
Software Synthesis is Hard { and SimpleSven SheweUniversity of Liverpoolsven.shewe�liverpool.a.ukAbstratWhile the omponents of distributed hardware systems an reasonablybe assumed to be synhronised, this is not the ase for the omponentsof distributed software systems. This has a strong impat on the lassof synthesis problems for whih deision proedures exist: While thereis a rih family of distributed systems, inluding pipelines, hains, andrings, for whih the realisability and synthesis problem is deidable if thesystem omponents are omposed synhronously, it is well known thatthe asynhronous synthesis problem is only deidable for monolithi sys-tems. From a theoretial point of view, this renders distributed softwaresynthesis undeidable, and one is tempted to onlude that synthesis ofasynhronous systems, and hene of software, is muh harder than thesynthesis of synhronous systems. Taking a more pratial approah, how-ever, reveals that bounded synthesis, one of the most promising synthesistehniques, an easily be extended to asynhronous systems. This meritsthe hope that the promising results from bounded synthesis will arryover to asynhronous systems as well.1 SynthesisIn synthesis, we try to automatially onstrut a system from its formal spei�-ation [5, 22, 7, 15, 18℄. If synthesis fails, the unrealisability of the spei�ationdemonstrates an error in the spei�ation, or at least the inompatibility of apartially ompleted design with its spei�ation [9℄. In software synthesis, wewould assume the system omponents to be omposed asynhronously, a prob-lem that has enjoyed far less attention than the problem of synthesising systemsof synhronised omponents.Churh's solvability problem [5℄ an be identi�ed as the origin of distributed(synhronous/hardware) synthesis. In 1962, Churh [5℄ raised the questionwhether we an, for a given a relation R � (2I)!� (2O)! in the monadi seondorder logi of one suessor (S1S), deide if there is a funtion p : (2I)! ! (2O)!suh that (�; p(�)) 2 R satis�es the relation for all in�nite sequenes � 2 (2I)!.In his solvability problem, Churh distinguishes the input variables of amodule, whih are not under its ontrol, from its output. He thus introduesthe notion of a prede�ned interfae between a module and its environment.Churh's solvability problem triggered several deep results, inluding B�uhi andLandweber's studies on �nite games of in�nite duration [4, 3℄ and Rabin's workson �nite automata over in�nite strutures [21, 22℄.1
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While inspired by Churh's problem, these automata and game theoreti-al results have found their appliation in model heking, the simpler problemof heking if an implementation is a model of its spei�ation. The suess ofmodel heking has been preeded by a signi�ant simpli�ation of the spei�a-tion languages from monadi seond order logi to temporal logis like LTL [17℄,CTL [7℄, or, more reently, ATL [1℄. Its suess has been driven by the devel-opment of several tools like SPIN [11℄, MOCHA [2℄, and NuSMV [6℄, whih anautomatially analyse medium to large sized veri�ation problems.A long term researh goal is the development of omparable support toolsfor the onstrution of reative systems. Turning towards the harder task ofsynthesis, we will fae the problem of aounting for the inomplete informa-tion [24, 12, 25℄ that the loal interfaes of omponents reveal from the globalsystem state. In model heking, inomplete information has no e�et what-soever, as it does not matter if a module does not reat on an event beauseit does not see it (and hene annot reat), or beause it does not hoose to.In synthesis, however, the restrited aess to information must be taken intoaount by the synthesis algorithm.The generalisation of Churh's solvability problem to a distributed setting [20,14, 13, 9℄ is equivalent to solving a multi player zero sum game [27℄. Pnueli andRosner [20℄ showed that the problems ourring in distributed synthesis resem-ble those known from peek games with inomplete information [16, 23℄, and thusgive Turing power even to simple spei�ation languages suh as LTL [20℄ orCTL [9℄. However, important lasses of systems, suh as pipelines [20℄, hains,and rings [13℄, aount for a hierarhy in the informedness of proesses. Forsuh systems, synthesis is deidable [9, 20, 13℄, albeit with high omplexity.For systems that are omposed asynhronously, any reasonable shedulingmehanism will destroy suh an order. Consequently, all arhitetures but mono-lithi ones ome with an undeidable synthesis problem [25℄.2 Bounded SynthesisThe high omplexity of distributed synthesis has lead to an argument against thefeasibility of distributed synthesis, in partiular ompared to model heking.However, we argue with Kupferman and Vardi [13℄ that this omparison ismisleading, beause the high omplexity of distributed synthesis is aused byequally high lower bounds on the maximal size of a minimal model, or, outsideof the deidable fragment, by the lak of suh lower bounds. Hene, whenomparing the input omplexity, the size of some (not neessarily minimal)model has already entered in ase of model heking, while synthesis algorithmsare supposed to take the blame for the inurred blow-up.As a onsequene of this observation, Shewe and Finkbeiner developed theonept of bounded synthesis [26℄, where the searh spae is restrited to systemswhose size does not exeed a prede�ned bound. This results in a shift from inputomplexity to output omplexity, and levels the playing �eld for the synthesisvs. model heking omparison. This is partiularly interesting for distributedsynthesis: One we have �xed a bound on the size of the systems we are inter-ested in, we an redue the synthesis problem to a simple Satis�ability ModuloTheories (SMT) problem [10℄. Bounded synthesis has later been reinvented byFiliot et al. [8℄, who found further evidene of its pratial appliability.2
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