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Abstract

A data structure is presented for the Mergeable Dictionary abstract data type, which sup-
ports the following operations on a collection of disjoint sets of totally ordered data: Predecessor-
Search, Split and Merge. While Predecessor-Search and Split work in the normal way, the novel
operation is Merge. While in a typical mergeable dictionary (e.g. 2-4 Trees), the Merge operation
can only be performed on sets that span disjoint intervals in keyspace, the structure here has
no such limitation, and permits the merging of arbitrarily interleaved sets. Tarjan and Brown
present a data structure [4] which can handle arbitrary Merge operations in O(log n) amortized
time per operation if the set of operations is restricted to exclude the Split operation. In the
presence of Split operations, the amortized time complexity of their structure becomes Ω(n).
A data structure which supports both Split and Merge operations in O(log2 n) amortized time
per operation was given by Farach and Thorup [6]. In contrast, our data structure supports all
operations, including Split and Merge, in O(log n) amortized time, thus showing that interleaved
Merge operations can be supported at no additional cost vis-à-vis disjoint Merge operations.
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1 Introduction

Consider the following operations on a data structure which maintains a dynamic collection S of
disjoint sets {S1, S2, . . .} which partition some totally ordered universal set U :

� S ← Find(x): Returns the set S ∈ S that contains x.

� p← Search(S, x): Returns the largest element in S that is at most x.

� (A,B) ← Split(S, x): Splits S into two sets A = {y ∈ S | y ≤ x} and B = {y ∈ S | y > x}.
S is removed from S while A and B are inserted.

� C ←Merge(A,B): Creates C = A ∪B. C is inserted into S while A and B are removed.

We call a data structure that supports these operations a Mergeable Dictionary. In this paper
we present a data structure, which implements these operations in amortized time O(log n), where n
is the total number of items in U . What makes the concept of a Mergeable Dictionary interesting is
that the Merge operation does not require that the two sets being merged occupy disjoint intervals
in keyspace. As we discuss in full detail in Section 1.2, a data structure for merging arbitrarily
interleaved sets has appeared independently in the context of Union-Split-Find, Mergeable Trees
and string matching in Lempel-Ziv compressed text. In all three cases, a o(log2 n) bound on
mergeable dictionary operations could not be achieved. We present a data structure that is able to
break through this bound though use of a novel weighting scheme applied to an extended version
of the Biased Skip List data structure [2]. Another alternative would be to extend and use Biased
Search Trees [3] but we believe extending Biased Skip Lists will be easier, at least in terms of
presentation.

We first present a high-level description of the core data structure of the previous work, and show
at a high level the method and motivation we use to improve the runtime. Given this description,
we then can discuss in some detail the three aforementioned works. Finally, we present the full
details of our result.

1.1 High-Level Description

The basic idea of the structure is simple. As a first attempt we show how to achieve O(log2 n) time,
which we outline here and fully present in Section 2. Store each set using an existing dictionary that
supports Search, Split and Join1 in O(log n) time (e.g. 2-4 trees). Thus, the only operation that
requires a non-wrapper implementation is Merge. One first idea would be to implement Merge in
linear time as in Merge-Sort, but this performs poorly, as one would expect. A more intelligent idea
is to use a sequence of searches to determine how to partition the two sets into sets of segments
that span maximal disjoint intervals. Then, use a sequence of Splits to split each set into the
segments and a sequence Join operations to piece together the segments in sorted order. As the
number of segments between two sets being merged could be Θ(n), the worst-case runtime of such
an implementation is O(n log n), even worse than the O(n) of a brute-force merge. However, it is
impossible to perform many Merges with a high number of segments, and an amortized analysis
bears this out; there are only O(log n) amortized segments per Merge. Thus, since each segment
can be processed in O(log n) time, the total amortized cost per Merge operation is O(log2 n).

1Join merges two sets but requires that the sets span disjoint intervals in keyspace
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In [9], it was shown that there are sequences of operations that have Θ(log n) amortized seg-
ments per Merge. This, combined with the worst-case lower bound of Ω(log n) for the dictionary
operations needed to process each segment seemingly gives a strong argument for a Ω(log2 n) lower
bound, which was formally conjectured by Lai. It would appear that any effort to circumvent
this impediment would require abandoning storing each set in sorted order. We show this is not
necessary, as a weighting scheme allows us finesse the balance between the cost of processing each
segment, and the number of segments to be processed; we, in essence, prevent the worst-case of
these two needed events from happening simultaneously. Our scheme, combined with an extended
version of Biased Skip Lists, allows us to speed up the processing of each segment to O(1) when
there are many of them, yet gracefully degrades to the information-theoretically mandated Θ(log n)
worst-case time when there are only a constant number of segments. The details, however, are nu-
merous. We show in Section 3.3 how to augment Biased Skip Lists to support weighted finger
versions of operations that we need. Given this, in Section 4 a full description of our structure is
presented, and in Section 5 the runtime analysis is proved.

1.2 Relationship to existing work

The underlying problem addressed here has come up independently three times in the past, in the
context of Union-Split-Find, Mergeable Trees and string matching in Lempel-Ziv compressed text.
All three of these results, which were initially done independently of each other, bump up against
the same O(log2 n) issue with merging, and all have some variant of the O(log2 n) structure outlined
above at their core. While the intricacy of the latter two precludes us claiming here to reduce the
squared logarithmic terms in their runtimes, we believe that we have overcome the fundamental
obstacle towards this improvement.

1.2.1 Searching in Lempel-Ziv

In the paper of Farach and Thorup, an algorithm is presented for string matching in a Lempel-Ziv
compressed string [6]. They show how to search for a string of length p in a compressed string of
length n that was compressed by a factor of f in time O(p+ n log2 f). The algorithm is complex,
but at its heart needs a data structure that can hold a set S of at most n integers in the range
1 . . .U , and can perform an operation that shifts all values in some interval in S by some specified
integer amount, so long as all values remain the range 1 . . .U . They show how to do this in time
O(logU logN) using a variant of the O(log2 n) structure described above. This variant allows a
whole set to be shifted, and thus shifting an interval can be done with two splits and two merges
in addition to a shift. The potential function they use to bound the number of segments is the
same one as in our presentation of the O(log2 n) structure. A simple extension of our structure
can speed up the needed shifts by a log n factor. However, since they do not completely use
the aforementioned shifting data structure as a black box (there is an “unwinding” of some work
performed there, among other subtleties), we leave the improvement of the runtime to O(p+n log f)
only as a conjectured application of our result.

1.2.2 Mergable Trees

In the paper of Georgiadis, Tarjan, Werneck [8] and the follow-up tech report which adds the
authors Kaplan and Shafrir [7], the problem of Mergeable Trees is studied. This paper is concerned
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with maintaining a dynamic collection of heaps, subject to operations which constitute the dynamic
tree ADT: parent, root, nca, insert, link, cut, delete, and one additional operation, Merge, which
makes things interesting. In the Merge operation, two nodes are specified, and the two root-to-
node paths, which are each in sorted order due to the heap property, are merged. The idea of a
Mergeable Tree ADT originated in an algorithm to compute the structure of a 2-maniford in R3

(The original paper has a algorithm which is shown in [1] to take time Ω(
√
n) per operataion) This

ADT is a generalization of our Mergeable Dictionary, as if the heaps are restricted to be paths,
both structures have identical functionality. They too obtain a O(log n) amortized bound on the
number of segments, using the same potential function as in our O(log2 n) presentation, albeit using
link-cut trees [12] as the underlying O(log n) structure due to their need to have the operations be
performed on a tree paths in a heap rather than a totally ordered set, thus obtaining a O(log2 n)
amortized bound on their operations. We conjecture that using the weighting scheme presented in
this paper will allow the development of a Mergeable Tree with O(log n) runtime for all operations.
This would require the development of a weighted variant of link-cut trees that support weighted
finger searches. In effect, link-cut trees extend (2, 4) trees to allow operations on a tree topology,
while biased skip lists allow sophisticated weighting operations. We would need a combination of
both in order to achieve O(log n) amortized time Mergable Trees. While we conjecture such a
combination is possible, the details to be worked out are numerous.

1.2.3 Union-Split-Find

In the MIT thesis of Lai, supervised by Demaine, the problem of Union-Split-Find is studied [9].
This is proposed as a variant of the classic Union-Find data structure of [13]. Our Mergeable
Dictionary ADT implements Find as Search which is a stronger operation than Find (e.g. Find
can be implemented by returning the maxima of a set). They propose the O(log2 n) structure
outlined above, and show that its amortized performance is Ω(log2 n). They conjecture (correctly)
that there is a potential function that gives O(log2 n) runtime, but do not discover it, instead listing
several potential functions which do not work. With thanks to Mihai Pǎtraşcu, they show that
there is a lower bound of Ω(log n) for this problem which follows from dynamic connectivity lower
bounds [11]. This lower bound indicates our use of the stronger Search instead of the weaker Find
comes at no additional asymptotic amortized cost. They conjecture (incorrectly) that this problem
has a lower bound of Ω(log2 n) per operation; our O(log n) result refutes this. Our results directly
provide an amortized optimal O(log n) time solution to their problem, while the best upper bound
they could prove was O(n).

1.3 Future Work

This paper opens up several avenues for future work. First, as previously stated we believe that
our approach can remove a log n factor from the runtimes of the Lempel-Ziv searching algorithm
and of Mergeable Trees. Both of these results will require integrating our result into each of these
different and complicated results. But, since in both cases the same potential function is used
as in the O(log2 n) structure presentation below, we believe that our data structure provides the
fundamental breakthrough needed to improve these results.

Secondly, for simplicity we do not consider the dynamic case: our data structure always stores
a collection of sets that partitions the same totally ordered set. Extending our result to allow
insertion and deletion will require adding additional complexity to our weighting scheme. Finally,
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we note that the idea that arbitrarily interleaved dictionaries can be merged in O(log n) amortized
time is probably a surprising one, which at first glance probably appears to to impossible (which
is supported by Lai’s inability to get a o(n) solution). While previous results had elements of the
Mergeable Dictionary ADT, and a O(log2 n) solution to it, here is the first clear abstraction of
it as a pure dictionary problem. The fact that the three results above were initially discovered
independently of each other also speaks to the “buried” nature of the fundamental problem in the
previous work. We hope that this result finds applications which were not considered because of
the seeming impossibility at first glance of a o(n) solution.

2 A Simple Heuristic for Merge and the O(log2 n) Amortized Bound

As mentioned previously, the main difficulty in designing a data structure for our problem with
o(n) worst-case time complexity lies in being able to perform the Merge operation fast. This is
confirmed by a lower bound of Ω(n) on the worst-case time complexity of merging two arbitrary
sets [5]. We will describe a heuristic for the Merge operation presented in [5] and used in previous
work [7,9], and show that the use of this heuristic yields o(n) amortized bounds as a warm up.

Consider the Merge(A,B) operation and a maximal subset in either set A or B such that all
the elements of the other set are less than or greater than each element of the subset. We call this
maximal subset a segment. We can view the Merge(A,B) operation as gluing the appropriate
segments of set A and B. Consider, for instance, the Merge algorithm of Merge-Sort, which could
be used to implement the Merge operation. The Merge algorithm linearly scans each segment
until it locates its maximum element. The segment merging heuristic is based on that idea that
there are more efficient methods of locating the maximum element of a set than a linear scan.

Next, we make the notion of segments slightly more precise, describe the heuristic, and describe
the potential function which yields an upper bound of amortized O(log2 n) time.

2.1 The Segment Merging Heuristic

Define a segment of the Merge(A,B) operation to be a maximal subset S of either set A or set
B such that no element in (A ∪B) \ S lies in the interval [min(S),max(S)].

Each set in the collection is stored as a balanced search tree (i.e. 2-4 tree) with level links.
The Find, Search, and Split operations are implemented2 in a standard way to run in O(log n)
worst-case time. The Merge(A,B) operation is performed as follows:

We first locate the minimum and maximum element of each segment of the Merge(A,B)
operation using the Search operation and the level links, then extract all these segments using
the Split operation, and finally we merge all the segments in the obvious way using a standard
Join operation. Therefore since each operation takes O(log n) worst-case time, the total running
time is O(T · log n) where T is the number of segments.

We now analyze all the operations using the potential method [14], with respect to two param-
eters: n, the size of the universe, and m, the total number of all operations.

Let Di represent the data structure after operation i, where D0 is the initial data structure.
Operation i has a cost of ci and transformsDi−1 intoDi. We have a potential function Φ : {Di} → R
such that Φ(D0) = 0 and Φ(Di) ≥ 0 for all i. The amortized cost of operation i, ĉi, with respect

2See [9] for a detailed description of this implementation.
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to Φ is defined as ĉi = ci + Φ(Di)− Φ(Di−1). The total amortized cost of m operations will be

m∑
i=1

ĉi =
m∑

i=1

(ci + Φ(Di)− Φ(Di−1)) =
m∑

i=1

ci + Φ(Dn)− Φ(D0) ≥
m∑

i=1

ci

since Φ(Dn) ≥ 0 and Φ(D0) = 0. Thus, the amortized cost will give us an upper bound on the
worst-case cost.

Next, we describe a potential function which yields an amortized bound of O(log2 n) on the
running time. This potential function was essentially used in [6, 7] which are the only instances
where a o(n) solution has been presented.

2.2 The Potential Function

We need to define some terminology before describing the potential function. Let posS(x) be the
position of x in set S, or more formally posS(x) = |{y ∈ S | y ≤ x}|. Then gS(k), the size of the kth

gap of set S, is the difference of positions between the element of position k and k + 1 of set S in
universe U . In other words, gS(k) = posU (x) − posU (y) where posS(x) = k and posS(y) = k + 1.
For the boundary cases, let gS(0) = gS(|S|) = 1.

Recall that Di is the data structure containing our dynamic collection of disjoint sets, S(i) =
{S(i)

1 , S
(i)
2 , . . .} after the ith operation. Finally, let ϕ(S) =

∑|S|−1
j=1 log gS(j). Then we define the

potential after the ith operation as follows:

Φ(Di) = κa ·
∑

S∈S(i)

ϕ (S) log n

where κa is a positive constant to be determined later.
Note that since the collection of sets consists of the n singleton sets, the data structure initially

has 0 potential (Φ(D0) = 0). Furthermore, because any gap has size at least 1, the data structure
always has non-negative potential (Φ(Di) ≥ 0, ∀i ≥ 0).

2.3 The Amortized O(log2 n) Bound

The Find, Search, and Split operations have worst-case O(log n) running times. The first two
of these operations do not change the structure and therefore do not affect the potential. Observe
that the Split operation can only decrease the potential. Thus, the amortized cost of all three
operations is O(log n).

Now, suppose the ith operation is Merge(A,B) where A and B are sets in Di−1. Assume
w.l.o.g. that the minimum element in A∪B is an element of A. Let I(A,B) = {A1, B1, A2, B2, . . .}
be the set of segments of operation Merge(A,B), where max(Ai) < min(Aj) and max(Bi) <
min(Bj) for i < j, and max(Ai) < min(Bi) < max(Bi) < min(Ai+1) for all i. As previously
noted, the worst-case cost of the Merge operation is O(|I(A,B)| · log n). Let ai be the size of the
gap between the maximum element of Ai and the minimum element of Ai+1, or more formally let
ai = gAi∪Ai+1(|Ai|). Define bi similarly. Now, let

a′i = gAi∪Bi(|Ai|)
a′′i = gBi∪Ai+1(|Bi|)
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A ∪B
a′1 a′′1=b′1 a′2=b′′1 a′′2=b′2 b′′2

B1 b1 b2B
B2 B3

A1 a1 a2A
A2 A3

Figure 1: Gaps ai, bi, a′i, b
′′
i , b′i, and b′′i are defined with respect to the Merge(A,B) operation.

and

b′i = gBi∪Ai+1(|Bi|)
b′′i = gAi+1∪Bi+1(|Ai+1|)

Note that a′′i = b′i and a′i = b′′i−1 (see Figure 1). During the analysis we will take into account
whether |I(A,B)| is odd or even. Let σ = |I(A,B)| mod 2, and R = b(|I(A,B)| − 2)/2c. We are
now ready to bound the amortized cost of the Merge operation. We have

ĉi = ci + Φ(Di)− Φ(Di−1)

Φ(Di−1) =
∑

S∈S\{A,B}

ϕ(S)κa log n

+

(∑
i

ϕ(Ai) +
∑

i

ϕ(Bi)

)
κa log n

+

(
R∑

i=1

(log ai + log bi) + σ log aR+1

)
κa log n

and

Φ(Di) =
∑

S∈S\{A,B}

ϕ(S)κa log n

+

(∑
i

ϕ(Ai) +
∑

i

ϕ(Bi) + log a′1

)
κa log n

+
1
2

(
R∑

i=1

log a′′i + log b′i + log b′′i + log a′i+1

)
κa log n

+
1
2
(
log a′′R+1 + log b′R+1

)
σκa log n.

This gives us

Φ(Di)− Φ(Di−1) =

(
1
2

(
R∑

i=1

log a′′i b
′
ib
′′
i a
′
i+1 − 2 log aibi

)
+ log a′1

)
κa log n
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+
(

1
2
(
log a′′R+1 + log b′R+1

)
− log aR+1

)
σκa log n

=

(
1
2

(
R∑

i=1

log a′′i b
′
ib
′′
i a
′
i − 2 log aibi

)
+

1
2
(
log a′1 + log a′R+1

))
κa log n

+
(

1
2
(
log a′′R+1 + log b′R+1

)
− log aR+1

)
σκa log n

We have a′′i , a
′
i < ai ≤ n and similarly b′′i , b

′
i < bi ≤ n. Also note that since a′i + a′′i ≤ ai, we have

log a′i+log a′′i ≤ log a′i+log(ai−a′i) ≤ log ai/2+log ai/2. Similarly, log b′i+log b′′i ≤ log bi/2+log bi/2.

Φ(Di)− Φ(Di−1) ≤ 1
2

(
R∑

i=1

log a′′i b
′
ib
′′
i a
′
i − 2 log aibi

)
κa log n+O(log2 n)

=
1
2

(
R∑

i=1

log
a′i · a′′i · b′i · b′′i
ai · ai · bi · bi

)
κa log n+O(log2 n)

≤ 1
2

(
R∑

i=1

log
ai/2 · ai/2 · bi/2 · bi/2

ai · ai · bi · bi

)
κa log n+O(log2 n)

=
1
2

(
R∑

i=1

log
1
16

)
κa log n+O(log2 n)

= −κb · I(A,B)κa log n+O(log2 n).

Recall that the worst-case cost of the Merge operation, ci, is O(|I(A,B)| log n). Let κc be a
constant such that ci ≤ κc · |I(A,B)| log n. Then the above bound yields

ĉi = ci + Φ(Di)− Φ(Di−1)

≤ ci − κb · I(A,B)κa log n+O(log2 n)

≤ κc · I(A,B) log n− κb · I(A,B)κa log n+O(log2 n)

= O(log2 n) (set κa = κc/κb).

Thus, the amortized cost of the Merge operation is O(log2 n). Combined with the arguments
before, this gives us the following theorem.

Theorem 1. The Mergeable Dictionary problem can be solved such that a sequence of m Find,
Search, Merge, and Split operations can be executed in O(m log2 n) worst-case time.

In order to obtain a data structure with an amortized running time of o(log2 n) per operation, we
certainly need a new potential function. To see this, observe the case when we have two singleton
sets A and B with elements x ∈ A and y ∈ B such that log(posU (x) − posU (y)) = Ω(log n).
If we use the potential function defined in Section 2.2, the potential increase alone as a result
of a Merge(A,B) operation is Ω(log2 n). We want to eliminate the extra log n factor in the
potential function but this implies we need to be able to join segments in amortized O(1) time.
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We ultimately want a data structure such that each operation except Merge can be performed in
worst-case O(log n) time, and Merge can be performed in worst-case

O

log n+
∑

i

F (Ai) +
∑

j

F (Bj)


time where Ai and Bj are segments involved in the operation, F (Ai) and F (Bj) denote the time it
takes to process segments Ai and Bj respectively, and

∑
i F (Ai) +

∑
j F (Bj) is no more than the

decrease in potential.
In the next section, we describe biased skip lists, the underlying data structure we will be using

in our data structure.

3 Biased Skip Lists with Extended Operations

Biased skip lists are a variant of skip lists [10] which we assume the reader is familiar with. Biased
skip lists as described in [2] are missing some operations which will be vital in the implementation
of our data structure. Therefore, in order to be able to design a highly tuned Merge operation,
we will extend biased skip lists.

First, we describe essential biased skip list details. The reader is referred to [2] for further
details on biased skip lists.

3.1 Biased Skip Lists

We will first cover basic definitions followed by the three key invariants of the structure.

Definitions A biased skip list (BSL) S stores an ordered set X where each element x ∈ X
corresponds to a node3 x ∈ S with weight w(x), which is user-defined, and integral height h(x),
which is initially computed from the weight of the node. For our purposes, we will assume that the
weights are bounded from below by 1 and bounded from above by a polynomial in n.

Each node x ∈ S is represented by an array of length h(x) + 1 called the tower of node x.
The level-j predecessor, Lj(x), of x is the largest node k in S such that k < x and h(k) ≥ j.
The level-j successor, Rj(x), is defined symmetrically. The jth element of the tower of node x,
contains pointers to the jth elements of towers of node Lj(x) and node Rj(x) with the exception
of towers of adjacent nodes where pointers between any pair of adjacent nodes x and y on level
min(h(x), h(y)) − 1 are nil and the pointers below this level are undefined. Node levels progress
from top to bottom. Two distinct elements x and y are called consecutive if and only if they linked
together in S; or equivalently if and only if for all x < z < y, h(z) < min(h(x), h(y)). A plateau
is a maximal set of consecutive nodes of the same height. The rank of a node x is defined as
r(x) = blogaw(x)c where a is a constant to be specified later. For our purposes, we will set a = 2.

Additionally, let predX(x) be the predecessor of x in set X, and let succX(x) be the successor
of x in set X. Let H(X) = maxx∈X h(x). Let S[←[j] = {x ∈ S |x ≤ j} and S[j�] = {x ∈ S |x > j}.
Let W (S) =

∑
x∈S w(x). Also let W[i,j](S) =

∑
x∈S;i≤x≤j w(x).

For convenience, we imagine sentinel nodes −∞ and +∞ of height H(S) at the beginning and
end of biased skip list S. These sentinels are not actually stored or maintained.

3We will use the terms “element”, “node”, “key”, and “item” interchangeably; the context clarifies any ambiguity.
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The left profile of x in a biased skip list S is defined as {Lj(x) |h(Lj(x)) = j}. Similarly the
right profile of x in a biased skip list S is defined as {Rj(x) |h(Rj(x)) = j}. The profile of node x
in a biased skip list S is the union of its left profile and right profile.

The left cover of a biased skip list S is defined as {min(S)} ∪ {Rj(min(S)) |h(Rj(min(S))) =
j, j > h(min(S))}. Similarly, the right cover of a biased skip list S is defined as {max(S)} ∪
{Lj(max(S)) |h(Lj(max(S))) = j, j > h(max(S))}. The cover of biased skip list S is the union of
its left cover and right cover.

Invariants The three invariants of biased skip lists are listed below. Note that a and b can be
suitable constants satisfying the definition of (a, b)-biased skip lists. For our purposes it is sufficient
to set a = 2, b = 6.

Definition 2. For any a and b such that 1 < a ≤ b b
3c, an (a, b)-biased skip list is a biased skip list

with the following properties:

(I0) Each item x has height h(x) ≥ r(x).

(I1) There are never more than b consecutive items of any height.

(I2) For each node x and for all i such that r(x) < i ≤ h(x), there are at least a nodes of height
i− 1 between x and any consecutive node of height at least i.

In the remainder of the paper, we will refer to (2, 6)-biased skip lists simply as biased skip lists.

3.2 Operations

We now describe the original biased skip list operations we will be using in our data structure.

� p← BSL-Search(S, i): Performs a standard search in biased skip list S using search key i.
This operation runs in worst-case O(log n) time.

� p ← BSL-FSearch(i, j): Starting from a given finger4 to a node i in some biased skip list
S perform a predecessor search in S using j as the search key. This operation runs in

O
(

1 + log
W[i,succS(j)](S)

min(w(i), w(predS(j)), w(succS(j)))

)
worst case time.

� (A,B)← BSL-Split(S, i): Splits the biased skip list S at i into two biased skip lists A and
B storing sets {x ∈ S |x ≤ i} and {x ∈ S |x > i} respectively, and returns an ordered pair of
handles to A and B. This operation runs in worst-case O(log n) time.

� BSL-Rew(S, i, w): Changes the weight of node i ∈ S to w. This operation runs in worst-case
O(log n) time.

4This operation is originally described with three arguments in [2] as FingerSearch(X, i, j). However, note that
X is a redundant argument here as we already have a pointer to an element of X, namely, to i.
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3.3 Extended Operations

Biased skip lists support finger searches, however we need to extend biased skip lists to also support
a finger split, a finger join, and a finger reweight operation.

Finger Split Given a pointer to node f ∈ S, BSL-FSplit(f) splits biased skip list S into two
biased skip lists, A and B, storing sets {x ∈ S |x ≤ f} and {x ∈ S |x > f} respectively, and returns
an ordered pair of handles to A and B.

(A,B)← BSL-FSplit(f):

1. Disconnect the pointers between the each node in the right profile of node f and the left profile
of node f ′ = succS(f), effectively splitting S and forming A and B. More precisely, disconnect
pointers between the jth level of node Rj(f) and Lj(f ′) where j ≥ min(h(f), h(f ′)). Pointers
below this level are already null.

2. Restore (I2) in A. We will process the nodes of the right cover of A after Step 1 in the order
of increasing height. Denote the current node being processed by u. Let h′ be the height of
the node which was most recently processed.

(a) If u = f , then set h′ = h(u) and demote the height of u to r(u).

(b) If (I2) is not violated at u, then stop if h(u) > min(H(S[←[f]), H(S[f�])), and set h′ =
h(u) and iterate with the next node, Lh(u)+1(A), otherwise5.

(c) If (I2) is violated at node u, then demote the height of u to max(r(u), h′). Set h′ to the
height of u before the demotion.

� If a demotion causes an (I1) violation at the new height of u by creating a plateau
of b′ > b nodes, then promote the height of the median of these nodes by 1, and
iterate at the level above to check for percolating (I1) violations.

� Once all the (I1) violations are fixed, iterate with the next node, Lh′+1(A), to fix
the next potential (I2) violation.

Restore (I2) in B essentially symmetrically.

Correctness All the pointers in S connecting any node in A and any node in B are precisely
those described in Step 1. Therefore Step 1 splits the nodes of A and B correctly.

We need to ensure that all the invariants are preserved. When we perform demotions in Step 2
we make sure that we do not demote the height of any node lower than its rank. Therefore (I0) is
preserved. Note that removing predecessors or successors cannot cause an (I1) violation.

Observe that in A, (I2) can only be violated at the nodes in the right cover of A after Step 1,
once per level. A symmetric argument holds for (I2) violations in B. When we demote a node u
this fixes the (I2) violation at that node because the height of the node is either demoted to r(u)
which by definition implies the violation is fixed, or to h′. If the height of node u is demoted to
h′, this implies that there was another node u′ with height h′, consecutive to u, before the BSL-
FSplit operation. The only way we change the height of any node between node u and node u′

5Note that Lh(u)+1(A) can be computed in O(b) = O(1) time due to (I1); and min(H(S[←[f]), H(S[f�])) can be
computed during Step 1.
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during BSL-FSplit(f) is an (I1) promotion, which, cannot cause an (I2) violation. Note that
there cannot be an (I2) violation at these nodes since they are not in the right cover of A after
Step 1. We assume there were no (I2) violations before the BSL-FSplit operation. Then it holds
that there can be no (I2) violations at node u at any level less than or equal to h′. Therefore,
demoting u to level h′ fixes any (I2) violations at this node.

Any of the demotions may cause an (I1) violation which are also fixed by Step 2. Because we
promote the median, this cannot cause an (I2) violation since bb′/2c ≥ bb′/3c ≥ a. Also note that
the (I1) promotions caused by the demotion of a node never percolate higher than the height of
the node before the demotion. Thus, nodes on the right cover of A after Step 1 that have not yet
been processed during Step 2 are not removed from the right cover due to an (I1) promotion.

Observe that if a node u in the right cover ofA after Step 1 has height greater than min(H(S[← [f]),
H(S[f�])) and there is no (I2) violation at this node, then no other node of greater height in A
can have an (I2) violation. Symmetric arguments again apply for B. Thus, by induction, iterating
Step 2 fixes all (I2) violations.

Finger Join Given pointers to ` and r, the maximum and minimum nodes of two distinct biased
skip lists A and B respectively, BSL-FJoin(`, r) returns a new biased skip list C containing all
elements of A and B assuming ` < r. A and B are destroyed in the process.

S ← BSL-FJoin(`, r)

1. Connect pointers between each node in the right profile of node ` and the left profile of node
r, effectively joining A and B, and forming C. More precisely, create pointers between the
jth level of node Rj(`) and Lj(r) where j ≥ min(h(`), h(r)). Pointers below this level need to
already be null.

2. Restore (I1) in C. For j = max(h(`), h(r)) up through min(H(A), H(B)), if there is an (I1)
violation at level j caused by a plateau of b′ > b nodes, then promote the height of the median
of these nodes by 1, and iterate at the next level. For j = min(H(A), H(B)) + 1 up through
max(H(A), H(B)), if there is no (I1) violation at level j, then stop6. Otherwise promote the
median node of the plateau of b′ > b nodes causing the violation to restore (I1) and iterate
at the next level.

Correctness Joining A and B only affects the right profile of ` and the left profile of r. Therefore,
Step 1 connects the two biased skip lists A and B and forms C correctly. Joining two biased skip
lists cannot create any (I2) violations assuming there were no such violations before the operation;
and fixing (I1) violations cannot create (I2) violations since bb′/2c ≥ bb′/3c ≥ a. Therefore, (I2)
is preserved. Note that after Step 1, any level in the range [max(h(`), h(r)),max(H(A), H(B))]
could have at most 2b + 1 (b from A, b from B, and 1 due to a promotion from the level below)
consecutive nodes of the same height; which is fixed in Step 2. By induction, iterating Step 2 fixes
all (I1) violations.

Finger Reweight Given a pointer to a node f ∈ S, changes its weight to w while preserving
invariants (I0), (I1), and (I2) of the biased skip list containing f .

6min(H(A), H(B)) can be computed during Step 1.
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BSL-FRew(f, w) :

1. Let r′(f) be the new rank of f . If r′(f) = r(f), then stop.

2. If r′(f) > r(f) and h(f) ≥ r′(f), then stop.

3. If r′(f) > r(f) and h(f) < r′(f), then promote the height of f to r′(f). Restore (I2) as in
Step 2 of BSL-FSplit but start from the first node in the left profile of f that has height
greater than h(f); and symmetrically from the first node in the right profile of f that has
height greater than h(f). Then, restore (I1) as in Step 2 of BSL-FJoin but start from level
r′(f).

4. If r′(f) < r(f), then demote the height of f to r′(f). Restore (I1) as in Step 2 of BSL-FJoin
but starting from r′(f). Then, restore (I2) as in Step 2 of BSL-FSplit, but starting from
the first node in the left profile of f that has height greater than h(f); and symmetrically
from the first node in the right profile of f that has height greater than h(f).

Correctness If the rank of node f does not change, there are no structural changes to the biased
skip list and therefore Step 1 is correct.

If the rank of f increases but it is still less than its height, then (I0) is preserved. By not
changing the height of the node we ensure that (I1) and (I2) are preserved as well. Therefore, Step
2 is also correct.

If the rank of a node f becomes greater than its height, then (I0) is violated and we promote f
to its new rank to fix the violation. Observe that this promotion can cause (I2) to be violated at the
nodes in the left profile of f that have height greater than the old height of f ; and symmetrically at
the nodes in the right profile of f that have height greater than the old height of f , once per level.
Step 3, by the correctness of Step 2 of BSL-FSplit, fixes all (I2) violations. The promotion can
also cause (I1) to be violated at level r′(f). Step 3, by the correctness of Step 2 of BSL-FJoin,
fixes all (I1) violations. Therefore, Step 3 is correct.

If the rank of a node f decreases, we demote f to its new rank so (I2) cannot be violated at
this node. Observe that this demotion can cause (I1) to be violated at level r′(f). Step 4, by the
correctness of Step 2 of BSL-FJoin, fixes all (I1) violations. The demotion can also cause (I2) to
be violated at the nodes in the left profile of f that have height greater than the old height of f ;
and symmetrically at the nodes in the right profile of f that have height greater than the old height
of f , once per level. Step 4, by the correctness of Step 2 of BSL-FSplit, fixes all (I2) violations.
Therefore, Step 4 is correct.

Since steps 1-4 exhaust all possible scenarios, all the invariants are preserved and the BSL-
FRew operation is correct.

Before moving on, we need to analyze the time complexity of these new operations.

3.4 The Analysis of Extended Operations

We now analyze the time complexity of the extended operations described above using the potential
method.

The extended operations, BSL-FSplit, BSL-FJoin, and BSL-FRew, are executed on a set
of biased skip lists. Let Lk be the set of biased skip lists after the kth operation, where L0 is the
initial set of biased skip lists we are given.
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Let Pk be the set of plateaus which contain an element in the cover of some biased skip list in
Lk. For a plateau p, let |p| be the number of nodes contained in plateau p. We define the following
sets of plateaus. Let Sk

[x,y] = {p ∈ Pk |x ≤ |p| ≤ y} and Sk
(x,y) = {p ∈ Pk |x < |p| < y}. We can

now define a potential function as follows.

Φe(Lk) = κg(8|Sk
(0,a)|+ 4|Sk

[a,a]|+ |Sk
[b,b]|+ 3|Sk

(b,2b)|+ 5|Sk
[2b,2b+1]|).

Observe that Φe(Lk) ≥ 0 for any k. For each extended operation, we will use this potential function
to prove upper bounds on the amortized time complexity of the operation as well as worst-case
time complexity of a sequence of operations.

Lemma 3. The (A,B) ← BSL-FSplit(f) operation, where f ∈ S, has an amortized time com-
plexity of

O(min(H(A′), H(B′))−min(r(max(A′)), r(min(B′))) + 1)

where A′ = S[←[f] and B′ = S[f�].

Proof. Let BSL-FSplit(f) be the kth operation. Step 1 takesO(min(H(A′), H(B′))−min(h(max(A′)),
h(min(B′)))+1) time. Step 2 takes constant time at each level from level min(r(max(A′)), r(min(B′)))
to level min(H(A′), H(B′)). We will show that the time spent by Step 2 on levels greater than
min(H(A′), H(B′)) is essentially negligible by showing that it equals the decrease in potential at
these levels.

We now analyze the contribution of Step 1 and Step 2 to the potential change, Φe(Lk) −
Φe(Lk−1).

Step 1 Due to the split, the plateaus on the cover of S becomes plateaus on the cover of A and
B. Additionally, the plateaus on levels less than or equal to min(H(A′), H(B′)) on the right cover
of A and left cover of B are added to Pk. Therefore, the contribution of Step 1 to the potential
change is at most O(min(H(A′), H(B′))−min(h(max(A′)), h(min(B′))) + 1).

Step 2 We now look at the contribution of Step 2 to the potential change, Φe(Lk) − Φe(Lk−1).
Note that at any level less than or equal to min(H(A′), H(B′)), the potential increase can be at
most a constant. Therefore, the maximum contribution of Step 2 to the potential change in these
levels is O(min(H(A′), H(B′)) −min(r(max(A′)), r(min(B′)))). Next, we bound the contribution
of Step 2 to the potential change in levels greater than min(H(A′), H(B′)).

Demotions Consider a demotion operation to restore (I2) at some node x. This demotion could
cause a change in potential in two ways.

First, the plateau p′ which was causing the (I2) violation could have had less than a nodes, and
now has more.

Note that since we demote node x to the level of p′, there must be a plateau of at least a nodes
(due to (I2)) on the other side of node x. Therefore, p′ will have at least a + 1 nodes. Also, the
plateau on the other side of node x cannot have more than b nodes. Therefore, p′ will have at most
b + a nodes. This implies that p′ can only have between a + 1 and b + a nodes. If p′ has between
a + 1 and b − 1 nodes, the contribution of this part to the potential change is −8κg. If p′ has b
nodes, the contribution of this part to the potential change is −8κg +κg = −7κg. If p′ has between
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b+ 1 and b+ a nodes, the contribution of this part to the potential change is −8κg + 3κg = −5κg.
Therefore, the maximum contribution of this part to the potential change is −5κg.

Note that p′ might not exist (have zero nodes). In this case, the maximum contribution of this
part to the potential change is 3κg. However, this case is only possible if p′ has height less than or
equal to min(H(A′), H(B′)).

Second, the demotion of x could cause the plateau p′′, which x was a part of before the demotion,
to have less nodes. If p′′ had 2b nodes or more and now has between b + 1 and 2b − 1 nodes, the
contribution of this part to the potential change is −5κg + 3κg = −2κg. If p′′ had between b + 1
and 2b − 1 nodes and now has b nodes, the contribution of this part to the potential change is
−3κg +κg = −2κg. If p′′ had b nodes and now has between a+ 1 and b− 1 nodes, the contribution
of this part to the potential change is −κg. If p′′ had between a+ 1 and b− 1 nodes and now has a
nodes, the contribution of this part to the potential change is 4κg. If p′′ had a nodes and now has
between 1 and a−1 nodes, the contribution of this part to the potential change is −4κg +8κg = 4κg.
Additionally, if p′′ had between 1 and a− 1 nodes and now has zero nodes, the contribution of this
part to the potential change is −8κg.

Therefore, combining the first and second part, the maximum contribution of a demotion to
the potential change is 7κg on levels less than or equal to min(H(A′), H(B′)), and −κg on levels
greater.

Note that the demotion of x could cause a high number of plateaus which did not have any
elements in the cover of their biased skip list to now have an element in the cover and thus enter
Pk. In order for this case to occur, the height of x must be demoted at least two levels. By the
description of Step 2, this implies there were no nodes of height h(x) − 1 in the biased skip list
containing x after Step 1. Since S has no (I2) violations before Step 1, this implies there must be
nodes of height h(x)− 1 in the other biased skip list. Therefore, this case is only possible in levels
less than or equal to min(H(A′), H(B′)).

Promotions Consider a promotion operation at a node x to restore an (I1) violation on the
plateau p′ node x is on. This promotion could cause a change in potential in two ways.

First, the plateau p′ could have had between b+ 1 and 2b+ 1 nodes, and now has less. If p′ had
between b+ 1 and 2b− 1 nodes, then the promotion of node x splits p′ into two plateaus. Only one
of these plateaus remain in the cover of the biased skip list unless nodes of p′ were at the highest
level of the biased skip list. The plateau remaining in the cover must have size greater than a and
less than b. Therefore, p′ will now have between a+ 1 and b− 1 nodes, and the contribution of this
part to the potential change is −3κg. In the special case of both plateaus remaining in the cover,
then both of them will have between a + 1 and b − 1 nodes, and the contribution of this part to
the potential change is −3κg. If p′ has 2b or more nodes, then the promotion of x splits p′ into
two plateaus. Only one of these plateaus remain in the cover of the biased skip list unless nodes of
p′ were at the highest level of the biased skip list. The plateau remaining in the cover must have
size either b− 1 or b. If it has b− 1 nodes, the contribution of this part to the potential change is
−5κg. If it has b nodes, the contribution of this part to the potential change is −5κg + κg = −4κg.
In the special case of both plateaus remaining in the cover, then either one of them has b − 1
nodes, and the other one has b nodes, and the contribution of this part to the potential change is
−5κg +κg = −4κg; or both of them have b nodes, and the contribution of this part to the potential
change is −5κg + 2κg = −3κg.

Second, the promotion of x could cause the plateau p′′, which x becomes a part of after the
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promotion, to have more nodes. If p′′ had more than 2b − 1 nodes, note that it must have had
at most 2b nodes. Promotion of x increases the size of p′′ to 2b + 1. Thus, it does not change
its set and the contribution of this part to the potential change is 0. Note that, in general, if the
promotion does not change the set of p′′, then the contribution of this part to the potential change
is 0. If p′′ had 2b − 1 nodes and now has 2b nodes, the contribution of this part to the potential
change is −3κg + 5κg = 2κg. If p′′ had b nodes and now has b + 1 nodes, the contribution of this
part to the potential change is −κg + 3κg = 2κg. If p′′ had b − 1 nodes and now has b nodes, the
contribution of this part to the potential change is κg. If p′′ had a nodes and now has a+ 1 nodes,
the contribution of this part to the potential change is −4κg. If p′′ had a− 1 nodes and now has a
nodes, the contribution of this part to the potential change is −8κg + 4κg = −4κg. Additionally, if
p′′ had zero nodes and now has 1 node, the contribution of this part to the potential change is 8κg.
However, this can only happen if an earlier demotion caused the only node of p′′ to be demoted.
Therefore, p′′ first has 1 node; then a demotion causes p′′ to have 0 nodes; and then a promotion
associated with that demotion causes p′′ to have 1 node again. The effect on the potential change
is zero.

Therefore, combining the first and second part, the maximum contribution of a promotion to
the potential change is −κg.

Assume the worst-case running time of any single demotion or promotion operation is bounded
by a constant κh. Let ĉk and ck respectively be the amortized and worst-case running time of
BSL-FSplit(f) and let vk be the number of violations that are restored during Step 2 above level
min(H(A′), H(B′)). Then we have ck ≤ O(min(H(A′), H(B′))−min(r(max(A′)), r(min(B′)))+1)+
κh · vk. Combining the bounds on the maximum contribution of Step 1 and Step 2 to the potential
change and setting κg = κh, we have Φe(Lk) − Φe(Lk−1) ≤ −vkκh + O(min(H(A′), H(B′)) −
min(r(max(A′)), r(min(B′)))). This yields

ĉk = ck + Φe(Lk)− Φe(Lk−1)
≤ κhvk + Φe(Lk)− Φe(Lk−1) +O(min(H(A′), H(B′))−min(r(max(A′)), r(min(B′))) + 1)
≤ κhvk − κhvk +O(min(H(A′), H(B′))−min(r(max(A′)), r(min(B′))) + 1)
= O(min(H(A′), H(B′))−min(r(max(A′)), r(min(B′))) + 1).

This completes the proof.

Lemma 4. Given a set L0 = {Λ1,Λ2, . . . ,Λm} of biased skip lists, a sequence of (Sk, Tk) ←
BSL-FSplit(fk) operations for 1 ≤ k ≤ t where fk ∈ Uk and Uk ∈ Lk−1 can be executed in
worst-case time

O
(

t∑
k=1

(min(H(S′k), H(T ′k))−min(r(max(S′k)), r(min(T ′k))) + 1)

)
+

O
(

m∑
i=1

(H(Λi)−min(h(min(Λi)), h(max(Λi))) + 1)

)
where S′k = Uk[←[fk] and T ′k = Uk[fk�].

Proof. Let ĉk and ck respectively be the amortized and worst-case running time of BSL-FSplit(fk).
Note that Φe(L0) = O(|P0|) = O (

∑m
i=1(H(Λi)−min(h(min(Λi)), h(max(Λi))) + 1)). Then we
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have

t∑
k=1

ĉk =
t∑

k=1

(ck + Φe(Lk)− Φe(Lk−1))

t∑
k=1

ĉk =
t∑

k=1

ck + Φe(Lt)− Φe(L0)

t∑
k=1

ck =
t∑

k=1

ĉk − Φe(Lt) + Φe(L0)

t∑
k=1

ck ≤
t∑

k=1

ĉk + Φe(L0)

= O
(

t∑
k=1

(min(H(S′k), H(T ′k))−min(r(max(S′k)), r(min(T ′k))) + 1)

)
By Lemma 3

+ Φe(L0)

= O
(

t∑
k=1

(min(H(S′k), H(T ′k))−min(r(max(S′k)), r(min(T ′k))) + 1)

)

+O
(

m∑
i=1

(H(Λi)−min(h(min(Λi)), h(max(Λi))) + 1)

)
.

Lemma 5. The S ← BSL-FJoin(`, r) operation, where ` ∈ A, r ∈ B, has an amortized time
complexity of

O (min(H(A), H(B))−min(h(max(A)), h(min(B))) + 1) .

Proof. Let BSL-FJoin(`, r) be the kth operation. Step 1 takesO(min(H(A), H(B))−min(h(max(A)),
h(min(B)))+1) time. Step 2 takes constant time at each level from level min(h(max(A)), h(min(B)))
to level min(H(A), H(B)). We will show that the time spent by Step 2 on levels greater than
min(H(A), H(B)) is essentially negligible by showing that it equals the decrease in potential at
these levels.

We now analyze the contribution of Step 1 and Step 2 to the potential change, Φe(Lk) −
Φe(Lk−1).

Step 1 Due to the join, the plateaus on levels greater than min(H(A), H(B)) as well as the
plateaus on left cover of A and right cover of B becomes plateaus on the cover of S. The plateaus
on levels less than or equals to min(H(A), H(B)) on the right cover of A and on the left cover of
B are not on the cover of S and thus are not added to Pk.

The only way Step 1 can increase the potential is if all the plateaus on the covers of A and B
becomes plateaus on the cover of S and the plateaus containing nodes max(A) and min(B) merge
and form a larger plateau with more weight with respect to the potential function. Therefore, the
contribution of Step 1 to the potential change is at most 3κg.
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Step 2 Note that Step 2 only involves promotions. Any promotion on level less than or equal to
min(H(A), H(B)) will increase the potential by at most a constant and total contribution to the
potential change is bounded by O(min(H(A), H(B)) −min(h(max(A)), h(min(B))) + 1). We will
focus on promotions which occur on higher levels.

Consider a promotion operation at a node x to restore an (I1) violation on the plateau p′ node
x is on where p′ is on a level greater than min(H(A), H(B)). The promotion could cause a change
in potential in two ways.

First, the plateau p′ could have had b + 1 nodes, then the promotion of node x splits p′ into
two plateaus with between a+ 1 and b− 1 nodes each. Then, the contribution of this part to the
potential change is −3κg.

Second, the promotion of x could cause the plateau p′′, which x becomes a part of after the
promotion, to have more nodes. Note that due to (I1), p′′ could not have had more than b nodes.
If p′′ had b nodes and now has b + 1 nodes, the contribution of this part to the potential change
is −κg + 3κg = 2κg. If p′′ had less than b nodes and now has at most b nodes, the potential could
increase by at most a constant, but the promotion will not cause an (I1) violation at p′′, and Step
2 will terminate.

Therefore, combining the first and second part, the maximum contribution of a promotion to
the potential change is −κg except possibly for the last promotion.

Assume the worst-case running time of any single promotion operation is bounded by a constant
κj . Let ĉk and ck respectively be the amortized and worst-case running time of BSL-FJoin(`, r)
and let vk be the number of violations that are restored during Step 2 above level min(H(A), H(B)).
Then we have ck ≤ O(min(H(A), H(B))−min(h(max(A)), h(min(B)))+1)+κj ·vk. Combining the
bounds on the maximum contribution of Step 1 and Step 2 to the potential change and setting κg =
κj , we have Φe(Lk)−Φe(Lk−1) ≤ −vkκj +O(min(H(A), H(B))−min(h(max(A)), h(min(B)))+1).
This yields

ĉk = ck + Φe(Lk)− Φe(Lk−1)
≤ κjvk + Φe(Lk)− Φe(Lk−1) +O(min(H(A), H(B))−min(h(max(A)), h(min(B))) + 1)
≤ κjvk − κjvk +O(min(H(A), H(B))−min(h(max(A)), h(min(B))) + 1)
= O(min(H(A), H(B))−min(h(max(A)), h(min(B))) + 1).

This completes the proof.

Lemma 6. Given a set L0 = {Λ1,Λ2, . . . ,Λm} of biased skip lists, a sequence of Uk ← BSL-FJoin(`k, rk)
operations for 1 ≤ k ≤ t where `k ∈ Sk, rk ∈ Tk and Sk, Tk ∈ Lk−1 can be executed in worst-case
time

O
(

t∑
k=1

(min(H(Sk), H(Tk))−min(h(max(Sk)), h(min(Tk))) + 1)

)
+

O
(

m∑
i=1

(H(Λi)−min(h(min(Λi)), h(max(Λi))) + 1)

)
.

Proof. Let ĉk and ck respectively be the amortized and worst-case running time of BSL-FJoin(`k, rk).
Note that Φe(L0) = O(|P0|) = O (

∑m
i=1(H(Λi)−min(h(min(Λi)), h(max(Λi))) + 1)). Then we

have
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t∑
k=1

ĉk =
t∑

k=1

(ck + Φe(Lk)− Φe(Lk−1))

t∑
k=1

ĉk =
t∑

k=1

ck + Φe(Lt)− Φe(L0)

t∑
k=1

ck =
t∑

k=1

ĉk − Φe(Lt) + Φe(L0)

t∑
k=1

ck ≤
t∑

k=1

ĉk + Φe(L0)

= O
(

t∑
k=1

(min(H(Sk), H(Tk))−min(h(max(Sk)), h(min(Tk))) + 1)

)
By Lemma 5

+ Φe(L0)

= O
(

t∑
k=1

(min(H(Sk), H(Tk))−min(h(max(Sk)), h(min(Tk))) + 1)

)

+O
(

m∑
i=1

(H(Λi)−min(h(min(Λi)), h(max(Λi))) + 1)

)
.

Lemma 7. The BSL-FRew(f, w) operation, where f ∈ S, has a worst-case and amortized time
complexity of

O(max(H(S), r′(f))−min(h(f), r′(f)) + 1).

Proof. BSL-FRew(f, w) only spends constant time at each level between min(h(f), r′(f)) and
max(h(f), r′(f)) for promoting or demoting f ; and at most constant time at each level between
min(h(f), r′(f)) and max(H(S), r′(f)) for restoring invariants. Therefore, the worst-case complex-
ity of BSL-FRew(f, w) is O(max(H(S), r′(f))−min(h(f), r′(f)) + 1).

Let BSL-FRew(f, w) be the kth operation. Note that no plateaus that are on levels less than
min(h(f), r′(f)) are affected by the operation. Since the potential increase associated with each level
is bounded by a constant, we have Φe(Lk) − Φe(Lk−1) = O(max(H(S), r′(f)) −min(h(f), r′(f))).
Thus, the lemma follows.

Lemma 8. The BSL-FSearch, BSL-FSplit, BSL-FJoin, and BSL-FRew operations all have
a worst-case time complexity of O(log n).

Proof. Let W ′ be the sum of the weights of all elements in the sets involved in any of these four
operations. By our previous assumptions, W ′ is bounded from above by a polynomial in n. Since
these versions of the operations are more efficient than the non-finger versions which take O(logW ′)
time in the worst case, these operations have a worst-case time complexity of O(log n).

We now present our data structure, the Mergeable Dictionary, which improves the worst-case
bound in Theorem 1 by a factor of log n, matching the lower bound of [11].
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4 Our Data Structure: The Mergeable Dictionary

The Mergeable Dictionary stores each set in the collection S as a biased skip list. The weight of
each node in each biased skip list is determined by S. When the collection of sets is modified,
for instance via a Merge operation, in order to reflect this change in the data structure, besides
splitting and joining biased skip lists, we need to ensure the weights of the affected nodes are
properly updated and biased skip list invariants (I0), (I1), and (I2) are preserved. For simplicity
we assume that D0 is the collection of singleton sets and Di, for all i, partitions the universe U .
This lets us precompute, for each node x, posU (x), the global position of x.

For the Merge algorithm, we will use the same basic approach outlined in Section 2, the
segment merging heuristic, which works by extracting the segments from each set and then gluing
them together to form the union of the two sets.

As previously mentioned, while we do not have control over the number of segments that need
to be processed which has been shown to have an amortized lower bound of Ω(log n) per operation,
we need to process each segment faster. In order to do so, we depart from balanced search trees
and instead use Biased Skip Lists [2] with the extended operations we introduced in Section 3.

Before we discuss the implementation of each operation in detail, we need to describe the
weighting scheme.

4.1 Weighting Scheme

Let the weight of a node x, w(x), be the sum of the sizes of its adjacent gaps. In other words, if
posS(x) = k for some node x ∈ S, then we have

w(x) = gS(k − 1) + gS(k).

Recall that gS(0) = gS(|S|) = 1. Observe that this implies for any set S, W (S) ≤ 2n.

4.2 The Find, Search, and Split Operations

The Find(x) operation can simply return the maximum element of the set which contains x by
invoking BSL-FSearch(i,+∞). The Search(X, i) operation can be performed by simply invok-
ing BSL-Search(X, i). The Split(X, i) operation can be performed by simply invoking BSL-
Split(X, i) and running BSL-FRew on one node in each of the resulting biased skip lists to restore
the weights.

4.3 The Merge Operation

We will use the Mergeable Dictionary in Figure 2 to illustrate the Merge operation. The Merge(A,B)
operation can be viewed as having four essential phases: finding the segments, extracting the seg-
ments, updating the weights, and gluing the segments. A more detailed description follows.

Phase I: Finding the segments Assume min(A) < min(B) w.l.o.g. Let z = d|I(A,B)|/2e and
v = b|I(A,B)|/2c. Recall that I(A,B) = {A1, B1, A2, B2, . . .} is the set of segments associated
with the Merge(A,B) operation where Ai and Bi are the ith segment of A and B respectively.
We have min(A1) = min(A) and min(B1) = min(B). Given min(Ai) and min(Bi), we find max(Ai)
by invoking BSL-FSearch(min(Ai),min(Bi)). Similarly, given min(Bi) and min(Ai+1) we find
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max(Bi) by invoking BSL-FSearch(min(Bi),min(Ai+1)). Lastly, given max(Ai) and max(Bi),
observe that min(Ai+1) = succA(max(Ai)) and min(Bi+1) = succB(max(Bi)). Note that the succ()
operation is performed in constant time in a biased skip list using the lowest successor link of a
node. At the end of this phase, all the segments are found (see Figure 3). Specifically, we have
computed for all i and j (min(Ai), max(Ai)) and (min(Bj), max(Bj)).

Phase II: Extracting the segments Since we know where the minimum and maximum node
of each segment is from the previous phase, we can extract all the segments easily in order by
invoking BSL-FSplit(max(Ai)) for 1 ≤ i < z, and BSL-FSplit(max(Bj)) for 1 ≤ j < v (see
Figure 4).
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Figure 2: We have two biased skip lists A (top) and B (bottom). The tower of each node is
represented by a set of vertically stacked squares which represent individual levels of a node. The
predecessor/successor pointers are also shown. The lightly shaded levels exist due to promotions.
The position of each node x, posU (x), is indicated at the bottom of the tower of each node.
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Figure 3: At the end of Phase I, we have all the minimum and maximum nodes of the segments
of the Merge(A,B) operation. The minimum nodes are colored blue, the maximum nodes are
colored red.
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Phase III: Updating Weights Next, we need to update the weights of the affected nodes. Let
the new weight of item x be w′(x). Then

For 2 ≤ i ≤ z, let
w′(min(Ai)) = w(min(Ai)) + posU (max(Ai−1))− posU (max(Bi−1)),

For 2 ≤ i ≤ v, let
w′(min(Bi)) = w(min(Bi)) + posU (max(Bi−1))− posU (max(Ai)),

For 1 ≤ i < z, let
w′(max(Ai)) = w(max(Ai)) + posU (min(Bi))− posU (min(Ai+1)),

For 1 ≤ i < v, let
w′(max(Bi)) = w(max(Bi)) + posU (min(Ai+1))− posU (min(Bi+1)).

We also have

w′(min(B1)) = w(min(B1))− 1 + posU (min(B1))− posU (max(A1)).

If |I(A,B)| is even, we have

w′(max(Az)) = w(max(Az))− 1 + posU (min(Bz))− posU (max(Az)).

If |I(A,B)| is odd, we have

w′(max(Bv)) = w(max(Bv))− 1 + posU (min(Az))− posU (max(Bv)).

We can perform these weight updates (see Figure 5) by invoking

� BSL-FRew(min(Ai), w′(min(Ai))) for 2 ≤ i ≤ z,

� BSL-FRew(max(Ai), w′(max(Ai))) for 1 ≤ i ≤ v,

� BSL-FRew(min(Bj), w′(min(Bj))) for 1 ≤ j ≤ v,

� BSL-FRew(max(Bj), w′(max(Bj))) for 1 ≤ j < z.

Phase IV: Gluing the segments Since we assumed w.l.o.g. that min(A) < min(B), the correct
order of the segments is (A1, B1, A2, B2, . . .) by construction. We can glue all the segments by
invoking BSL-FJoin(max(Ai),min(Bi)) for 1 ≤ i ≤ v and BSL-FJoin(max(Bi),min(Ai+1)) for
1 ≤ i < z (see Figure 6).

This concludes the presentation of our data structure. In the next section we will analyze the
running time of each of the 4 operations.
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Figure 4: At the end of Phase II, all the segments are extracted. These extractions cause invariants
(I1) and (I2) to be violated, which are then restored by BSL-FSplit. Hollow levels denote
demotions.
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Figure 5: The weights of the minimum and maximum nodes of each segment are affected by the
Merge(A,B) operation. Accordingly, in Phase III, we update the weights of these nodes. This
update causes (I0) violations. The BSL-FRew operation first restores (I0). Restoring (I0) causes
(I1) and (I2) violations which are then again restored by BSL-FRew. The hollow levels denote
demotions and green levels denote promotions.
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Figure 6: In Phase IV, we join all the segments to obtain the union of A and B. These joins cause
invariants (I1) and (I2) to be violated, which are then restored by BSL-FJoin. The green levels
denote promotions.
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5 Analysis of the Mergeable Dictionary

Before we can analyze the amortized time complexity of the Mergeable Dictionary operations,
we need a new potential function which we will present in Section 5.1. We then prove that all
the operations except Merge have a worst-case and amortized time complexity of O(log n) in
Section 5.2. Lastly, we will show that the Merge operation has an amortized time complexity of
O(log n) in Section 5.3.

5.1 The New Potential Function

Let Di be the data structure containing our dynamic collection of disjoint sets, S(i) = {S(i)
1 , S

(i)
2 , . . .}

after the ith operation. Let

ϕ(S) =
∑
x∈S

(log gS(posS(x)− 1) + log gS(posS(x))).

Then we define the potential after the ith operation as follows.

Φ(Di) = κd ·
∑

j

ϕ(S(i)
j )

where κd is a constant to be determined later.
Note that the main difference between this function and the one in Section 2.2 is the elimination

of the log n term.

5.2 The Analysis of the Find, Search, and Split Operations

We now show that all the operations except Merge have a worst-case time complexity of O(log n),
and they do not cause a substantial increase in the potential which yields that their amortized time
complexity is also O(log n).

Theorem 9. The worst-case and amortized time complexity of the Find(x) operation, the Search(S, x)
operation, and the Split(S, x) operation is O(log n).

Proof. The worst-case time complexity of the BSL-FSearch operation invoked by the Find and
Search operations is O(log n) by Lemma 8. Recall that since these operations do not change the
structure, the potential remains the same. Therefore, worst-case and amortized time complexity
of Find and Search is O(log n). The worst-case time-complexity of the BSL-Split and BSL-
Rew operations invoked by the Split operation is O(log n) by Lemma 8. Observe that Split can
only decrease the potential. Therefore, the worst-case and amortized time complexity of Split is
O(log n).

5.3 The Analysis of the Merge Operation

All we have left to do is show that the amortized time complexity of the Merge operation is
O(log n). In order to do this, first we will show that the worst-case time complexity of the
Merge(A,B) operation is O

(
log n+

∑
i F (Ai) +

∑
j F (Bj)

)
. We define F (Ai) and F (Bj) next.
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Definition 10. Consider the Merge(A,B) operation. Recall that w′(x) is the new weight of node
x after the Merge(A,B) operation. Also recall that z = d|I(A,B)|/2e and v = b|I(A,B)|/2c.
Then, for 1 < i < z, let

F (Ai) = log
w(max(Ai−1)) + w(min(Ai+1)) +

∑
x∈Ai

w(x)
min(w′(max(Bi−1)), w′(min(Ai)), w′(max(Ai)), w′(min(Bi)))

and for 1 < j < v, let

F (Bj) = log
w(max(Bj−1)) + w(min(Bj+1)) +

∑
x∈Bj

w(x)

min(w′(max(Aj)), w′(min(Bj)), w′(max(Bj)), w′(min(Aj+1)))
.

For the boundary cases, let F (A1) = F (B1) = F (Az) = F (Bv) = logn.

5.3.1 The Worst-Case Time Complexity

We need to bound the worst-case time complexity of each phase of the Merge(A,B) operation.

Lemma 11. Phase I of the Merge operation has a worst-case time complexity of

O

log n+
z−1∑
i=2

F (Ai) +
v−1∑
j=2

F (Bj)

 .

Proof. During Phase I, BSL-FSearch(min(Ai), t) is invoked for 1 ≤ i < z where predA(t) =
max(Ai) and succA(t) = min(Ai+1); and BSL-FSearch(min(Bj), s) is invoked for 1 ≤ j < v
where predB(s) = max(Bj) and succB(s) = min(Bj+1). Observe that w′(min(Bi)) < w(min(Ai+1))
and w′(min(Bi)) < w(max(Ai)). Therefore, by the definition of F (Ai) and F (Bj), and Lemma 8,

the worst-case time complexity of Phase I is O
(

log n+
∑z−1

i=2 F (Ai) +
∑v−1

j=2 F (Bj)
)

.

We will need the following lemma to bound the worst-case time complexity of Phase II-IV.

Lemma 12. Given a biased skip list S and any node f ∈ S, recall that S[←[f] = {x ∈ S |x ≤ f}.
Then,

H(S[←[f]) ≤ logW (S[← [f]).

Proof. Let R = maxx∈S[← [f] r(x) and Nr(t) = {x ∈ S[←[f] | r(x) = t}. Also, let Nh(t) = {x ∈
S[← [f] |h(x) ≥ t, r(x) ≤ t}. Then we have

W (S[←[f]) ≥
R∑

i=2

2iNr(i) +
∑

x∈S[← [f],

r(x)=1

w(x)

≥
R∑

i=2

2iNr(i) + 2Nh(1).

Due to (I2), we have

Nh(i) ≥ 2(Nh(i+ 1)−Nr(i+ 1))
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≥ 2R−1Nh(R)−
R∑

i=2

2i−1Nr(i)

≥ 2H(S[← [f])−1Nh(H(S[←[f]))−
R∑

i=2

2i−1Nr(i) Nr(t) = 0 for t > R

≥ 2H(S[← [f])−1 −
R∑

i=2

2i−1Nr(i)

which yields

W (S[← [f]) ≥
R∑

i=2

2iNr(i) + 2Nh(1)

≥
R∑

i=2

2iNr(i) + 2

(
2H(S[← [f])−1 −

R∑
i=2

2i−1Nr(i)

)
≥ 2H(S[← [f])

logW (S[← [f]) ≥ H(S[←[f]).

Lemma 13. Phase II of the Merge operation has a worst-case time complexity of

O

log n+
z−1∑
i=2

F (Ai) +
v−1∑
j=2

F (Bj)

 .

Proof. During Phase II, BSL-FSplit(max(Ai)) is invoked for 1 ≤ i < z, and BSL-FSplit(max(Bj))
is invoked for 1 ≤ j < v. Combining Lemma 4 and Lemma 12 yields that the worst-case time com-
plexity of Phase II is

O
(

z−1∑
i=1

(logW (Ai)−min(r(min(Ai)), r(max(Ai)), r(min(Ai+1))) + 1)

)
+

O

v−1∑
j=1

(logW (Bj)−min(r(min(Bj)), r(max(Bj)), r(min(Bj+1))) + 1)


Observe that w′(min(Bi)) < w(Ai+1) and w′(min(Aj+1)) < w(Bj+1). Then, by Lemma 8 and the
definitions of F (Ai) and F (Bj), the worst-case complexity of Phase II is

O

log n+
z−1∑
i=2

F (Ai) +
v−1∑
j=2

F (Bj)

 .
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Lemma 14. Phase III of the Merge operation has a worst-case time complexity of

O

log n+
z−1∑
i=2

F (Ai) +
v−1∑
j=2

F (Bj)

 .

Proof. During Phase III, we invoke

� BSL-FRew(min(Ai), w′(min(Ai))) for 2 ≤ i ≤ z,

� BSL-FRew(max(Ai), w′(max(Ai))) for 1 ≤ i ≤ v,

� BSL-FRew(min(Bj), w′(min(Bj))) for 1 ≤ j ≤ v,

� BSL-FRew(max(Bj), w′(max(Bj))) for 1 ≤ j < z.

Let t1 = min(B). If |I(A,B)| is even, let t2 = max(A), otherwise let t2 = max(B). Observe
that r′(x) ≤ r(x) ≤ h(x) if and only if x 6∈ {t1, t2}. Then, by Lemma 7 and Lemma 12, BSL-
FRew(x,w′(x)) has a worst-case time complexity of

� O(logW (Ai)− r′(min(Ai)) + 1) for all x ∈ {min(Ai) | 1 ≤ i ≤ z},

� O(logW (Ai)− r′(max(Ai)) + 1) for all x ∈ {max(Ai) | 1 ≤ i ≤ z} \ {t2},

� O(logW (Bj)− r′(min(Bj)) + 1) for all x ∈ {min(Bj) | 1 ≤ j ≤ v} \ {t1},

� O(logW (Bj)− r′(max(Bj)) + 1) for all x ∈ {max(Bj) | 1 ≤ j ≤ v} \ {t2},

and a worst-case time complexity of O(log n) for x ∈ {t1, t2}.
Therefore, by Lemma 8 and the definitions of F (Ai) and F (Bj), the worst-case time complexity

of Phase III is O
(

log n+
∑z−1

i=2 F (Ai) +
∑v−1

j=2 F (Bj)
)
.

Lemma 15. Phase IV of the Merge operation has a worst-case time complexity of

O

log n+
z−1∑
i=2

F (Ai) +
v−1∑
j=2

F (Bj)

 .

Proof. During Phase IV, we invoke BSL-FJoin(max(Ai),min(Bi)) for 1 ≤ i ≤ v and we invoke
BSL-FJoin(max(Bi),min(Ai+1)) for 1 ≤ i < z. Combining Lemma 6 and Lemma 12 yields that
the worst-case time complexity of Phase IV is

O
(

z∑
i=2

(logW (Ai)−min(r(max(Bi−1)), r(min(Ai)), r(max(Ai))) + 1)

)
+

O

 v∑
j=1

(logW (Bj)−min(r(max(Aj)), r(min(Bj)), r(max(Bj))) + 1)



26



which by Lemma 8 and the definitions of F (Ai) and F (Bj) yields

O

log n+
z−1∑
i=2

F (Ai) +
v−1∑
j=2

F (Bj)

 .

The next theorem bounds the worst-case time complexity of the Merge(A,B) operation.

Theorem 16. The Merge(A,B) operation has a worst-case time complexity of

O

log n+
z−1∑
i=2

F (Ai) +
v−1∑
j=2

F (Bj)

 .

Proof. The worst-case time complexity of the Merge(A,B) operation is determined by the time
it spends on each of the four phases. Therefore, by lemmas 11, 13, 14, and 15, the theorem follows.

5.3.2 Amortized Time Complexity

Before we can show that the amortized time complexity of the Merge(A,B) operation is O(log n),
we will need to prove 3 lemmas. Let us first define the potential loss associated with a gap. Recall
the definitions of gaps ai, a

′
i, a
′′
i and similarly bj , b′j , b

′′
j first defined in Section 2.3.

Definition 17. We define pl(ai) and pl(bj), the potential loss associated with gap ai and the
potential loss associated with gap bi respectively, for 1 ≤ i < z and 1 ≤ j < v, as follows:

pl(ai) = 2 log ai − log a′i − log a′′i (1)
pl(bj) = 2 log bj − log b′j − log b′′j (2)

Assume w.l.o.g. that min(A) < min(B). Then we also let pl(a0) = 0 and

pl(b0) = − log a′1. (3)

If max(A) > max(B), then we have pl(az) = 0 and

pl(bv) = − log a′′z−1. (4)

Otherwise, if max(A) < max(B), we have pl(bv) = 0 and

pl(az) = − log b′′v−1. (5)

Note that the potential loss associated with operation Merge(A,B) is κd times the sum of all
defined pl(ai) and pl(bj), where κd is the constant in the potential function.
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Lemma 18. Consider gap ai for any 1 ≤ i < z. Let a+
i = max(a′i, a

′′
i ) and a−i = min(a′i, a

′′
i ). Then

we have

2−pl(ai) ≤ ai

a+
i

≤ ai

a−i
≤ 2pl(ai) and 2−pl(ai) ≤ a+

i

a−i
≤ 2pl(ai).

Similarly, consider gap bj for any 1 ≤ j < v, where b+j = max(b′j , b
′′
j ) and b−j = min(b′j , b

′′
j ). Then

we have

2−pl(bj) ≤ bj

b+j
≤ bj

b−j
≤ 2pl(bj) and 2−pl(bj) ≤

b+j

b−j
≤ 2pl(bj).

Proof. We will prove the first part dealing with gap ai. The proof of the second part is symmetric.
Assume w.l.o.g. that a′i ≤ a′′i . We have

log a′′i + log a′i − 2 log ai = −pl(ai)

log
ai

a′i
+ log

ai

a′′i
= pl(ai)

which gives us
log

ai

a′′i
≤ pl(ai) and log

ai

a′i
≤ pl(ai),

and consequently
ai

a′′i
≤ 2pl(ai) and

ai

a′i
≤ 2pl(ai).

Because a′i ≤ a′′i ≤ ai, we have
ai

a′′i
≤ ai

a′i
≤ 2pl(ai). (6)

Also, note that

ai

a′i
≤ 2pl(ai)

1
2pl(ai)

≤ a′i
ai

1
2pl(ai)

≤ a′i
ai
≤ ai

a′i
,

and similarly,

1
2pl(ai)

≤ a′′i
ai
≤ ai

a′′i
. (7)

Lastly, observe that

a′′i
a′i
≤ ai

a′i

≤ 2pl(ai) by (6),
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and

a′′i
ai
≤ a′′i
a′i

1
2pl(ai)

≤ a′′i
a′i

by (7).

This concludes the proof. Second part of the lemma can be proven using symmetric arguments.

Lemma 19. Let I(A,B) = {A1, B1, A2, B2, . . .} be the set of segments of with respect to operation
Merge(A,B). For any i and j, where 1 < i < z and 1 < j < v, let

αi = max
(

2pl(ai−2), 2pl(bi−2), 2pl(ai−1), 2pl(bi−1), 2pl(ai), 2pl(bi), 2pl(ai+1)
)

and
βj = max

(
2pl(bj−2), 2pl(aj−1), 2pl(bj−1), 2pl(aj), 2pl(bj), 2pl(aj+1), 2pl(bj+1)

)
.

Then for 1 < i < z and 1 < j < v, we have

F (Ai) = O(logαi) and F (Bj) = O(log βj).

Proof. We will present the proof of the first equality. The proof of the second one is analogous.
Let a′′i−1 = b′i−1 = x. Then, by Lemma 18 we have

1
2pl(ai−1)

≤ a′i−1

a′′i−1

≤ 2pl(ai−1) and
1

2pl(bi−1)
≤ b′′i−1

b′i−1

≤ 2pl(bi−1)

which imply
x

αi
≤ x

2pl(ai−1)
≤ a′i−1 ≤ x2pl(ai−1) ≤ xαi (8)

and
x

αi
≤ x

2pl(bi−1)
≤ b′′i−1 ≤ x2pl(bi−1) ≤ xαi (9)

Note that a′i = b′′i−1, and b′′i−2 = a′i−1. By Lemma 18, we have

1
2pl(ai)

≤ a′′i
a′i
≤ 2pl(ai) and

1
2pl(bi−2)

≤ b′i−2

b′′i−2

≤ 2pl(bi−2)

which imply
x

α2
i

≤ 1
2pl(ai)

· x
αi
≤ a′′i ≤ 2pl(ai) · xαi ≤ xα2

i (10)

and
x

α2
i

≤ 1
2pl(bi−2)

· x
αi
≤ b′i−2 ≤ 2pl(bi−2) · xαi ≤ xα2

i (11)

Note that a′′i−2 = b′i−2, and b′i = a′′i . By Lemma 18, we have

1
2pl(ai−2)

≤ a′i−2

a′′i−2

≤ 2pl(ai−2) and
1

2pl(bi)
≤ b′′i
b′i
≤ 2pl(bi)
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which imply
x

α3
i

≤ 1
2pl(ai−2)

· x
α2

i

≤ a′i−2 ≤ 2pl(ai−2) · xα2
i ≤ xα3

i (12)

and
x

α3
i

≤ 1
2pl(bi)

· x
α2

i

≤ b′′i ≤ 2pl(bi) · xα2
i ≤ xα3

i (13)

Note that a′i+1 = b′′i . By Lemma 18, we have

1
2pl(ai+1)

≤ a′′i+1

a′i+1

≤ 2pl(ai+1)

which implies
x

α4
i

≤ 1
2pl(ai+1)

· x
α3

i

≤ a′′i+1 ≤ 2pl(ai+1) · xα3
i ≤ xα4

i (14)

Similarly, by Lemma 18, we have

1
2pl(ai−1)

≤ ai−1

a′′i−1

≤ 2pl(ai−1) and
1

2pl(bi−1)
≤ bi−1

b′i−1

≤ 2pl(bi−1)

which imply
x

αi
≤ x

2pl(ai−1)
≤ ai−1 ≤ x2pl(ai−1) ≤ xαi (15)

and
x

αi
≤ x

2pl(bi−1)
≤ bi−1 ≤ x2pl(bi−1) ≤ xαi (16)

By Lemma 18, we have

1
2pl(ai)

≤ ai

a′i
≤ 2pl(ai) and

1
2pl(bi−2)

≤ bi−2

b′′i−2

≤ 2pl(bi−2)

which imply
x

α2
i

≤ 1
2pl(ai)

· x
αi
≤ ai ≤ 2pl(ai) · xαi ≤ xα2

i (17)

and
x

α2
i

≤ 1
2pl(bi−2)

· x
αi
≤ bi−2 ≤ 2pl(bi−2) · xαi ≤ xα2

i (18)

By Lemma 18, we have

1
2pl(ai−2)

≤ ai−2

a′′i−2

≤ 2pl(ai−2) and
1

2pl(bi)
≤ bi
b′i
≤ 2pl(bi)

which imply
x

α3
i

≤ 1
2pl(ai−2)

· x
α2

i

≤ ai−2 ≤ 2pl(ai−2) · xα2
i ≤ xα3

i (19)

and
x

α3
i

≤ 1
2pl(bi)

· x
α2

i

≤ bi ≤ 2pl(bi) · xα2
i ≤ xα3

i (20)
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By Lemma 18, we have
1

2pl(ai+1)
≤ ai+1

a′i+1

≤ 2pl(ai+1)

which implies
x

α4
i

≤ 1
2pl(ai+1)

· x
α3

i

≤ ai+1 ≤ 2pl(ai+1) · xα3
i ≤ xα4

i . (21)

We proceed as follows. For 1 < i < z, we have

F (Ai) = log
w(max(Ai−1)) + w(min(Ai+1)) +

∑
x∈Ai

w(x)
min(w′(max(Bi−1)), w′(min(Ai)), w′(max(Ai)), w′(min(Bi)))

by definition of F (·).

≤ log
ai−2 + ai−1 + w(min(Ai+1)) +

∑
x∈Ai

w(x)
min(w′(max(Bi−1)), w′(min(Ai)), w′(max(Ai)), w′(min(Bi)))

by definition of w(·).

≤ log
ai−2 + ai−1 + ai + ai+1 +

∑
x∈Ai

w(x)
min(w′(max(Bi−1)), w′(min(Ai)), w′(max(Ai)), w′(min(Bi)))

by definition of w(·).

≤ log
ai−2 + ai−1 + ai + ai+1 + 2bi−1

min(w′(max(Bi−1)), w′(min(Ai)), w′(max(Ai)), w′(min(Bi)))
by definition of w(·).

≤ log
ai−2 + ai−1 + ai + ai+1 + 2bi−1

min(b′i−1, a
′′
i−1, a

′
i, b
′′
i−1)

by definition of w(·).

= O
(

log
xα4

i

min(b′i−1, a
′′
i−1, a

′
i, b
′′
i−1)

)
by (19),(15),(17), and (21).

= O
(

log
xα4

i

x/αi

)
by (9).

= O(logαi).

The proof of the second equality, F (Bj) = O(log βj) for 1 < j < v, is analogous.

Lemma 20. For 1 < i < z and 1 < j < v, we have

7 ·

∑
i

log 2pl(ai) +
∑

j

log 2pl(bj)

 >

∑
i

logαi +
∑

j

log βj

 .

Proof. Observe that a gap ak can be mapped to at most seven times by unique αi’s and βj ’s; namely
only by αk−1, βk−1, αk, βk, αk+1, βk+1, αk+2. Similarly, a gap bk can be mapped to at most seven
times by unique αi’s and βj ’s; namely only by βk−1, αk, βk, αk+1, βk+1, αk+2, βk+2. The lemma
follows.

We are now ready to bound the amortized time complexity of the Merge operation.

Theorem 21. The Merge(A,B) operation has an amortized time complexity of O(log n).

Proof. We will analyze the Merge operation using the potential method [14]. Recall that Di

represent the data structure after operation i, where D0 is the initial data structure. The amortized
cost of operation i is ĉi = ci + Φ(Di) − Φ(Di−1). Then the amortized cost of the Merge(A,B)
operations is
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ĉi = ci + ∆Φ

≤ κe

log n+
z−1∑
i=2

F (Ai) +
v−1∑
j=2

F (Bj)

+ ∆Φ by Theorem 16.

= O(log n) + κe

z−1∑
i=2

F (Ai) +
v−1∑
j=2

F (Bj)

+ ∆Φ

= O(log n) + κe

z−1∑
i=2

F (Ai) +
v−1∑
j=2

F (Bj)

− κd ·

 z∑
i=0

pl(ai) +
v∑

j=0

pl(bj)

 κd comes from Φ.

= O(log n) + κe

z−1∑
i=2

F (Ai) +
v−1∑
j=2

F (Bj)

− κd ·

z−1∑
i=2

pl(ai) +
v−1∑
j=2

pl(bj)

 absorbed by O(log n).

< O(log n) + κe

z−1∑
i=2

F (Ai) +
v−1∑
j=2

F (Bj)

− κd

7
·

z−1∑
i=2

logαi +
v−1∑
j=2

log βj

 by Lemma 20.

≤ O(log n) + κf

z−1∑
i=2

logαi +
v−1∑
j=2

log βj

− κd

7
·

z−1∑
i=2

logαi +
v−1∑
j=2

log βj

 by Lemma 19.

≤ O(log n) Set (κd = 7κf ).

We can now state our main theorem.

Theorem 22. The Mergeable Dictionary executes a sequence of m Find, Search, Split, and
Merge operations in worst-case O(m log n) time.

Proof. Follows directly from Theorem 9 and Theorem 21.
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