-optimals solutions for large size networks.

This experiment shows: (1) The solution quality of CCRP06 increases as the network size

grows, (2) CCRP06 produces close-to-optimal solution for large size networks (e.g. network

with more than 5000 nodes).

These findings indicate that CCRP06 has an advantage over the RelaxIV algorithm when

producing plans for urban evacuation scenarios where the road network is complex. In these

cases, CCRP06 can provide high quality solutions with much less running time than the optimal

solution algorithm as we showed in the previous experiments. More importantly, the findings

suggest that it is often not necessary to obtain the optimal plan in a real evacuation scenario.

Instead, it is critical to be able to produce a number of high quality plans efficiently so that

officials can revise the plan based on the changing situation and make decisions in a timely

manner.

b) Experiment 2: How does the number of evacuees affect solution quality of CCRP06

In this experiment, we fixed the other independent parameters and varied the number of evacuees

to observe the quality of the solution and the run-time of CCRP06 and RelaxIV.

The experiment was done using networks with 5000 nodes, 2000 source nodes, and 10

destination nodes. We varied the number of evacuees from 5000 to 50000. Figure 8 shows

the solution quality represented by evacuation egress time. One exception is that the data point

with 50 evacuees has only 25 source nodes, we included this setup in order to test whether
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CCRP can an produce optimal solution when the number of evacuees is no greater than the

bottleneck capacity (50 in this test case) of the network, as stated in Lemma 4.

Fig. 7. Quality of Solution With Respect to Network
Size (unit for y-axis is the same as input unit for travel
time,typically in minutes)

Fig. 8. Quality of Solution With Respect to Number of
Evacuees (unit for y-axis is the same as input unit for travel
time,typically in minutes)

The experiment results show that: 1) In each test case, CCRP06 produced very high quality

solutions compared with the optimal solutions produced by RelaxIV. 2) At the data point with

50 evacuees, CCRP produced the same evacuation time (306 time units)as RelaxIV produced.

In this test case, the number of evacuees is less than the bottleneck capacity of the network.

Therefore, CCRP produces the optimal solution as we stated in Lemma 4. Its solution quality

does drop slightly though, as the the number of evacuees grows.

c)Experiment 3: How does the number of source nodes affect the solution quality of CCRP06?

In this experiment, we evaluated how the number of source nodes affects the solution quality

of the algorithms. We fixed the other three independent parameters and varied the number of

source nodes to observe the quality of the solution. In this experiment setup, by varying the

number of source nodes, we actually create different evacuee distributions in the network. A

higher number of source nodes means that the evacuees are more scattered in the network.

The experiment was done using networks with 5000 nodes, 5000 evacuees, and 10 destination

nodes. We varied the number of source nodes from 1000 to 4000. Figure 9 shows the solution

quality represented by evacuation egress time.

In all test cases, CCRP06 produced high quality solutions (within 5 percent longer than the

optimal evacuation time) and the number of source nodes has little effect on the solution quality
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Fig. 9. Quality of Solution With Respect to Number of
Source Nodes (unit for y-axis is the same as input unit for
travel time,typically in minutes)

Fig. 10. Quality of Solution With Respect to Number of
Destination Nodes (unit for y-axis is the same as input unit
for travel time,typically in minutes)

of CCRP06. It is also interesting to note that the evacuation egress time is non-monotonic

with respect to the number of source nodes. This means that when the number of evacuees is

fixed, adding more source nodes does not necessarily increase or decrease the evacuation egress

time. In this case, the location of the newly added source nodes have much more impact on the

evacuation time. For example, adding source nodes closer to the destinations will likely decrease

the evacuation time, while adding source nodes further away from the destinations will likely

increase the evacuation time.

This experiment shows: (1) CCRP06 produces high quality solutions in all test cases. (2)The

solution quality of CCRP06 is not affected by the number of source nodes.

d) Experiment 4: How does the number of destination nodes affect the the solution quality of

CCRP06?

In this experiment, we evaluated how the number of destination nodes affects the solution quality

of the algorithms. We fixed the other three independent parameters and varied the number of

destination nodes to observe the quality of the solution.

The experiment was done using networks with 5000 nodes, 5000 evacuees, and 2000 source

nodes. We varied the number of destination nodes from 10 to 50. Figure 10 shows the solution

quality represented by evacuation egress time.

In all test cases, CCRP06 produced high quality solutions (within 5 percent longer than

optimal evacuation time) and the number of destination nodes has little effect on the solution
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quality of CCRP06. Similar to the previous experiment on the number of sourcenodes, it

is also noted that the evacuation egress time is non-monotonic with respect to the number of

destination nodes. This means that adding more destination nodes to an evacuation scenario does

not necessarily reduce the evacuation egress time. Instead, the location of the added destination

nodes and the capacity of the roads leading to these nodes may play a much more important

role.

This experiment shows: (1) CCRP06 produces high quality solutions in all test cases. (2)The

solution quality of CCRP06 is not affected by the number of destination nodes.

B. CCRP Design Decisions

In this section, we present the experimental evaluation of two design decisions to improve the

performance of the CCRP algorithm.

1) Choice of Algorithm to Identify Closest Source-Destination Pair:CCRP05 is an earlier

algorithm based on the capacity constrained routing approach. Major improvements in the new

version CCRP06, lie in the algorithm used to find the quickest route betweenthe closest source-

destination pair. In CCRP05, finding quickest routeR is done by running one generalized

shortest path search from each source node to all destination nodes. Each search is terminated

when any destination node is reached. If there arex source nodes in the network, CCRP05

algorithm requiresx shortest path searches (one per source node) to be done in each iteration

in order to find routeR.

In CCRP06, one important design decision was made to improve the stepof finding routeR.

The improvement is to replace thex shortest path searches in CCRP06 with only one shortest

path search. This was done by adding a super source nodes0 to the network and connectings0 to

all source nodes. The super sources0 is connected to each source node by an edge with infinite

capacity and zero travel time. This allows us to complete the search for routeR by using only

one single shortest path search, which takes the super sources0 as the start node. The search

terminates when any destination node is reached. It can be easily proved that the shortest route

found by this search is the routeR we need in line 2. This improvement significantly reduces

the computational cost of the algorithm by one degree of magnitude compared with CCRP05.

Since CCRP05 and CCRP06 use the same heuristic method to find a solution, it is expected

that CCRP05 and CCRP06 would produce solutions with the same evacuation egress time for
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each test case. To observe the difference between the actual run-time of CCRP05 and CCRP06,

we conducted the following experiment. NETGEN was used to generate evacuation networks

with 5000 evacuees, 20 source nodes, 10 destination nodes, and number of nodes varying from

50 to 50,000. It should be noted again that the CCRP05 and CCRP06 algorithms used in this

experiment were implemented with Dijkstra’s shortest path algorithm using double-bucket data

structure. The reasons for this decision are presented in Section IV-B.2. Figure 11 shows the run-

times of CCRP05 and CCRP06 with respect to different network sizes, with an accompanying

data table.
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Both the x-axis(number of nodes) and y-axis(run-time) of Figure 11 are on a logarithmic scale.

It can be seen that, in all test cases, CCRP06 run-time was much faster than that of CCRP05.

For small networks with 50 nodes, CCRP06 out-performed CCRP05 by a factor of about 2

and this factor became more significant as the network size increases. For large networks with

50,000 nodes, CCRP06 was faster than CCRP05 by a factor of 10.

This experiment shows that, compared to CCRP05, CCRP06 significantly improves the

performance of the capacity constrained routing algorithm, especially for evacuation scenarios

with large size networks.

2) Comparison of different implementations of the CCRP06 algorithm: Another important

design decision for CCRP06 is the choice of shortest path algorithm used to find the quickest

routeR. Shortest path algorithms and their implementations have been developed and evaluated
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extensively [6], [13], [40]. Many of these algorithms can reduce the computational cost by taking

advantage of certain properties of the graph network. We chose to look specifically at Dijkstra’s

algorithm and the Two-Q based on the following reasoning.

Evacuation networks have a few important properties. First, most evacuation networks are

transportation road networks; as such they are sparse networks because most road networks

have an edge/node ratio that is less than 3. Second, in our problem formulation, we defined the

travel time of edges as non-negative integers, which means the network has non-negative and

integral edge weights.

Many shortest path algorithms have proved to be able to reduce computational cost with

networks of such properties. One of the most comprehensive reviews of shortest path algorithms

was done by Cherkassky, Goldberg, and Radzik [13]. Cherkassky et al. [13] suggested that

Dijkstra’s algorithm has the best performance for networks with non-negative edge weights.

Among the various implementations of Dijkstra’s algorithm, Dijkstra’s using binary heap and

Dijkstra’s using double bucket gave better performance for sparse networks. In addition, it

has been shown that Two-Q algorithm [34] also performed well on some problems with road

networks [40].

In order to test the performance of the CCRP06 algorithm with different shortest path

algorithms, we chose the following four algorithms as candidates to implement the shortest

path search in CCRP06: incremental graph algorithm with two queues, Dijkstra’susing binary

heap, Dijkstra’s using double bucket, and Dijkstra’s using Fibonacci heaps. Dijkstra’s algorithm

using Fibonacci heaps was chosen because it has the best theoretical worst case complexity on

sparse graphs [13] and we wanted to see how its actual performance compare with others.

In this experiment, NETGEN was used to generate evacuation networks with 5000 evacuees,

20 source nodes, 10 destination nodes, and number of nodes varying from 50 to 50,000. The

purpose was to compare the performance of CCRP06 with each implementation on evacuation

networks with different sizes. Figure 12 shows the run-times of the candidate algorithms with

respect to different network sizes. Dijkstra’s algorithm with naive implementation, which is

known to perform poorly, was added in the experiment as a reference. As can be seen, the

three implementations of Dijkstra’s algorithms (Dijkstra’s using binary heap, Dijkstra’s using

double bucket and Dijkstra’s using Fibonacci heaps.) gave much better performance than Two-Q

algorithm. Among the three, Dijkstra’s using double bucket performed the best mainly because
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it is known to be able to take advantage of non-negative integral edge weights. By contrast,

Dijkstra’s algorithm using Fibonacci heaps was the slowest since it does not take advantage

of these network properties. This result also means that an algorithm with the best theoretical

computational cost (such as Dijkstra’s algorithm using Fibonacci heaps) does not necessarily

give the best performance.

The Two-Q algorithm performed very poorly, which is only faster than Dijkstra’s algorithm

with naive implementation. Previously, Two-Q algorithm was shown to perform well on some

road networks problems with one-to-all shortest path search [40]. However, the shortest path

search in the CCRP06 algorithm is a one-to-some shortest path search because itonly needs to

find the best route from the source to any one of the destination nodes. The Two-Q algorithm

cannot take advantage of this because it has to complete the search to all nodes before it

terminates. By contrast, Dijkstra’s algorithm can terminate as soon as one of the destination

nodes is reached. This is the main reason that Two-Q algorithm performed slower than all the

three candidates of Dijkstra’s algorithm in the experiment.

Overall, this experiment shows that Dijkstra’s algorithm with double bucket implementation

gives the best performance among all candidates. Therefore, Dijkstra’s algorithm with double

bucket is our choice for the design decision of implementing the shortest path search in CCRP.

C. A Case Study

In this section we report the results of experiments conducted on a real evacuation scenario.

As shown in Figure 13, the Monticello nuclear power plant is about 40 miles to the northwest

of the Twin Cities of Minneapolis-St.Paul. Evacuation plans need to be in place in case of

accidents or terrorist attacks. The evacuation zone is a 10-mile radius around the nuclear power

plant as defined by Minnesota Homeland Security and Emergency Management [3]. A hand-

drafted evacuation route plan was developed to evacuate the affected population to a high school.

However, this plan did not consider the capacity of the road networks and put high loads on

two highways.

We conducted an experiment using the CCRP algorithm. The experiment was done using

the road network around the evacuation zone provided by the Minnesota Department of Trans-

portation [2], and the Census 2000 population data for each affected city (circles in Figure 13).

The total number of evacuees is about 42,000. As can be seen in Figure 13, our algorithm
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Fig. 13. Overlay of Result Routes for Monticello Power Plant Evacuation Route Planning

gives a much better evacuation route plan by selecting shorter paths to reduce evacuation time

and utilizing richer routes (routes near evacuation destination) to reduce congestion. The old

evacuation plan has an evacuation egress time of 268 minutes. The CCRP algorithm produced

a much better plan with an evacuation time of only 162 minutes. This experiment shows that

our algorithm is effective in real evacuation scenarios to reduce evacuation time and improve

existing plans.

Our approach was presented at the Congressional Breakfast Program on Homeland Security

[37] held by the University Consortium for Geographic Information Science (UCGIS), and also

reported in the Minnesota Homeland Security and Emergency Management newsletter [39]. It

was also selected by the Minnesota Department of Transportation to be used in the evacuation

planning project for the Twin Cities Metro Area, which involves a road network of about 250,000

nodes and a population of over 2 million people. In this project, the CCRP algorithm was tested

on five pre-defined scenarios and some randomly selected locations. Transportation professionals

evaluated the quality of the solutions and found them to be highly satisfactory. An article in
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St. Paul Pioneer Press [5] discussed some salient features of this project. The project also

won the Research Partnership Award from the Center for Transportation Studies(CTS) [4] as a

recognition for making significant impacts on transportation.

V. CONCLUSIONS ANDFUTURE WORK

Prior approaches to evacuation route planning relied on LP based methods to generate optimal

evacuation plans. These methods suffer from high computational cost and memory requirement.

We addressed the need for a computationally efficient approach in [30], by proposing the

CCRP06 algorithm. CCRP06 is a heuristic algorithm that uses time series to incorporate

capacity constraints and generalizes shortest path search algorithms. This algorithm produces

high-quality solutions and is scalable to large evacuation networks.

In this paper, we present a comprehensive overview of the algorithm framework for the

evacuation route planning problem and propose new approaches to address the limitation of

previous studies. We propose an improved heuristic algorithm (CCRP06) by exploring available

design decisions. We characterize the design space available in the context of the CCRP06

algorithm and evaluate the performance of the CCRP06 algorithm for each of the design

decisions. A wide range of shortest path algorithms and data structures are explored and exper-

iment results show that Dijkstra’s algorithm with double-bucket data structure gives the best

performance for CCRP06. We prove that CCRP06, which uses Dijkstra’s algorithm with

double-bucket, has a run-time ofO(p � (m + 2Cn)), which is faster than LP based methods

in real evacuation scenarios. We also prove that CCRP06 requires less memory than the LP

algorithm. Experimental evaluation using various network configurations show that CCRP06

produces high quality solutions and is much more computationally efficient than LP algorithms.

It is also shown that CCRP06 has a clear advantage over the LP algorithm when increasingthe

number of destination nodes in the network.

The shortest path algorithm used in our approach assumes that the edge travel times include

traffic delays at intersections. It also assumes that the travel times are not time-dependent. We

plan to incorporate existing work in this area, such as [41], to address this limitation.

Another interesting possibility for future work is to integrate our CCRP approach with the

traffic assignment-simulation approach. The traffic assignment-simulation approach uses traffic

simulation tools, such as DYNASMART [32] and DynaMIT [7], to conduct stochastic simulation
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of traffic movements based on origin-destination traffic demands and uses queuing methods

to account for road capacity constraints. Although it may take a long time to complete the

simulation process for a large transportation network, this approach does have the capability to

predict locations for traffic congestion, in contrast to CCRP, which assumes that traffic moves

at a certain speed on each road segment.
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