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Abstract. We extend first-order order-sorted unification by permitting regular expres-
sion sorts for variables and in the domains of function symbols. The set of basic sorts is
finite. The obtained signature corresponds to a finite bottom-up hedge automaton. The
unification problem in such a theory generalizes some known unification problems. Its uni-
fication type is infinitary. We give a complete unification procedure and prove decidability.

Introduction

In first-order order-sorted unification [Wal88], the set of basic sorts B is assumed to
be partially ordered, variables are of basic sorts s ∈ B and function symbols have sorts of
the form w → s, where w is a finite word over B and s ∈ B. We extend this framework
by introducing regular expression sorts R over B, allowing variables to be of sorts R and
function symbols to have sorts R → s. Another extension is that overloading function
symbols is allowed. Under some reasonable conditions imposed over the signature [GM92],
terms have the least sort.

Our signature has an interesting relation with automata. It is well-known that an order-
sorted signature is a finite bottom-up tree automaton [Com89]. In our case, an order-sorted
signature with regular expression sorts is exactly a finite bottom-up hedge automaton.

In this paper we study the unification problem for terms over an order-sorted signature
with regular expression sorts. We call this problem regular expression order-sorted unifica-

tion (REOSU) and show that it is infinitary, prove that it is decidable, and give a complete
unification procedure.
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REOSU extends some known problems as shown on the diagram below, illustrating
its relations with syntactic unification (SYNU [Rob65]), word unification (WU [Sch90]),
order-sorted unification (OSU [Wal88]), sequence unification (SEQU [Kut07]), and word
unification with regular constraints (WURC [Sch90]):

WUSYNU

WURCSEQUOSU

REOSU

Following the arrows, the problems are related as follows:

• From OSU one can obtain SYNU by restricting the sort hierarchy to be empty.
• SEQU problems without sequence variables (i.e., with individual variables only)
constitute SYNU problems.

• WU is a special case of SEQU with constants, sequence variables, and only one
flexible arity function symbol for concatenation.

• WU is also a special case of WURC where none of the variables are constrained.
• From REOSU we can get OSU (but with finitely many basic sort symbols only, be-
cause this is what REOSU considers) if instead of arbitrary regular sorts in function
domains we allow only words over basic sorts, restrict variables to be of only basic
sorts, and forbid function symbol overloading.

• SEQU can be obtained if we restrict REOSU with only one basic sort, say s, the
variables that correspond to sequence variables in SEQU have the sort s∗, individual
variables are of the sort s, and function symbols have the sort s∗ → s.

• WURC can be obtained from REOSU by the same restriction that gives WU from
SEQU and, in addition, identifying the constants there to the corresponding sorts.

Order-sorted unification described in [SS89, Wei96] extends OSU from [Wal88] in a way
that is not compatible with REOSU.

Regular expressions are presented in types in the programming language XDuce, de-
signed for manipulating XML. These types are regular expressions over trees. They are
ordered by a subtyping relation. Pattern matching for such regular expression types has
been studied in [HP03]. Unlike XDuce types, our sorts are regular expressions over words
and we perform word regular language manipulations rather than working with tree lan-
guages. Moreover, we are dealing with full-scale unification instead of matching.

In this paper we are dealing with REOSU in the empty theory (i.e., the syntactic case).
It would also be interesting to see how one can extend equational OSU [Kir88, MGS89,
Bou92, HM08] with regular expression sorts, but this problem is beyond the scope of this
paper.

The paper is organized as follows. In Section 1 we give basic definitions and recall some
known results. In Section 2 algorithms operating on sorts are given. Section 3 describes a
complete unification procedure and discusses decidability. Section 4 concludes. Proofs can
be found in the appendix.

For unification, we use the notation and terminology of [BS01]. For the notions related
to sorted theories, we follow [GM92].
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1. Preliminaries

Sorts

We consider a finite set B of basic sorts, partially ordered with the relation �. Its
elements are denoted with lowercase letters in sans serif font. s ≺ r means s � r and
s 6= r. We write R for the set of regular expressions over B, which is built in the standard
way: R ::= s | 1 | R1.R2 | R1+R2 | R∗. We use capital SANS SERIF font letters for them.
The regular language denoted by a regular expression is: [[s]] = {s}, [[1]] = {ǫ}, [[R1.R2]] =
[[R1]].[[R2]], [[R1+R2]] = [[R1]]∪[[R2]], [[R

∗]] = [[R]]∗, where ǫ stands for the empty word, [[R1]].[[R2]]
is the concatenation of the regular languages [[R1]] and [[R2]], and [[R]]∗ is the Kleene star
of [[R]].

A regular expression sort is an element of R, and a functional expression sort is an
expression of the form R → s with R ∈ R and s ∈ B. The relation � on B is extended to
words of basic sorts, sets of words, and regular expression sorts as follows: (1) if w1, w2 ∈ B∗

then w1 � w2 iff w1 = s1 · · · sn, w2 = r1 · · · rn and si � ri for all 1 ≤ i ≤ n; (2) if W1,W2 ⊆ B∗

thenW1 � W2 iff for each w1 ∈ W1 there is w2 ∈ W2 such that w1 � w2; and (3) if R1,R2 ∈ R
then R1 � R2 iff [[R1]] � [[R2]]. Note that � is a quasi-order on the sets B, 2B

∗
, and R. In

particular, we can define the equivalence relation � on R by: R1 ≃ R2 iff R1 � R2 and
R2 � R1. We extend this equivalence relation to functional sorts: R1 → s1 ≃ R2 → s2 iff
R1 ≃ R2 and s1 = s2.

The closure R of R ∈ R is the regular expression defined as follows: s =
∑

r�s r, 1 = 1,

R1.R2 = R1.R2, R1+R2 = R1+R2, R∗ = R
∗
. Closures of regular expressions enable the

decidability of relations � and ≃ on R:

Lemma 1. Let S,R ∈ R. Then S � R iff [[S]] ⊆ [[R]].

Corollary 1. Let S,R ∈ R. Then S ≃ R iff [[S]] = [[R]].

The set of all �-maximal elements of a set of sorts S ⊆ R is denoted max(S). R is a
lower bound of S if R � Q for all Q ∈ S. A lower bound G of S is a greatest lower bound,
denoted glb(S), if R � G for all lower bounds R of S. Note that if glb(S) exists, then it is
unique modulo ≃.

Terms

For each R we assume a countable set of variables VR such that VR1
= VR2

iff R1 ≃ R2

and VR1
∩ VR2

= ∅ if R1 6≃ R2. Also, for each R ∈ R, s ∈ B we assume a set of function
symbols FR→s such that FR1→s1 = FR2→s2 iff R1 → s1 ≃ R2 → s2. Moreover, the following
conditions should be satisfied:

Preregularity: If f ∈ FR1→s1 and R2 � R1, then there is a �-least element in the set
{s | f ∈ FR→s and R2 � R}.

Finite overloading: For each f , the set {FR→s | R ∈ R, s ∈ B, f ∈ FR→s} is finite.

We say that R is a sort of x if x ∈ VR. Similarly, R → s is a sort of f if f ∈ FR→s.
Function symbols from F1→s are called constants. We use the letters a, b, c to denote them.
We will write f : R → s for f ∈ FR→s, a : s for a ∈ F1→s, and x : R for x ∈ VR. Setting
V = ∪R∈RVR and F = ∪R∈R,s∈BFR→s, we define the sets TR(F ,V) of terms of sort R ∈ R
over V and F , and T SR(F ,V) of term sequences of sort R ∈ R over V and F , as the least
sets satisfying the properties:
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• VR ⊆ TR(F ,V).
• TR′(F ,V) ⊆ TR(F ,V) if R′ � R.
• ǫ ∈ T SR(F ,V) if 1 � R.
• (t1, . . . , tn) ∈ T SR(F ,V) if there exist R1, . . . ,Rn ∈ R such that ti ∈ TRi

(F ,V) and
R1. · · · .Rn � R.

• f(t̃) ∈ TR(F ,V), if R = s, f : R′ → s, and t̃ ∈ T SR′(F ,V).

The set of terms over V and F is defined as T (F ,V) = ∪R∈RTR(F ,V). We abbreviate
terms a(ǫ) with a. The depth of a term and a term sequence is defined in the standard way:
depth(x) = 1, depth(f(t̃)) = 1 + depth(t̃), depth(ǫ) = 0, depth(t1, . . . , tn) = max{depth(ti) |
1 ≤ i ≤ n}, n > 0.

Lemma 2. Every term has a �-least sort R that is unique modulo ≃.

The �-least sort of a term t modulo ≃ is called the least sort of t, and is denoted
by lsort(t). In the same way, the �-least sort of a term sequence (t1, . . . , tn), n ≥ 1, is
defined uniquely modulo ≃ as lsort(t1). · · · .lsort(tn) and is denoted by lsort(t1, . . . , tn).
When n = 0, i.e., for the empty sequence, lsort(ǫ) = 1.

The set of variables of a term t is denoted by var(t). A term t is ground if var(t) = ∅.
These notions extend to term sequences, sets of term sequences, etc.

For a basic sort s, its semantics sem(s) is the set Ts(F) of ground terms of sort s. The
semantics of a regular sort is given by the set of ground term sequences of the corresponding
sort: sem(1) = {ǫ}, sem(R1.R2) = {(s̃1, s̃2) | s̃1 ∈ sem(R1), s̃2 ∈ sem(R2)}, sem(R1+R2) =
sem(R1) ∪ sem(R2), sem(R∗) = sem(R)∗. This definition, together with the definition of �
and TR(F ,V), implies that if R � Q, then sem(R) ⊆ sem(Q).

Substitutions and Unification Problems

A substitution is a well-sorted mapping from variables to term sequences, which is iden-
tity almost everywhere. Substitutions are denoted with lowercase Greek letters, where ε
stands for the identity substitution. Well-sortedness of σ means that lsort(σ(x)) � lsort(x)
for all x. The notions of substitution application, term and term sequence instances, sub-
stitution composition, restriction, and subsumption are defined in the standard way. We
use postfix notation for instances, juxtaposition for composition, and write σ ≤X ϑ for
subsumption meaning that σ is more general than ϑ on the set of variables X . The depth

of a substitution is defined as depth(σ) = max{depth(xσ) | x ∈ V}.

Lemma 3. lsort(tσ) � lsort(t) and lsort(t̃σ) � lsort(t̃) hold for any term t, term sequence

t̃ and substitution σ.

An equation is a pair of term sequences, written as s̃
.
= t̃. Its depth is the max-

imum between depth(s̃) and depth(t̃). A regular expression order sorted unification or,
shortly, REOSU problem Γ is a finite set of equations between sorted term sequences
{s̃1

.
= t̃1, . . . , s̃n

.
= t̃n}. A substitution σ is a unifier of Γ if s̃iσ = t̃iσ for all 1 ≤ i ≤ n.

A minimal complete set of unifiers of Γ is a set U of unifiers of Γ satisfying the following
conditions:

Completeness: For any unifier ϑ of Γ there is σ ∈ U such that σ ≤var(Γ) ϑ.
Minimality: If there are σ1, σ2 ∈ U such that σ1 ≤var(Γ) σ2, then σ1 = σ2.

The depth of a REOSU problem Γ is the maximum depth of the equations it contains.
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Linear Form and Split of a Regular Expression

We recall the notion of linear form for regular expressions from [Ant96] by adapting the
notation to our setting and using the set of basic sorts B for alphabet. This notion, together
with the split of a regular expression, will be needed later, in sort-related algorithms: When
we decompose a hedge in the weakening process, we have to split the corresponding sort
as well. Linear form helps to split a sort into a basic sort and another sort, while the split
operation decomposes it into two (not necessarily basic) sorts.

A pair (s,R) is called a monomial. A linear form of a regular expression R, denoted
lf (R), is a finite set of monomials defined recursively as follows:

lf (1) = ∅ lf (R∗) = lf (R)⊙ R∗

lf (s) = {(s, 1)} lf (R.Q) = lf (R)⊙ Q if ǫ /∈ [[R]]
lf (s+r) = lf (s) ∪ lf (r) lf (R.Q) = lf (R)⊙ Q ∪ lf (Q) if ǫ ∈ [[R]]

These equations involve an extension of concatenation ⊙ that acts on a linear form
and a regular expression and returns a linear form. It is defined as l ⊙ 1 = l and l ⊙ Q =
{(s, S.Q) | (s, S) ∈ l, S 6= 1} ∪ {(s,Q) | (s, 1) ∈ l} if Q 6= 1.

As an example, lf (R) = {(s,R), (s, s.(s.s+r)∗), (r, (s.s+r)∗)} for R = s∗.(s.s+r)∗. The set

l̂f (R) is defined as {s.Q | (s,Q) ∈ lf (R)}.

Definition 1 (Split). Let S ∈ R. A split of S is a pair (Q,R) ∈ R2 such that (1) Q.R � S

and (2) if (Q′,R′) ∈ R2, Q � Q′, R � R′, and Q′.R′ � S, then Q ≃ Q′ and R ≃ R′.

We recall the definition of 2-factorization from [Con71]: A pair (Q,R) ∈ R2 is a 2-

factorization of S ∈ R if (1) [[Q.R]] ⊆ [[S]] and (2) if (Q′,R′) ∈ R2, [[Q]] ⊆ [[Q′]], [[R]] ⊆ [[R′]],
and [[Q′.R′]] ⊆ [[S]], then [[Q]] = [[Q′]] and [[R]] = [[R′]].

Lemma 4. (Q,R) is a split of S iff (Q,R) is a 2-factorization of S.

In [Con71] it has been shown that the 2-factorizations of a regular expression are finitely
many modulo ≃, and that they can be effectively computed. By the lemma above a regular
expression has finitely many splits modulo ≃ that can be effectively computed. For instance,
the regular expression s∗.r.r∗ has two splits modulo ≃: (s∗, s∗.r.r∗) and (s∗.r.r∗, r∗).

Relating REOS Signatures and Hedge Automata

Regular expression ordered sorts are related to regular hedge automata in the same
way as ordered sorts are related to tree automata. Namely, a REOS signature is a finite
bottom-up hedge automaton.

To illustrate this relation, we first recall the definition of nondeterministic finite hedge
automaton (NFHA) from [CDG+]: An NFHA over Σ is a tuple (Q,Σ, Qf ,∆) where Q is a
finite set of states, Qf ⊆ Q is a set of final states, and ∆ is a finite set of transition rules of
the following types:

• a(R) → q where a ∈ Σ, q ∈ Q, and R ⊆ Q∗ is a regular language over Q, or
• q′ → q (called ǫ-transitions), where q′, q ∈ Q.

Now, we can take our set of basic sorts B in the role of Q, the set F in the role of Σ,
assume Qf = Q, and define ∆ as follows: For each r ≺ s, the ǫ-transition rule r → s is in
∆. For each f : R → s, the rule f(R) → s is also in ∆. It is easy to see that our ground
terms are exactly the unranked trees recognized by this automaton. A ground term of sort
s is an unranked tree recognized by the automaton at state s.
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2. Sort-Related Algorithms

In this section we identify algorithms to decide � on R, to compute the greatest lower
bounds for regular expression sorts, and to compute sort-weakening substitutions.

Deciding �

Without an ordering on basic sorts, � would be the standard inequality for regular
word expressions which can be decided, for instance, by Antimirov’s algorithm [Ant95]
that employs partial derivatives. The problem is PSPACE-complete, but this rewriting
approach has an advantage over the standard technique of translating regular expressions
into automata: With it, in some cases solving derivations can have polynomial size, while
any algorithm based on translation of regular expressions into DFA’s causes an exponential
blow-up.

In our case, we can rely on the property that S � R iff [[S]] ⊆ [[R]], proved in Lemma 1.
The property [[S]] ⊆ [[R]] can be decided by Antimirov’s original algorithm on S and R.

Computing Greatest Lower Bounds

A greatest lower bound of regular expressions would be their intersection, if we did not
have ordering on the basic sorts. Intersection can be computed either in the standard way, by
translating them into automata, or by Antimirov & Mosses’s rewriting algorithm [AM95] for
regular expressions extended with the intersection operator. Computation requires double
exponential time.

Here we can employ the regular expression intersection algorithm [AM95] to compute
a greatest lower bound, with one modification: To compute the intersection between two
alphabet letters (i.e. between two basic sorts), instead of standard check whether they are
the same, we compute the maximal elements in the set of their lower bounds. There can be
several such maximal elements. This can be easily computed based on the ordering on basic
sorts. Then we can take the sum of these elements and it will be a greatest lower bound.
This construction allows to compute a greatest lower bound of two regular expressions,
which is unique modulo ≃.

An implementation of Antimirov-Mosses algorithm [Sul09] requires only minor modifi-
cations to deal with the ordering on alphabet letters (basic sorts). Hence, for S and R we
compute here glb(S,R) and we know that if Q is a regular expression with [[Q]] = [[S]]∩ [[R]],
then glb(S,R) ≃ Q.1

Computing Weakening Substitutions

Now we describe an algorithm that computes a substitution to weaken the sort of a term
sequence towards a given sort. The necessity of such an algorithm can be demonstrated on
a simple example: Assume we want to unify x and f(y) for x : s, f : R1 → s1, f : R2 → s2,
y : R2, where s1 ≺ s ≺ s2 and R1 ≺ R2. We can not unify x with f(y) directly, because
lsort(f(y)) = s2 6� s = lsort(x). However, if we weaken the least sort of f(y) to s1,
then unification is possible. To weaken the least sort of f(y), we take its instance under

1We say that the computation of glb fails, if the (modification of) Antimirov-Mosses algorithm returns
0, and express it as glb(S,R) = ⊥.
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substitution {y 7→ z}, where z ∈ VR1
, which gives lsort(f(z)) = s1. Hence, the substitution

{y 7→ z, x 7→ f(z)} is a unifier of x and f(y), leading to the common instance f(z).
A weakening pair is a pair of a term sequence t̃ and a sort Q, written t̃  Q. A

substitution ω is called a weakening substitution of a set W of weakening pairs iff lsort(t̃ω) �
Q for each t̃ Q ∈ W .

Our weakening algorithm is called W, and works by applying exhaustively the following
rules to pairs of the form W ;σ where W is a set of weakening pairs and σ is a substitution:

R-w: Remove a Weakening Pair

{t̃ Q} ∪W ;σ =⇒ W ;σ if lsort(t̃) � Q.

D1-w: Decomposition 1 in Weakening

{(f(t̃), s̃) Q} ∪W ;σ =⇒ {f(t̃) s, s̃ S} ∪W ;σ

if lsort(f(t̃), s̃) 6� Q, var(f(t̃), s̃) 6= ∅, s̃ 6= ǫ and s.S ∈ max(l̂f (Q)).

D2-w: Decomposition 2 in Weakening

{(x, s̃) Q} ∪W ;σ =⇒ {x Q1, s̃ Q2} ∪W ;σ

if lsort(x, s̃) 6� Q, s̃ 6= ǫ and (Q1,Q2) is a split of Q.

AS-w: Argument Sequence Weakening

{f(t̃) Q} ∪W ;σ =⇒ {t̃ R} ∪W ;σ

where lsort(f(t̃)) 6� Q, var(f(t̃)) 6= ∅, R.r is a maximal sort such that f ∈ FR→r and r � Q.

V-w: Variable Weakening

{x Q} ∪W ;σ =⇒ Wσ;σ{x 7→ w}

where glb({lsort(x),Q)}) 6= ⊥ and w is a fresh variable from Vglb({lsort(x),Q)}).

If none of the rules are applicable to W ;σ, then it is transformed into ⊥, indicating
failure. By exhaustive search, transforming each W ;σ in all possible ways, we generate a
complete search tree whose branches form derivations. The branches that end with ⊥ are
called failing branches. The branches that end with ∅;ω are called successful branches and ω
is a substitution computed by W along this branch. The set of all substitutions computed
by W starting from W ; ǫ is denoted by weak(W ). It is easy to see that the elements of
weak(W ) are variable renaming substitutions.

It is essential that the signature has the finite overloading property, which guarantees
that the rule AS-w does not introduce infinite branching. Since the linear form and split of
a regular expression are both finite, the other rules do not cause infinite branching either.
W is terminating, sound, and complete, as the following theorems show.

Theorem 1. W is terminating.

Theorem 2 (Soundness of the Weakening Algorithm). Each ω∈weak(W ) is a weakening

substitution of W .

Theorem 3 (Completeness of the Weakening Algorithm). For every weakening substitution

ω of W there exists ω′ ∈ weak(W ) such that ω′ ≤var(W ) ω.

Example 1. Let W = {x  q, f(x)  s} be a weakening problem with x : r, f : s → s,
f : r → r and the sorts r1 ≺ r, r2 ≺ r, r1 ≺ q, r2 ≺ q, s ≺ r1, s ≺ r2. Then the weakening
algorithm first transforms W ; ε into {f(w)  s}; {x 7→ w} with w : r1+r2 by the rule V-w.
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The obtained weakening pair is then transformed into ∅; {{x 7→ z, w 7→ z}} with z : s by
AS-w, leading to weak(W ) = {{x 7→ z}}.

Example 2. Let W = {(x, y)  s∗.r.r∗} be a weakening problem with x : q∗1.p
∗
1, y : q∗2.p

∗
2,

and the sorts s ≺ q1, s ≺ q2, r ≺ p1, r ≺ p2. Then the weakening algorithm computes
weak(W ) = {{x 7→ u1, y 7→ v1}, {x 7→ u2, y 7→ v2}} where u1 : s∗.r.r∗, v1 : r∗, u2 : s∗ and
v2 : s

∗.r.r∗.

Example 3. Let W = {x  q∗} be a weakening problem with x : r∗ and the sorts
s1 ≺ r, s2 ≺ r, s1 ≺ q, s2 ≺ q, p1 ≺ s1, p2 ≺ s2. Then the weakening algorithm computes
weak(W ) = {{x 7→ w}} where w : (s1+s2)

∗.

3. Unification Type, Unification Procedure, Decidability

Unification Type

Let Γre be a REOSU problem and Γseq its version without sorts, i.e. a SEQU problem.
Each unifier of Γre is either a unifier of Γseq or is obtained from a unifier of Γseq by composing
it with a weakening substitution as follows: If σ = {x1 7→ t̃1, . . . , xn 7→ t̃n} is a unifier of
Γseq, then the set of weakening substitutions for σ is Ω(σ) = weak({t̃1  lsort(x1), . . . , t̃n  
lsort(xn)}). For each ωσ ∈ Ω(σ), σωσ is a unifier of Γre. Since SEQU is infinitary, the type
of REOSU can be either infinitary or nullary, and we show now that it is not nullary.

Let Sseq be a minimal complete set of unifiers of Γseq and Sre be the set containing the
unifiers of Γre that are either in Sseq or are obtained by weakening unifiers in Sre. Since
{σωσ | ωσ ∈ Ω(σ)} is finite for each σ, we can assume that Sre contains only a minimal
subset of it for each σ. The set Sre is complete. Assume by contradiction that it is not
minimal. Then it contains σ′ and ϑ′ such that σ′ ≤var(Γre) ϑ

′, i.e., there exists ϕ′ such that
σ′ϕ′ =var(Γre) ϑ′. If ϑ′ ∈ Sseq, then we have σ′ϕ′ = σωσϕ

′ =var(Γ) ϑ′ for an ωσ ∈ Ω(σ),
which contradicts minimality of Sseq. If σ′ ∈ Sseq, then σ′ϕ′ =var(Γre) ϑ′ = ϑωϑ where

ωϑ ∈ Ω(ϑ). Since ωϑ is variable renaming, σ′ϕ′ω−1
ϑ =var(Γseq) ϑ, which again contradicts

minimality of Sseq. Both σ′ and ϑ′ can not be from Sseq because Sseq is minimal. If neither
σ′ nor ϑ′ is in Sseq, then we have σωσϕ

′ = σ′ϕ′ =var(Γre) ϑ
′ = ϑωϑ and again a contradiction:

σωσϕ
′ω−1

ϑ =var(Γseq) ϑ.
Hence, for any Γre there is a complete set of unifiers with no two elements comparable

with respect to ≤var(Γre), which implies that Γre has a minimal complete set of unifiers and
REOSU is not nullary.

Unification Procedure

To compute unifiers for a REOSU problem, one way is, first, to ignore the sort informa-
tion, employ the SEQU procedure [Kut02, Kut07] on the unsorted problem, and then weaken
each computed substitution to obtain their order-sorted instances. In fact, such an approach
is not uncommon in order-sorted unification, see, e.g. [SS89, MGS89, SNGM89, HM08]. It
has an advantage of being a modular method that reuses an existing solving procedure.

In our case, this approach can be realized as follows: Assume a SEQU procedure com-
putes a unifier σ = {x1 7→ t̃1, . . . , xn 7→ t̃n}

2 of the unsorted version of an REOSU problem Γ.

2We assume without loss of generality that σ is idempotent.



ORDER-SORTED UNIFICATION WITH REGULAR EXPRESSION SORTS 201

Then we form a set of weakening pairs W = {t̃1  Q1, . . . , t̃n  Qn}, where the Q’s are
the sorts of the corresponding x’s, and find the set of weakening substitutions weak(W ). If
weak(W ) = ∅, then σ can not be weakened further to a solution of Γ. Otherwise, σϑ is a
solution of Γ for each ϑ ∈ weak(W ).

A drawback of this approach is that it is so called generate-and-test method. It is
not able to detect early enough derivations that fail because of sort incompatibility. Early
failure detection requires weakening to be tailored in the unification rules. This is what we
consider in more details now.

The following transformation rules act on pairs of the form Γ;σ with Γ a unification
problem and σ a substitution, and are designed to define a sound and complete rule-based
procedure for REOSU problems.

P: Projection

Γ;σ =⇒ Γϑ;σϑ,

for ϑ = {x1 7→ ǫ, . . . , xn 7→ ǫ} with xi ∈ var(Γ) and 1 � lsort(xi) for 1 ≤ i ≤ n.

T: Trivial

{t̃
.
= t̃} ∪ Γ;σ =⇒ Γ;σ.

TP: Trivial Prefix

{(r̃, t̃)
.
= (r̃, s̃)} ∪ Γ;σ =⇒ {t̃

.
= s̃} ∪ Γ;σ, if r̃ 6= ǫ and t̃ 6= s̃.

D: Decomposition

{(f(t̃), t̃′)
.
= (f(s̃), s̃′)} ∪ Γ;σ =⇒ {t̃

.
= s̃, t̃′

.
= s̃′} ∪ Γ;σ,

if glb({lsort(f(t̃)), lsort(f(s̃))}) 6= ⊥ and t̃ 6= s̃.

O: Orient

{(t, t̃)
.
= (x, s̃)} ∪ Γ;σ =⇒ {(x, s̃)

.
= (t, t̃)} ∪ Γ;σ, where t /∈ V .

WkE1: Weakening and Elimination 1

{(x, t̃)
.
= (s, s̃)} ∪ Γ;σ =⇒ {t̃

.
= s̃}ϑ ∪ Γϑ;σϑ,

where s /∈ V , x /∈ var(s), ω ∈ weak({s lsort(x)}), and ϑ = ω ∪ {x 7→ sω}.

WkE2: Weakening and Elimination 2

{(x, t̃)
.
= (y, s̃)} ∪ Γ;σ =⇒ {t̃

.
= s̃}ϑ ∪ Γϑ;σϑ,

where R = glb(lsort(x), lsort(y)) 6≃ 1 and ϑ = {x 7→ w, y 7→ w} for a fresh variable w ∈ VR.

WkWd1: Weakening and Widening 1

{(x, t̃)
.
= (s, s̃)} ∪ Γ;σ =⇒ {(z, t̃)

.
= s̃}ϑ ∪ Γϑ;σϑ,

if s /∈ V , x /∈ var(s), there is (r,R) ∈ lf (lsort(x)) with R 6≃ 1, ω ∈ weak({s r}), z ∈ VR is
a fresh variable and ϑ = ω ∪ {x 7→ (sω, z)}.

WkWd2: Weakening and Widening 2

{(x, t̃)
.
= (y, s̃)} ∪ Γ;σ =⇒ {(z, t̃)

.
= s̃}ϑ ∪ Γϑ;σϑ,

where (S,R) is a split of lsort(x) such that R 6≃ 1, w ∈ VR′ is a fresh variable with R′ =
glb({S, lsort(y)}) 6≃ 1, z is a fresh variable with lsort(z) = R, and ϑ = {x 7→ (w, z), y 7→ w}.
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WkWd3: Weakening and Widening 3

{(x, t̃)
.
= (y, s̃)} ∪ Γ;σ =⇒ {t̃

.
= (z, s̃)}ϑ ∪ Γϑ;σϑ,

where (S,R) is a split of lsort(y) such that R 6≃ 1, w ∈ VR′ is a fresh variable with R′ =
glb({S, lsort(x)}) 6≃ 1, z is a fresh variable with lsort(z) = R, and ϑ = {x 7→ w, y 7→ (w, z)}.

Note that R′ 6≃ 1 in WkWd2 and WkWd3 implies that in those rules S 6≃ 1. We denote
this set of transformation rules with T.

Theorem 4 (Soundness of Unification Rules). The rules of T are sound.

To solve a unification problem Γ, we create the initial pair Γ; ε and first apply the
projection rule to it in all possible ways. From each obtained problem we select an equation
and apply the other rules exhaustively to that selected equation, developing the search tree
in a breadth-first way. If no rule applies, the problem is transformed to ⊥. The obtained
procedure is denoted byP(Γ). Branches in the search tree form derivations. The derivations
that end with ⊥ are failing derivations. The derivations that end with ∅;ϕ are successful

derivations. The set of all ϕ’s at the end of successful derivations of P(Γ) is called the
computed substitution set of P(Γ) and is denoted by comp(P(Γ)). From Theorem 4 by
induction on the length of derivations one can prove that every ϕ ∈ comp(P(Γ)) is a unifier
of Γ.

One can observe that under this control, variables are replaced with ǫ only at the pro-
jection phase. In particular, no variable introduced in intermediate stages gets eliminated
with ǫ or replaced by a variable whose sort is 1.

Theorem 5 (Completeness of the Unification Procedure). Let Γ be a REOSU problem with

a unifier ϑ. Then there exists σ ∈ comp(P(Γ)) such that σ ≤var(Γ) ϑ.

Note that the set comp(P(Γ)), in general, is not minimal.3

By restricting sorts or occurrences of variables, various terminating fragments of RE-
OSU can be obtained. We mention only four of them here:

• If sorts of all variables in Γ are star-free, then Γ is finitary. To show this, we first
transform Γ into Γ′, replacing each occurrence of a variable x : R1.R2 in Γ by a
sequence of two fresh variables x1 : R1 and x2 : R2. Then, for each y : R1+R2

in Γ′, we obtain a new problem Γ′
1 by replacing each occurrence of y by a fresh

variable y1 : R1, and a a new problem Γ′
2 replacing each occurrence of y by a fresh

variable y2 : R1. Applying these transformations on each of the obtained problems
iteratively, we reach a finite set of order-sorted unification problems, where each
variable is of a basic sort. Since the set of basic sorts is finite, such problems are
finitary [Wal88]. Γ is solvable if and only if at least one of the obtained problems is
solvable. The transformation establishes a one-to-one correspondence between the
unifiers of obtained problems and the unifiers of Γ, which implies that Γ is finitary.

• If variables whose sort contains the star occur in the last argument position. This is
a pretty useful terminating fragment. One can formulate more optimized transfor-
mation rules for it and show termination based on the ideas of a similar fragment
in sequence unification [Kut07].

3However, if in the rules WkE1 and WkE2 the substitution ω is selected from a minimal subset of the
corresponding weakening set, one can show that comp(P(Γ)) is almost minimal. (Almost minimality is
defined in [Kut07]).
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• The previous fragment can be extended to another terminating fragment, called
postfix-closed, where each occurrence of the same star-sorted variable is followed
by the same sequence everywhere, like, e.g., in the problem {f(a, f(y, b), x, y, b)

.
=

f(z, x, y, b)}, where the sorts of the variables x and y contain the star.
• If one side of each equation in Γ is ground, then Γ is finitary. These are REOS
matching problems. For them, termination of P(Γ) can be proved based on the
ideas of termination proof for sequence matching in [Kut07]. Note that for REOS
matching there is no need to invoke the weakening algorithm.

Now we demonstrate on an example how the unification procedure P works:

Example 4. Let {f(x, y, z)
.
= f(f(x), g(u), a, b)} be a REOSU problem, where the basic

sorts are s, r, and q, ordered as s ≺ q, r ≺ q, and the symbols have the following sorts:

x, z : s∗ f : q∗ → r

y, u : q g : q → q

a, b : s g : s+ r → s.

That means, g is overloaded. We show a successful derivation for this problem. The first
two steps are decomposition and projection:

{f(x, y, z)
.
= f(f(x), g(u), a, b)}; ε =⇒D

{(x, y, z)
.
= (f(x), g(u), a, b)}; ε =⇒P

{(y, z)
.
= (f(ǫ), g(u), a, b)}; {x 7→ ǫ}

The weakening pair f(ǫ)  q has ε as a weakening substitution. Hence, we can make the
next step with the WkE1 rule:

{(y, z)
.
= (f(ǫ), g(u), a, b)}; {x 7→ ǫ} =⇒WkE1

{z
.
= (g(u), a, b)}; {x 7→ ǫ, y 7→ f(ǫ)}

Now, (s, s∗) ∈ lf (lsort(z)). The least sort of g(u) is q 6� s. However, we can weaken g(u)
towards s: The weakening pair g(u)  s has a solution {u 7→ v}, where v ∈ Vs+r is a fresh
variable. We perform the WkWd1 step, introducing a fresh variable z1 ∈ Vs∗ :

{z
.
= (g(u), a, b)}; {x 7→ ǫ, y 7→ f(ǫ)} =⇒WkWd1

{z1
.
= (a, b)}; {x 7→ ǫ, y 7→ f(ǫ), u 7→ v, z 7→ (g(v), z1)}

The next step is again WkWd1. To make it, we take a weakening substitution ε for a s∗,
a fresh variable z2 = Vs∗ and proceed:

{z1
.
= (a, b)}; {x 7→ ǫ, y 7→ f(ǫ), u 7→ v, z 7→ (g(v), z1)} =⇒WkWd1

{z2
.
= b}; {x 7→ ǫ, y 7→ f(ǫ), u 7→ v, z 7→ (g(v), a, z2), z1 7→ (a, z2)}

The last two steps in the derivation are WkE1 and T. WkE1 uses the weakening substitution
ε for b s∗:

{z2
.
= b}; {x 7→ ǫ, y 7→ f(ǫ), u 7→ v, z 7→ (g(v), a, z2), z1 7→ (a, z2)} =⇒WkE1

{ǫ
.
= ǫ}; {x 7→ ǫ, y 7→ f(ǫ), u 7→ v, z 7→ (g(v), a, b), z1 7→ (a, b), z2 7→ b} =⇒T

∅; {x 7→ ǫ, y 7→ f(ǫ), u 7→ v, z 7→ (g(v), a, b), z1 7→ (a, b), z2 7→ b}.
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Finally, restricting the computed substitution to the variables of the original problem
{f(x, y, z)

.
= f(f(x), g(u), a, b)}, we obtain its unifier {x 7→ ǫ, y 7→ f(ǫ), u 7→ v, z 7→

(g(v), a, b)}.

Decidability

To show decidability, we define a translation from REOSU problems into word equa-
tions with regular constraints. The idea is similar to the one of [LV01], used to translate
context equations into traversal equations, or of [KLV09], used to translate left-hole context
equations into word equations with regular constraints.

For each basic sort we assume at least one constant of that sort and proceed as follows:

• First, we show that each solvable REOSU problem Γ has a unifier σ with the prop-
erty depth(σ) ≤ size(Γ), where size(Γ) is the number of alphabet symbols in Γ.

• Next, we transform a REOSU problem Γ into a WU problem with regular constraints
by a transformation that preserves solvability in both directions. The transformation
uses the minimal unifier depth bound when translating sort information. Since
WURC is decidable, we get decidability of REOSU.

We now elaborate on these items. We can assume without loss of generality that we
are looking for the unifiers that do not map any variable to ǫ (nonerasing unifiers).

Unifier depth bound. Let ϑ be a depth-minimal nonerasing unifier of Γ with the domain
dom(ϑ) ⊆ var(Γ) and let ρ be a grounding substitution for Γϑ, mapping each variable in
Γϑ to a sequence of constants of appropriate sort. We denote ϑρ by σ. Then for each
x ∈ var(Γ), xσ consists of terms of the form tσ, where t is either a subterm of Γ, or
a constant, or is obtained from a subterm of Γ by replacing variables with sequences of
constants. Since there are size(Γ) subterms in Γ and we can not repeat application of a
subterm on itself, depth(tσ) ≤ size(Γ). Therefore, depth(xσ) ≤ size(Γ) for all x ∈ dom(σ)
which implies depth(σ) ≤ size(Γ).

Translation into a WURC problem. Let Γ be a REOSU problem. For the translation, we
restrict ourselves to the function symbols occurring in Γ and, additionally, one constant for
each basic sort, if Γ does not contain a constant of that sort. This alphabet is finite. We
denote it by FΓ.

First, we ignore the sort information and define a transformation Tr from term se-
quences into words as follows:

Tr(x) = x

Tr(f(t̃)) = fTr(t̃)f

Tr(ǫ) = ǫ

Tr(t1, . . . , tn) = Tr(t1)# · · ·#Tr(tn), n > 1

where # is just a letter that does not occur in FΓ. A mapping σ from variables to term
sequences is translated into a substitution for words Tr(σ) defined as xTr(σ) = Tr(xσ) for
each x. Tr is an injective function. Its inverse is denoted by Tr−1.

Example 5. Let Γ = {f(x, y)
.
= f(f(y, a), b, c)} with s � r, x : s, y : r∗, f : r∗ → s, a : s

and b, c : r. Then Γ has a solution σ = {x 7→ f(b, c, a), y 7→ (b, c)}. On the other hand,
Tr(Γ) = {fx#yf

.
= ffy#aaf#bb#ccf} is a word unification problem with the nonerasing
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solutions ϕ1 = {x 7→ fbb#cc#aaf, y 7→ bb#cc}, ϕ2 = {x → fcc#aaf#bb, y 7→ cc}, ϕ3 =
{x 7→ faaf#bbf#cc, y 7→ aaf#bbf#cc}. It is easy to see that ϕ1 = Tr(σ), but ϕ2 and
ϕ3 are extra substitutions introduced by the transformation. However, they are of different
nature: Tr−1(ϕ2) exists and it is a mapping {x 7→ (f(c, a), b), y 7→ c}, but it is not a
substitution because it is not well-sorted. Tr−1(ϕ3) does not exist (which indicates that Tr
is not surjective).

Lemma 5. If σ is a substitution and t̃ is a sequence of REOS terms, then Tr(t̃)Tr(σ) =
Tr(t̃σ).

This lemma implies that if a REOSU Γ is solvable, then Tr(Γ) is solvable. The con-
verse, in general, is not true, because the transformation introduces extra solutions. How-
ever, translating sort information and considering word equations with regular constraints
prevents extra solutions to appear and we get solvability preservation in both directions, as
we will see below.

We start with translating sort information: For each x ∈ var(Γ), we transform x : R
into a membership constraint x ∈ Tr(R,Γ), where Tr(R,Γ) is defined as the set

Tr(R,Γ) = {Tr(t̃) | the terms in t̃ are from T (FΓ),

lsort(t̃) � R and depth(t̃) ≤ size(Γ)}.

That is, we translate only those t̃’s whose minimal sort does not exceed R and whose
depth is bounded by size(Γ).

We show now that Tr(R,Γ) is a regular word language. First, we introduce a notation
for regular word languages: We write L1.#L2 for the language {w1#w2 | w1 ∈ L1, w2 ∈ L2}.

L0# = {ǫ}, L1# = L, Ln# = L.#L
(n−1)# and L∗# = ∪∞

n=0L
n# .

For each R, the language Tr(R,Γ) is constructed level by level, first for the term
sequences of depth 1, then for depth 2, and so on, until the depth bound depth(Γ):

• Depth 1:

Tr1(s,Γ) = {aa | a ∈ FΓ, a : s′, s′ � s} (This set is finite.)

Tr1(1,Γ) = {ǫ}

Tr1(R1 + R2,Γ) = Tr1(R1,Γ) ∪ Tr1(R2,Γ)

Tr1(R1.R2,Γ) = Tr1(R1,Γ).#Tr1(R2,Γ)

Tr1(R
∗,Γ) = Tr1(R,Γ)

∗#

• Depth n > 1:

Trn(s,Γ) = Trn−1(s,Γ) ∪ {fwf | f ∈ FΓ, f : R → s′,

w ∈ Trn−1(R
′,Γ),R′ � R, s′ � s}

Trn(1,Γ) = {ǫ}

Trn(R1 + R2,Γ) = Trn(R1,Γ) ∪ Trn(R2,Γ)

Trn(R1.R2,Γ) = Trn(R1,Γ).#Trn(R2,Γ)

Trn(R
∗,Γ) = Trn(R,Γ)

∗#

It shows that Trn(R,Γ) is regular for each n. From this construction it follows that
Tr(R,Γ) = Tr size(Γ)(R,Γ) and, hence, Tr(R,Γ) is regular.
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Example 6. Consider again Γ and the sort information from Example 5. Now it gets
translated into a WURC problem ∆ = {fx#yf

.
= ffy#aaf#bb#ccf, x ∈ Tr(s,Γ), y ∈

Tr(r∗,Γ)}. Tr(s,Γ) contains (among others) fbb#cc#aaf , but neither fcc#aaf#bb nor
faaf#bbf#cc. Tr(r∗,Γ) contains (among others) bb#cc. Hence, ϕ1 from Example 5 is a
solution of ∆, but ϕ2 and ϕ3 are not.

Finally, we have the theorem:

Theorem 6. Let Γ = {s̃1
.
= t̃1, . . . , s̃n

.
= t̃n} be a REOSU problem with var(Γ) =

{x1, . . . , xm} such that xi : Ri for each 1 ≤ i ≤ m. Let ∆ = {Tr(s̃1)
.
= Tr(t̃1), . . . ,Tr(s̃n)

.
=

Tr(t̃n), x1 ∈ Tr(R1,Γ), . . . , xm ∈ Tr(Rm,Γ)} be a word unification problem with regular

constraints, obtained by translating Γ. Then Γ is solvable iff ∆ is solvable.

Hence, the problem of deciding solvability of REOSU has been (polynomially) reduced
to the problem of deciding solvability of WURC. Since the latter is decidable, we conclude
with the following result:

Theorem 7 (Decidability). Solvability of REOSU is decidable.

4. Conclusion

We studied unification in order-sorted theories with regular expression sorts. We showed
how it generalizes some known unification problems, proved its decidability and gave a
complete unification procedure. A regular expression order-sorted signature can be viewed
as a bottom-up finite hedge automaton. Such automata are considered to be a suitable
framework for manipulating XML data. Since our language can model, to some extent,
DTD and XML Schema, one can see a possible application (perhaps of its fragments) in
the area related to XML processing.
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