
Software Synthesis is Hard { and SimpleSven SheweUniversity of Liverpoolsven.shewe�liverpool.a.ukAbstratWhile the omponents of distributed hardware systems an reasonablybe assumed to be synhronised, this is not the ase for the omponentsof distributed software systems. This has a strong impat on the lassof synthesis problems for whih deision proedures exist: While thereis a rih family of distributed systems, inluding pipelines, hains, andrings, for whih the realisability and synthesis problem is deidable if thesystem omponents are omposed synhronously, it is well known thatthe asynhronous synthesis problem is only deidable for monolithi sys-tems. From a theoretial point of view, this renders distributed softwaresynthesis undeidable, and one is tempted to onlude that synthesis ofasynhronous systems, and hene of software, is muh harder than thesynthesis of synhronous systems. Taking a more pratial approah, how-ever, reveals that bounded synthesis, one of the most promising synthesistehniques, an easily be extended to asynhronous systems. This meritsthe hope that the promising results from bounded synthesis will arryover to asynhronous systems as well.1 SynthesisIn synthesis, we try to automatially onstrut a system from its formal spei�-ation [5, 22, 7, 15, 18℄. If synthesis fails, the unrealisability of the spei�ationdemonstrates an error in the spei�ation, or at least the inompatibility of apartially ompleted design with its spei�ation [9℄. In software synthesis, wewould assume the system omponents to be omposed asynhronously, a prob-lem that has enjoyed far less attention than the problem of synthesising systemsof synhronised omponents.Churh's solvability problem [5℄ an be identi�ed as the origin of distributed(synhronous/hardware) synthesis. In 1962, Churh [5℄ raised the questionwhether we an, for a given a relation R � (2I)!� (2O)! in the monadi seondorder logi of one suessor (S1S), deide if there is a funtion p : (2I)! ! (2O)!suh that (�; p(�)) 2 R satis�es the relation for all in�nite sequenes � 2 (2I)!.In his solvability problem, Churh distinguishes the input variables of amodule, whih are not under its ontrol, from its output. He thus introduesthe notion of a prede�ned interfae between a module and its environment.Churh's solvability problem triggered several deep results, inluding B�uhi andLandweber's studies on �nite games of in�nite duration [4, 3℄ and Rabin's workson �nite automata over in�nite strutures [21, 22℄.1
Dagstuhl Seminar Proceedings 09501
Software Synthesis
http://drops.dagstuhl.de/opus/volltexte/2010/2670

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

While inspired by Churh's problem, these automata and game theoreti-al results have found their appliation in model heking, the simpler problemof heking if an implementation is a model of its spei�ation. The suess ofmodel heking has been preeded by a signi�ant simpli�ation of the spei�a-tion languages from monadi seond order logi to temporal logis like LTL [17℄,CTL [7℄, or, more reently, ATL [1℄. Its suess has been driven by the devel-opment of several tools like SPIN [11℄, MOCHA [2℄, and NuSMV [6℄, whih anautomatially analyse medium to large sized veri�ation problems.A long term researh goal is the development of omparable support toolsfor the onstrution of reative systems. Turning towards the harder task ofsynthesis, we will fae the problem of aounting for the inomplete informa-tion [24, 12, 25℄ that the loal interfaes of omponents reveal from the globalsystem state. In model heking, inomplete information has no e�et what-soever, as it does not matter if a module does not reat on an event beauseit does not see it (and hene annot reat), or beause it does not hoose to.In synthesis, however, the restrited aess to information must be taken intoaount by the synthesis algorithm.The generalisation of Churh's solvability problem to a distributed setting [20,14, 13, 9℄ is equivalent to solving a multi player zero sum game [27℄. Pnueli andRosner [20℄ showed that the problems ourring in distributed synthesis resem-ble those known from peek games with inomplete information [16, 23℄, and thusgive Turing power even to simple spei�ation languages suh as LTL [20℄ orCTL [9℄. However, important lasses of systems, suh as pipelines [20℄, hains,and rings [13℄, aount for a hierarhy in the informedness of proesses. Forsuh systems, synthesis is deidable [9, 20, 13℄, albeit with high omplexity.For systems that are omposed asynhronously, any reasonable shedulingmehanism will destroy suh an order. Consequently, all arhitetures but mono-lithi ones ome with an undeidable synthesis problem [25℄.2 Bounded SynthesisThe high omplexity of distributed synthesis has lead to an argument against thefeasibility of distributed synthesis, in partiular ompared to model heking.However, we argue with Kupferman and Vardi [13℄ that this omparison ismisleading, beause the high omplexity of distributed synthesis is aused byequally high lower bounds on the maximal size of a minimal model, or, outsideof the deidable fragment, by the lak of suh lower bounds. Hene, whenomparing the input omplexity, the size of some (not neessarily minimal)model has already entered in ase of model heking, while synthesis algorithmsare supposed to take the blame for the inurred blow-up.As a onsequene of this observation, Shewe and Finkbeiner developed theonept of bounded synthesis [26℄, where the searh spae is restrited to systemswhose size does not exeed a prede�ned bound. This results in a shift from inputomplexity to output omplexity, and levels the playing �eld for the synthesisvs. model heking omparison. This is partiularly interesting for distributedsynthesis: One we have �xed a bound on the size of the systems we are inter-ested in, we an redue the synthesis problem to a simple Satis�ability ModuloTheories (SMT) problem [10℄. Bounded synthesis has later been reinvented byFiliot et al. [8℄, who found further evidene of its pratial appliability.2

3 Asynhronous Bounded SynthesisThe theoretial argument against the feasibility of asynhronous synthesis iseven stronger than the argument against synhronous synthesis, but, fortu-nately, the ounter-argument remains valid: Using the spei�ation only asinput for the synthesis problem and the spei�ation plus the|usually muhlarger|implementation as input for model heking naturally leads to an unfairadvantage of model heking over synthesis.Bounded synthesis, however, seems to be a silver bullet: The appliation ofSMT tehniques is based on guessing a minimal implementation and its om-position; in order to extend these tehniques to software synthesis, it suÆesto hange the omposition rules from those for synhronous omposition (asurrently used in [26, 10℄) to those for asynhronous ompositions, for exampleby using the omposition rules desribed in [25℄.This way, we inherit the advantage of bounded synthesis: We shift froman infeasible input omplexity to a low omplexity in the size of the minimalsystem, levelling the playing �eld between model heking and synthesis again.Referenes[1℄ R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logi.Journal of the ACM, 49(5):672{713, 2002.[2℄ R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, andS. Tasiran. Moha: Modularity in model heking. In Proeedings of the 10thInternational Conferene on Computer Aided Veri�ation (CAV 1998), pages521{525, 1998.[3℄ J. R. B�uhi and L. H. Landweber. De�nability in the monadi seond-ordertheory of suessor. Journal of Symboli Logi, 34(2):166{170, 1969.[4℄ J. R. B�uhi and L. H. Landweber. Solving sequential onditions by �nite-statestrategies. Transations of the Amerian Mathematial Soiety, 138:295{311,1969.[5℄ A. Churh. Logi, arithmeti and automata. In Proeedings of the InternationalCongress of Mathematiians, 15{22 August, pages 23{35, Institut Mittag-Le�er,Djursholm, Sweden, 1962, Stokholm 1963.[6℄ A. Cimatti, E. Clarke, F. Giunhiglia, and M. Roveri. NuSMV: A new symbolimodel heker. International Journal on Software Tools for Tehnology Transfer,2:2000, 2000.[7℄ E. M. Clarke and E. A. Emerson. Design and synthesis of synhronization skele-tons using branhing time temporal logi. In Proeedings, IBM Workshop onLogis of Programs, May 1981, pages 52{71, 1982.[8℄ E. Filiot, N. Jin, and J.-F. Raskin. An antihain algorithm for LTL realizability.In Pro. of CAV, pages 263{277, 2009.[9℄ B. Finkbeiner and S. Shewe. Uniform distributed synthesis. In Pro. of LICS,pages 321{330, 2005.[10℄ B. Finkbeiner and S. Shewe. SMT-based synthesis of distributed systems. InPro. of AFM, pages 69{76. ACM Press, 2007.[11℄ G. J. Holzmann. The model heker SPIN. Software Engineering, 23(5):279{295,1997.[12℄ O. Kupferman and M. Y. Vardi. Synthesis with inomplete informatio. In Pro-eedings of the 2nd International Conferene on Temporal Logi (ICTL 1997),14{18 July, Manhester, UK, pages 91{106, 1997.3

[13℄ O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In Proeedingsof the 16th Annual IEEE Symposium on Logi in Computer Siene (LICS 2001),pages 389{398, 2001.[14℄ P. Madhusudan and P. S. Thiagarajan. Distributed ontroller synthesis for loalspei�ations. In Proeedings of the 28th International Colloquium on Automata,Languages and Programming (ICALP 2001), pages 396{407, 2001.[15℄ Z. Manna and P. Wolper. Synthesis of ommuniating proesses from temporallogi spei�ations. ACM Transations on Programming Languages and Systems(TOPLAS), 6(1):68{93, Jan. 1984.[16℄ G. L. Peterson and J. H. Reif. Multiple-person alternation. In Proeedings ofthe 20th Annual Symposium on Foundations of Computer Siene (FOCS 1979),pages 348{363, 1979.[17℄ A. Pnueli. The temporal logi of programs. In Proeedings of the 18th AnnualSymposium on Foundations of Computer Siene (FOCS 1977), pages 46{57,1977.[18℄ A. Pnueli and R. Rosner. On the synthesis of a reative module. In Proeedingsof the 16th Annual ACM Symposium on Priniples of Programming Languages(POPL 1989), pages 179{190, 1989.[19℄ A. Pnueli and R. Rosner. On the synthesis of an asynhronous reative module.In Proeeding of the 16th International Colloquium on Automata, Languages andProgramming (ICALP 1989), pages 652{671, 1989.[20℄ A. Pnueli and R. Rosner. Distributed reative systems are hard to synthesize. InProeedings of the 31st Annual Symposium on Foundations of Computer Siene(FOCS 1990), pages 746{757, 1990.[21℄ M. O. Rabin. Deidability of seond order theories and automata on in�nitetrees. Transation of the Amerian Mathematial Soiety, 141:1{35, 1969.[22℄ M. O. Rabin. Automata on In�nite Objets and Churh's Problem, volume 13 ofRegional Conferene Series in Mathematis. 1972.[23℄ J. H. Reif. The omplexity of two-player games of inomplete information. Jour-nal of Computer and System Sienes, 29(2):274{301, 1984.[24℄ R. Rosner. Modular Synthesis of Reative Systems. PhD thesis, Weizmann Insti-tute of Seine, Rehovot, Israel, 1992.[25℄ S. Shewe and B. Finkbeiner. Synthesis of asynhronous systems. In Pro. ofLOPSTR, pages 127{142, 2006.[26℄ S. Shewe and B. Finkbeiner. Bounded synthesis. In Pro. of ATVA, pages474{488, 2007.[27℄ I. Walukiewiz and S. Mohalik. Distributed games. In Proeedings of the 23rdConferene on Foundations of Software Tehnology and Theoretial ComputerSiene (FSTTCS 2003), pages 338{351, 2003.

4

