
09501 Abstracts Collection

Software Synthesis

� Dagstuhl Seminar �

Rastislav Bodik,1, Orna Kupferman,2, Douglas R. Smith,3 and Eran Yahav,4

1 Univ. of California, Berkeley, USA
2 Hebrew Univ., Israel

3 Kestrel Institute, Palo Alto, USA
4 IBM Research, New York, USA

Abstract. From 06.12.09 to 11.12.09, the Dagstuhl Seminar 09501 �Soft-

ware Synthesis � was held in Schloss Dagstuhl � Leibniz Center for Infor-

matics. During the seminar, several participants presented their current

research, and ongoing work and open problems were discussed. Abstracts

of the presentations given during the seminar as well as abstracts of sem-

inar results and ideas are put together in this paper. The �rst section

describes the seminar topics and goals in general. Links to extended ab-

stracts or full papers are provided, if available.

Keywords. Software Synthesis, Veri�cation, Theorem Proving, Pro-

gram Analysis, Programming by Demonstration

09501 Executive Summary � Software Synthesis

Recent years have witnessed resurgence of interest in software synthesis, spurred
by growing software complexity and enabled by advances in veri�cation and
decision procedures. This seminar brought together veterans of deductive syn-
thesis as well as representatives of new synthesis e�orts. Collectively, the seminar
assembled expertise in diverse synthesis techniques and application areas,

The �rst half of the seminar focused on educating the participants in foun-
dations and empirical results developed over the last three decades in the mostly
isolated synthesis communities. The seminar started with tutorial talks on deduc-
tive synthesis, controller synthesis, inductive synthesis, and the use of decision
procedures in program synthesis. The second half of the seminar led to a lot of
discussion, boosted by talks on speci�c software synthesis problems.

The participants agreed that there are several reasons to actively explore syn-
thesis now. First, software development, always non-trivial, is likely to become
more complicated as a result of transition to multi-core processors. The hope is
that we will synthesize at least the hard fragments of parallel programs. Second,
deductive program veri�cation and synthesis are intimately related; it seems
promising to explore whether results in model checking and directed testing en-
able interesting synthesis. Third, by incorporating veri�cation into synthesis we

Dagstuhl Seminar Proceedings 09501
Software Synthesis
http://drops.dagstuhl.de/opus/volltexte/2010/2669

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Rastislav Bodik� Orna Kupferman� Doug Smith, and Eran Yahav,

may be able to synthesize programs that are easier to verify than handwrit-
ten programs. Finally, the continuing Moore's Law may enable search powerful
enough for synthesis of practical programs.

The seminar also led to identi�cation of principles and open problems in
benchmarking of software synthesis tools. In contrast to benchmarking of com-
pilers and veri�ers, experiments with synthesis must evaluate end-to-end bene�ts
in programmer productivity; in particular, can the program be developed faster
with the synthesizer than with a modern programming language? Short of per-
forming a controlled user study, little can be said about the magnitude of these
bene�ts. The situation is more favorable when comparing synthesis tools. The
participants agreed that experiments reported in the literature must identify the
knowledge that the user had to formalize in the domain theory that made the
synthesis possible. It was also deemed important to identify the formalism used
in expressing the domain knowledge.

General Conclusions from the Seminar. The participants found the seminar to
be educational and inspiring. We believe this was because of the unusual breadth
of participants as well as the format, which revolved around tutorial-style talks
that brought the participating communities together.

The participants believed that the talks should be shared with graduate
students, who are usually exposed in their courses only to a fraction of synthesis
techniques. This observation led to organization of summer school on synthesis,
which will be held in Dagstuhl in summer 2011.

The need to create a collection of diverse synthesis results also led to a special
issue of the STTT journal of software synthesis, which is under preparation.

Keywords: Software Synthesis, Veri�cation, Theorem Proving, Program Anal-
ysis, Programming by Demonstration

Joint work of: Bodik, Rastislav

Angelic Programming

Satish Chandra (IBM TJ Watson Research Center - Hawthorne, US)

Angelic nondeterminism can play an important role in program development.
It simpli�es speci�cations, for example in deriving programs with a re�nement
calculus; it is the formal basis of regular expressions; and Floyd relied on it to
concisely express backtracking algorithms such as N-queens.

We show that angelic nondeterminism is also useful during the development
of deterministic programs. The semantics of our angelic operator are the same
as Floyd's but we use it as a substitute for yet-to-be-written deterministic code;
the �nal program is fully deterministic. The angelic operator divines a value
that makes the program meet its speci�cation, if possible. Because the opera-
tor is executable, it allows the programmer to test incomplete programs: if a
program has no safe execution, it is already incorrect; if a program does have

Software Synthesis 3

a safe execution, the execution may reveal an implementation strategy to the
programmer.

We introduce re�nement-based angelic programming, describe our embed-
ding of angelic operators into Scala, report on our implementation with bounded
model checking, and describe our experience with two case studies. In one of
the studies, we use angelic operators to modularize the Deutsch-Schorr-Waite
(DSW) algorithm. The modularization is performed with the notion of a para-
sitic stack, whose incomplete speci�cation was instantiated for DSW with angelic
nondeterminism.

Joint work of: Chandra, Satish; Rastislav Bodik; Joel Galenson; Doug Kimel-
man; Nicholas Tung; Shaon Barman; Casey Rodarmor

Synthesizing Veri�ers for Synthesized Code

Ewen W. Denney (NASA - Mo�ett Field, US)

Automated code generators are increasingly used in safety-critical applications,
but since they are typically not quali�ed, the generated code must still be fully
tested, reviewed, and certi�ed. For mathematical and engineering software this
requires reviewers to trace subtle details of textbook formulas and algorithms to
the code, and to match requirements (e.g., involving physical concepts such as
units or coordinate frames) not represented explicitly in models or code.

The AutoCert veri�cation system identi�es and veri�es mathematical con-
cepts in code, recovering veri�ed traceability links between concepts, code, and
veri�cation conditions.

The veri�cation is customized by domain knowledge represented as a set of
schemas, which use patterns to describe code idioms and actions to construct
annotations needed to certify matching code fragments.

We can raise the level of abstraction at which schemas are de�ned and gener-
ate lower-level schemas, that is, compile high-level domain knowledge into low-
level veri�cation knowledge. The schema compiler can itself therefore be seen as
a domain-speci�c code generator.

Keywords: Synthesis, veri�cation

CEGAR for Synthesis

Bernd Finkbeiner (Universität des Saarlandes, DE)

Counterexample-guided abstraction re�nement (CEGAR) is used in automated
software analysis to �nd suitable �nite-state abstractions of in�nite-state sys-
tems. In this talk, we extend CEGAR to games with incomplete information as
they commonly occur in software synthesis.

4 Rastislav Bodik� Orna Kupferman� Doug Smith, and Eran Yahav,

The challenge is that, under incomplete information, one must carefully ac-
count for the knowledge available to the player: the strategy must not depend
on information the player cannot see. We propose an abstraction re�nement
mechanism for games with incomplete information that incorporates the ap-
proximation of the players' moves into a knowledge-based subset construction
on the abstract state space. This abstraction results in a perfect-information
game over a �nite graph. The concretizability of abstract strategies can be en-
coded as the satis�ability of strategy-tree formulas. Based on this encoding, we
present an interpolation-based approach for selecting new predicates. Joint work
with Rayna Dimitrova.

Dimensions in Program Synthesis

Sumit Gulwani (Microsoft Research - Redmond, US)

Program Synthesis, which is the task of discovering programs that realize user
intent, can be useful in several scenarios: enabling people with no programming
background to develop utility programs, helping regular programmers automati-
cally discover tricky/mundane details, program understanding, discovery of new
algorithms, and even teaching.

This paper describes three key dimensions in program synthesis: expression
of user intent, space of programs over which to search, and the search tech-
nique. These concepts are illustrated by brief description of various program
synthesis projects that target synthesis of a wide variety of programs such as
standard undergraduate text- book algorithms (e.g., sorting, dynamic program-
ming), program inverses (e.g., decoders, deserializers), bitvector manipulation
routines, deobfuscated programs, graph algorithms, text-manipulating routines,
mutual exclusion algorithms, etc.

Component based Synthesis

Sumit Gulwani (Microsoft Research - Redmond, US)

We present a novel approach to automatic synthesis of loop-free programs. The
approach is based on a combination of oracle-guided learning from examples,
and constraint-based synthesis from components using satis�ability modulo the-
ories (SMT) solvers. Our approach is suitable for many applications, including
as an aid to program understanding tasks such as deobfuscating malware. We
demonstrate the e�ciency and e�ectiveness of our approach by synthesizing bit-
manipulating programs and deobfuscating programs.

Software Synthesis 5

Tutorial: Synthesis and Games

Barbara Jobstmann (VERIMAG - Gières, FR)

In the �rst part, I will give a basic introduction to in�nite game theory and its
relationship to synthesis from temporal logic formulas. The second part gives a
summary of how we used these techniques to repair �nite-state programs and
construct hardware designs speci�ed by a set of Linear Temporal Logic formulas.

Keywords: Games, synthesis, program repair

Synthesizing Robust Systems

Barbara Jobstmann (VERIMAG - Gières, FR)

Many speci�cations include assumptions on the environment. If the environment
satis�es the assumptions then a correct system reacts as intended. However,
when the environment deviates from its expected behavior, a correct system can
behave arbitrarily.

In this talk, I will discuss how to synthesize robust systems that degrade
gracefully, i.e., a small number of environment failures should induce a small
number of system failures.

Keywords: Robust systems, ratio games, synthesis

Synthesis of Communicating Automata from MSCs

Joost-Pieter Katoen (RWTH Aachen, DE)

This paper is concerned with bridging the gap between requirements and dis-
tributed systems. Requirements are de�ned as basic message sequence charts
(MSCs) specifying positive and negative scenarios. Communicating �nite-state
machines (CFMs), i.e., �nite automata that communicate via FIFO bu�ers, act
as system realizations. The key contribution is a generalization of AngluinÃ­s
learning algorithm for synthesizing CFMs from MSCs.

This approach is exact - the resulting CFM precisely accepts the set of pos-
itive scenarions and rejects all negative ones' and yields fully asynchronous im-
plementations. The paper investigates for which classes of MSC languages CFMs
can be learned, presents an optimization technique for learning partial orders,
and provides substantial empirical evidence indicating the practical feasibility of
the approach.

6 Rastislav Bodik� Orna Kupferman� Doug Smith, and Eran Yahav,

E�cient Synthesis of Asynchronous Systems

Uri Klein (Courant Institute - New York, US)

We investigated a development process for reactive programs, in which the pro-
gram is automatically generated (synthesized) from a high-level temporal (prop-
erty) speci�cation. The method is based on previous results that proposed a
similar synthesis method for the automatic construction of hardware designs
from their temporal speci�cations. Thus, our work can be viewed as a gener-
alization of existing methods for the synthesis of synchronous reactive systems
into the synthesis of asynchronous systems.

In the synchronous case it was possible to identify a restricted yet expres-
sive subclass of formulas and present an algorithm that solves the synthesis
problem for these restricted speci�cations in polynomial time. Here, due to a
possibly exponential increase in complexity of the synthesis problem, the results
are less de�nitive in the sense that we can o�er some heuristics that may provide
polynomial-time solutions only in some of the cases. The approach taken here
is to extract from the speci�cation two new speci�cations that, in some sense,
provide an upper and a lower bound to the speci�cation. The upper bound
(over-approximation) speci�cation could be used to determine that the origi-
nal speci�cation is unrealizable. On the other hand, the lower bound (under-
approximation) could be used in order to determine that the original speci�ca-
tion is realizable, and to actually produce an implementation of this speci�cation.
As mentioned above, the realizability analysis of these two approximations can
be performed in polynomial time for the case that the original asynchronous
speci�cation falls into the restricted class.

Joint work with Amir Pnueli.

Synthesis Procedures

Viktor Kuncak (EPFL - Lausanne, CH)

Synthesis of program fragments from speci�cations can make programs easier
to write and easier to reason about. To integrate synthesis into programming
languages, synthesis algorithms should behave in a predictable way: they should
succeed for a simple-to-describe class of speci�cations. They should also support
unbounded data types such as numbers and data structures. We show how to
generalize decision procedures into predictable and complete synthesis proce-
dures. Such synthesis procedures are guaranteed to �nd code that satis�es the
speci�cation if such code exists. Moreover, we identify conditions under which
synthesis will statically decide whether the solution is guaranteed to exist, and
whether it is unique. We demonstrate our approach by extending decision pro-
cedures for linear arithmetic and set data structures into synthesis procedures,
and establishing results on the size and the e�ciency of the synthesized code.
We show that such procedures are useful as a language extension with implicit

Software Synthesis 7

value de�nitions and advanced pattern- matching constructs. We show how to
extend the Scala compiler to support such de�nitions. Our constructs provide
the bene�ts of synthesis to programmers, without requiring them to learn fun-
damentally new concepts or give up a deterministic program execution model.

Keywords: Decision procedure, in�nite-state synthesis, quanti�er elimination

Joint work of: Mayer, Mikael; Suter, Philippe; Piskac, Ruzica; Kuncak, Viktor

Synthesis as Learning Automata from Examples

Martin Leucker (TU München, DE)

In this tutorial presentation, we recall two automata learning algorithms and
show their applications in the area of veri�cation and synthesis.

Keywords: Learning, synthesis, veri�cation

Systematic Program Design: From Clarity to E�ciency

Yanhong Annie Liu (SUNY - Stony Brook, US)

Two major concerns of study rest at the center of computer science: what to
compute, and how to compute e�ciently. Problem solving involves going from
clear speci�cations for the "what" to e�cient implementations for the "how".
This is challenging because clear speci�cations usually correspond to straight-
forward implementations, not at all e�cient, while e�cient implementations are
usually di�cult to understand, not at all clear.

This talk gives an overview of a general and systematic method for trans-
forming clear speci�cations into e�cient implementations. The method has three
steps: (1) iterate�determine a minimum increment to be taken repeatedly, (2)
incrementalize�maintain appropriate values incrementally over the repeated
steps, and (3) implement�design data structures for the values maintained. We
will illustrate the method through examples, taken from problems in hardware
design and image processing expressed using loops and arrays, in query process-
ing and access control expressed using set operations, in sequence processing
and math puzzles expressed using recursive functions, in program analysis and
trust management expressed using logic rules, and in building software compo-
nents expressed using objects. Finally, we summarize our ongoing projects on a
number of fronts.

Keywords: Incrementalization, program optimization, program transformation

8 Rastislav Bodik� Orna Kupferman� Doug Smith, and Eran Yahav,

Synchronous Reactive Synthesis From Linear Temporal

Logic Speci�cations

Nir Piterman (Imperial College London, GB)

In this talk we are interested in synchronous reactive synthesis from Linear
Temporal Logic speci�cations. Classical solutions to synthesis use either two
player games or tree automata.

The classical solution to synthesis requires the usage of deterministic au-
tomata. This solution is 2EXPTIME-complete, is quite complicated, and does
not work well in practice.

We suggest a syntactic approach that restricts the kind of properties users
are allowed to write.

We claim that this approach is general enough and can be extended to cover
most properties written in practice.

The main advantage of our approach is that it is tailored to the use of BDDs
and uses the structure of given properties to handle them more e�ciently.

We discuss how to extend our approach to handle more general properties
and mention future direction.

Keywords: Synthesis, LTL

Joint work of: Piterman, Nir; Pnueli, Amir; Sa'ar Yaniv

Full Paper:
http://www.doc.ic.ac.uk/∼npiterma/publications/2006/PPS06.pdf

See also: N. Piterman, A. Pnueli, and Y. Sa'ar. Synthesis of Reactive(1) Designs.
2006. In Proc. 7th International Conference on Veri�cation, Model Checking
and Abstract Interpretation,volume 3855 of Lecture Notes in Computer Science,
pages 364-380. Â c©Springer-Verlag.

Synthesizing Hardware from Sketches

Andreas Raabe (TU München, DE)

Due to the on-going micro-miniaturization in chip production, hardware devel-
opment faces new challenges. First, the designer productivity grows slower than
the number of transistors per chip.

Second, the rate of innovation has increased to a point where only the �rst
to the market makes a pro�t. Hardware synthesis has been successfully used to
improve designer productivity, but in general it results in designs considerably
slower and bigger than hand-coded hardware descriptions.

In high-level synthesis, the synthesizer acts as a smart compiler, translating
high-level speci�cations into low-level designs. We recognize that the designer is
best equipped to create smart low-level designs. Therefore, we allow the designer

http://www.doc.ic.ac.uk/~npiterma/publications/2006/PPS06.pdf

Software Synthesis 9

to produce intricate lowlevel designs. However, low-level designs are tedious to
write. To this end, sketching will allow the designer to leave tricky details un-
speci�ed. The incomplete design description is called a sketch.

The sketch will be completed by the synthesizer to meet a separate executable
speci�cation.

Keywords: Hardware Development, Sketching

From tests to proofs through a simple trick

Andrey Rybalchenko (MPI für Software Systeme - Saarbrücken, DE)

We describe the design and implementation of an automatic invariant genera-
tor for imperative programs that leverages dynamic information collected from
concrete and symbolic execution.

While automatic invariant generation through constraint solving has been
extensively studied from a theoretical viewpoint as a classical means of program
veri�cation, in practice existing tools do not scale even to moderately sized
programs.

This is because the constraints that need to be solved even for small pro-
grams are already too di�cult for the underlying (non-linear) constraint solving
engines.

To overcome this obstacle, we propose to strengthen static constraint genera-
tion with information obtained from static abstract interpretation and dynamic
execution of the program.

The strengthening comes in the form of additional linear constraints that
trigger a series of simpli�cations in the solver, and make solving more scalable.

We demonstrate the practical applicability of the approach by an experi-
mental evaluation on a collection of challenging benchmark programs and com-
parisons with related tools based on abstract interpretation and software model
checking.

Joint work with Ashutosh Gupta and Rupak Majumdar

Keywords: Invariant Synthesis

Full Paper:
http://www.springerlink.com/content/h3t77333468hk7m5/

Software Synthesis is Hard � and Simple

Sven Schewe (University of Liverpool, GB)

While the components of distributed hardware systems can reasonably be as-
sumed to be synchronised, this is not the case for the components of distributed
software systems.

http://www.springerlink.com/content/h3t77333468hk7m5/

10 Rastislav Bodik� Orna Kupferman� Doug Smith, and Eran Yahav,

This has a strong impact on the class of synthesis problems for which decision
procedures exist: While there is a rich family of distributed systems, including
pipelines, chains, and rings, for which the realisability and synthesis problem is
decidable if the system components are composed synchronously, it is well known
that the asynchronous synthesis problem is only decidable for monolithic sys-
tems. From a theoretical point of view, this renders distributed software synthesis
undecidable, and one is tempted to conclude that synthesis of asynchronous sys-
tems, and hence of software, is much harder than the synthesis of synchronous
systems. Taking a more practical approach, however, reveals that bounded syn-
thesis, one of the most promising synthesis techniques, can easily be extended
to asynchronous systems. This merits the hope that the promising results from
bounded synthesis will carry over to asynchronous systems as well.

Keywords: Synthesis, Temporal Logics

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2670

Data Mining of Air Tra�c Track Data for NGATS with

the AutoBayes Synthesis System

Johann M. Schumann (NASA - Mo�ett Field, US)

The Next Generation Air Tra�c Control System (NGATS) heavily relies on the
accurate prediction of aircraft trajectories. Tasks like the detection of separation
con�icts or planning fuel-e�cient and safe descents require the system to predict
position, altitude, and speed of an aircraft for up to appr. 20 minutes ahead,
based upon the current position and weather data. Simulation of a physical
model of the aircraft forms the core of the prediction. In practice, however,
there is a number of unknowns to be taken into account. Typically, weight of a
speci�c aircraft as well as other performance data or procedural speci�cs are not
available, but are essential for an accurate prediction.

In this abstract, we describe how the AutoBayes tool can be used to extract
parameters of interest from actual track data. Track data are recordings of actual
air tra�c in 12 second intervals, which contain position, altitude, ground speed,
heading, among other data for each aircraft in a speci�c airspace sector.

Typically, a 24hour recording around a major airport contains thousands of
aircraft tracks.

We have been using such data to determine several aircraft parameters and
track characteristics, most notably, clustering of di�erent trajectory types, char-
acteristics of CDA (Constant Descent Approaches), and determination of the
CAS-mach transition point during ascent. In this abstract, we focus on the
CAS-mach transition. When an aircraft climbs toward cruise altitude, it usu-
ally starts its climb with a constant (calibrated) airspeed (CAS), measured in
knots. At a certain point, the �ight management system (FMS) on-board the
aircraft switches over to a climb regime, where the mach number (relative speed

http://drops.dagstuhl.de/opus/volltexte/2010/2670

Software Synthesis 11

with respect to the speed of sound) is kept constant. It is obvious that the pre-
diction accuracy can be improved if all parameters of the switch are known;
however usually these not available.

We are using the AutoBayes tool for the change-point estimation on large
sets of track data. AutoBayes is a tool for the automatic generation of e�cient
data analysis algorithms (in C/C++), given a compact statistical speci�cation.

Internally, AutoBayes constructs a Bayesian network and evaluates the re-
quired probabilistic expressions symbolically as far as possible. Using a schema-
based program synthesis approach, AutoBayes can generate complicated yet
highly customized algorithms fully automatically. For this analysis, we have
used several variants of change-point detection and clustering of mixture models.
With a simple Matlab interface, we have been able to identify suitable ascent
trajectories and to obtain the transition points for di�erent types of aircraft.
This analysis is a �rst step toward using AutoBayes statistical models for the
analysis of aircraft track data for analysis and veri�cation/validation purposes.

Keywords: Synthesis, Data analysis algorithm, data mining

Mechanized Algorithm Design

Douglas R. Smith (Kestrel Institute, US)

This talk is a tutorial/overview of mechanized algorithm design, as supported by
the KIDS, Specware, and Planware systems at Kestrel Institute. Starting from a
logical speci�cation of an algorithmic problem, a typical synthesis is a sequence
of re�nement steps: algorithm design, followed by various optimizations, then re-
�nement of abstract datatypes to concrete implementations. Our emphasis is on
composing representations of reusable design knowledge in the form of algorithm
theories, datatype re�nements, and program optimization tactics. Applications
to sophisticated scheduling problems and the generation of fast SAT solvers are
discussed. The same abstract design knowledge was used to generate schedulers
and SAT solvers.

Keywords: Formal speci�cation, algorithm theories, automated synthesis

New directions in Computer Supported Programming

Armando Solar-Lezama (MIT - Cambridge, US)

This talk will describe some of the new research directions currently being pur-
sued by the computer supported programming group at MIT. The talk will
highlight how our current research is attacking three important sources of pro-
gramming di�culty: low-level algorithmic details, scale, and coping with the
unexpected.

12 Rastislav Bodik� Orna Kupferman� Doug Smith, and Eran Yahav,

Sketching was developed to allow programmers to synthesize the low-level
details of the algorithm while retaining control over the �nal form of the im-
plementation. In the �rst part of the talk, I will describe our recent results in
extending sketch-based synthesis to the domains of numerical control applica-
tions and complex data-structure manipulations. Both of these domains are a
challenge for the standard CEGIS based sketch synthesis algorithm. I will show
how numerical programs can be synthesized by using standard numerical meth-
ods with the aid of a new form of analysis called "smooth interpretation". For
data structures, I will present some our recent work on combining the standard
CEGIS algorithm with abstract interpretation to achieve improved scalability.

The second part of the talk will describe our recent e�orts to use data driven
program analysis to tackle the challenges of adding functionality to very large
applications. These applications pose a challenge for programming tools because
of their extreme scale, but by collecting large amounts of program behavior data,
we can make up for the shortcomings of static analysis and help the programmer
understand such large applications.

Finally, the third part will describe our recent work on "declarative program
hardening" and its application to data processing applications. Declarative pro-
gram hardening allows programmers to focus on the common case behavior of
their programs, while separately asserting facts that the program can use to cope
with exceptional situations. In the context of data processing, this technique al-
lows programmers to cope with missing or corrupted data in a clean and robust
way.

Program Synthesis using SMT Solvers

Saurabh Srivastava (University of Maryland - College Park, US)

In this talk, we describe two approaches to program synthesis: one that is in-
spired by veri�cation, called proof-theoretic synthesis, and one that is inspired
by testing, called path-based inductive synthesis (PINS). Proof-theoretic synthe-
sis is attractive in that it intrinsically synthesizes the proof (invariants, ranking
functions) alongside the program; while PINS has the bene�t of being able to
handle more complex programs as it does not attempt to infer the formal proof.

The insight behind proof-theoretic synthesis is to interpret program synthesis
as *generalized program veri�cation*, which allows us to directly use veri�cation
tools, such as the ones we built in previous work, as synthesizers. The approach
requires the user to state the required functional speci�cation and a template
of the desired form of the program (looping structure, stack space etc). Using
this, our synthesis algorithm generates constraints over unknown statements and
guards, and additionally proof terms�inductive invariants and ranking func-
tions. The constraints enforce three kinds of requirements: partial correctness,
loop termination, and well-formedness of the program. It then synthesizes the
program (in �one shot�) by solving the constraints using an o�-the-shelf veri�er
with particular properties.

Software Synthesis 13

We have used this approach to synthesize programs in three di�erent do-
mains: arithmetic, sorting, and dynamic programming. Using veri�cation tools,
that we built in prior work we are able to synthesize programs for complicated
arithmetic algorithms including Strassen's matrix multiplication and Bresen-
ham's line drawing; several sorting algorithms; and several dynamic program-
ming algorithms, in very reasonable time.

Path-based inductive synthesis (PINS) is an iterative approach to synthesis
inspired by the philosophy behind testing�that a set of carefully chosen paths
through the program give su�cient indications of its functionality. In this ap-
proach, we generate safety and termination constraints *over paths* and solve
the resulting constraints to synthesize the program. These constraints again have
nested quanti�cation and we employ the solution techniques, that we developed
for veri�cation, for solving such constraints.

We have used this approach to synthesize inverses for complicated programs
such as stream compressors, formatters, arithmetic examples, and additionally,
for synthesizing a TFTP client from its server.

Synthesis of Concurrent Algorithms

Martin T. Vechev (IBM TJ Watson Research Center - Hawthorne, US)

Practical and e�cient concurrent algorithms are di�cult to construct, verify and
modify.

Concurrent Algorithms in the literature are often optimized for a speci�c
setting, making it hard to separate the algorithmic insights from implementation
details.

The goal of this work is to systematically construct concurrent algorithms
starting from their sequential implementation. Towards that goal, we follow a
construction process that combines manual steps corresponding to high-level
insights with automatic exploration of implementation details. To assist us in
this process, we built a new tool that quickly explores large spaces of algorithms
and uses a checking or a veri�cation procedure for ensuring the safety of the
algorithms.

Starting from a sequential implementation and assisted by the tool, we present
the steps that we used to derive various highly concurrent algorithms. Among
these algorithms is a new �ne grained set data structure that provides a wait-
free contains operation, and uses only the compare-and-swap (CAS) primitive
for synchronization.

Keywords: Concurrency, synthesis, veri�cation, algorithms

14 Rastislav Bodik� Orna Kupferman� Doug Smith, and Eran Yahav,

Recursive Plans and Imperative Programs Revisited:

Deductive Synthesis

Richard Waldinger (SRI - Menlo Park, US)

The formulation of plans is viewed as a problem of deductive inference. A plan
that meets a speci�ed goal is extracted from a proof of an appropriate theorem,
where the proof is discovered by an automatic theorem prover. The special focus
of this talk is the formation of plans that require repetitive actions, which are
represented by recursion. Such a plan results from the use of the mathematical
induction principle during the proof.

We have considered examples in work�ow, the Levesque tree-chopping prob-
lem, classical blocks-world and robotic problems, and some samples of intelligent
bird behavior. Imperative programs, which have side e�ects such as the alteration
of data structures, can be treated in the same way as plans. The talk reports on
the results of experiments done with an automatic theorem prover (StickelÃ­s
SNARK). The work is motivated by potential applications in molecular biology
and biomedical research and business work�ow formation.

Keywords: Planning, program synthesis, theorem proving, mathematical in-
duction, well-founded induction, SNARK

Abstraction-Guided Synthesis of Synchronization

Eran Yahav (IBM TJ Watson Research Center - Hawthorne, US)

We present a novel framework for automatic inference of e�cient synchronization
in concurrent programs, a task known to be di�cult and error-prone when done
manually.

Our framework is based on abstract interpretation and can infer synchro-
nization for in�nite state programs. Given a program, a speci�cation, and an
abstraction, we infer synchronization that avoids all (abstract) interleavings that
may violate the speci�cation, but permits as many valid interleavings as possible.

Combined with abstraction re�nement, our framework can be viewed as a
new approach for veri�cation where both the program and the abstraction can
be modi�ed on-the-�y during the veri�cation process. The ability to modify the
program, and not only the abstraction, allows us to remove program interleavings
not only when they are known to be invalid, but also when they cannot be veri�ed
using the given abstraction.

We implemented a prototype of our approach using numerical abstractions
and applied it to verify several interesting programs.

Keywords: Synthesis, concurrent programs, abstract interpretation

Joint work of: Vechev, Martin; Yahav, Eran; Yorsh, Greta

Software Synthesis 15

Inferring Synchronization under Limited Observability

Greta Yorsh (IBM TJ Watson Research Center - Hawthorne, US)

This paper addresses the problem of automatically inferring synchronization for
concurrent programs. Given a program and a speci�cation, we infer synchro-
nization that avoids all interleavings violating the speci�cation, but permits as
many valid interleavings as possible. We let the user specify an upper bound on
the cost of synchronization, which may limit the observability - what observa-
tions on program state can be made by the synchronization code. We present
an algorithm that infers, under certain conditions, the maximally permissive
synchronization for a given cost.

We implemented a prototype of our approach and applied it to infer synchro-
nization in a number of small programs.

Joint work of: Martin Vechev, Eran Yahav, Greta Yorsh

	09501 Abstracts Collection Software Synthesis — Dagstuhl Seminar —
	 Rastislav Bodik,, Orna Kupferman,, Douglas R. Smith, and Eran Yahav,

