
International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 135-150
http://rewriting.loria.fr/rta/

A PROOF CALCULUS

WHICH REDUCES SYNTACTIC BUREAUCRACY

ALESSIO GUGLIELMI 1 AND TOM GUNDERSEN 2 AND MICHEL PARIGOT 3

1 University of Bath and LORIA & INRIA Nancy–Grand Est

2 LIX & INRIA Saclay–Île-de-France

3 Laboratoire PPS, UMR 7126, CNRS & Université Paris 7
E-mail address: parigot@pps.jussieu.fr

Abstract. In usual proof systems, like the sequent calculus, only a very limited way of
combining proofs is available through the tree structure. We present in this paper a logic-
independent proof calculus, where proofs can be freely composed by connectives, and prove
its basic properties. The main advantage of this proof calculus is that it allows to avoid
certain types of syntactic bureaucracy inherent to all usual proof systems, in particular the
sequent calculus. Proofs in this system closely reflect their atomic flow, which traces the
behaviour of atoms through structural rules. The general definition is illustrated by the
standard deep-inference system for propositional logic, for which there are known rewriting
techniques that achieve cut elimination based only on the information in atomic flows.

1. Introduction

One of the biggest challenges we are facing in structural proof theory, especially when
looking at computational interpretations of proof systems, is syntactic dependency: for-
malisms impose irrelevant constraints, typically an arbitrary order between operations that
are in principle independent from each other. The first explicit attempts to lower this
syntactic dependency, called ‘bureaucracy’, date back to the eighties, with the concept of
proof net for linear logic: proof nets are geometric traces of sequent-calculus proofs, which
eliminate some syntactic constraints. Proof nets have been widely studied in the past two
decades. Despite being powerful tools, they have two obvious limitations: 1) they apply
directly only to specific logics, 2) they are not ‘deductive’ and rely on the sequent calculus
for the deducing task.

1998 ACM Subject Classification: F.4.2.
Key words and phrases: Logic, Proof theory, Deep Inference, Flow graphs, Proof Systems, Open Deduc-

tion, Rewriting, Confluence, Termination.

c© A. Guglielmi, T. Gundersen, and M. Parigot
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.135

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

136 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

A typical example of two proofs in the sequent calculus that are ‘morally’ the same but
syntactically different, only because rules are applied in a different order, is the following:

⊢ a, ā ⊢ b, b̄
−−−−−−−−−−−−−−− ∧
⊢ a ∧ b, ā, b̄
−−−−−−−−−−−−−− ∨
⊢ a ∧ b, ā ∨ b̄ ⊢ c, c̄
−−−−−−−−−−−−−−−−−−−−−−−−− ∧
⊢ (a ∧ b) ∧ c, ā ∨ b̄, c̄

⊢ a, ā ⊢ b, b̄
−−−−−−−−−−−−−−− ∧
⊢ a ∧ b, ā, b̄ ⊢ c, c̄
−−−−−−−−−−−−−−−−−−−−−−−− ∧
⊢ (a ∧ b) ∧ c, ā, b̄, c̄
−−−−−−−−−−−−−−−−−−−−−− ∨
⊢ (a ∧ b) ∧ c, ā ∨ b̄, c̄

This kind of bureaucracy is present in all the usual deduction formalisms. One could
imagine that there are simple ways to remove it: for instance quotienting proofs by some
equivalence relation. However, this would not work, in particular, because logical rules are,
in general, not linear.

The approach we develop in this paper makes use of the deep-inference methodology.
Deep inference is a deduction framework (see [Gug07, BT01, Brü04]), where deduction
rules apply arbitrarily deep inside formulae, contrary to traditional proof systems like nat-
ural deduction and sequent calculus, where deduction rules only deal with their outermost
structure. The main reason to use deep inference is that it provides more freedom in de-
signing proof systems, while maintaining the proof theoretic properties of interest, first and
foremost cut elimination.

The simple principle of allowing inference to happen inside formulae leads to a natural
change in the underlying structure of proofs, where rules are unary : one premiss and
one conclusion. While proofs in usual deduction systems take the asymmetric form of a
tree, deep inference allows to have a symmetric closure operation along the top-down axis.
While sequent-calculus proofs cannot be dualised by flipping, this is always possible in deep
inference, and it logically corresponds to dualities like the De Morgan one in classical logic.

A general methodology allows to design deep-inference deduction systems having more
symmetries and finer structural properties than the sequent-calculus ones. For instance,
cut and identity become really dual of each other, whereas they are only morally so in
the sequent calculus, and all structural rules can be reduced to their atomic form, whereas
contraction can not in the sequent calculus [Brü03].

All usual logics have deep-inference deduction systems enjoying cut elimination (see
[Gug] for a complete overview). The standard proof system for propositional classical logic
in deep inference is system SKS [BT01, Brü04]. The traditional methods of cut elimination
of the sequent calculus can be adapted to a large extent to deep inference, despite having
to cope with a higher generality [BT01, Brü04]. New methods are also achievable, based on
weak computational traces of proofs called atomic flows. Atomic flows are directed acyclic
graphs extracted from proofs that can be equipped with rewrite rules representing cut-
elimination. Though being very simple (they trace only structural rules and forget logical
rules), they are strong enough to faithfully represent and control cut-elimination procedures
[GG08, Gun09], even a surprising quasipolynomial one [BGGP09].

So far, these developments have taken place inside a specific deep-inference formalism,
dubbed the calculus of structures, where proofs are sequential, i.e., chains of formulae that
are nothing else than terms in a term-rewriting chain generated by applications of unary
rules of a given proof system. This very simple setting is not particularly intuitive and suffers
from some forms of ‘syntactic bureaucracy’, like the one described before, where an irrelevant
order of the rules is imposed by the formalism: this can be immediately appreciated by
looking at the following two different proofs (that we take as logically equivalent, in some

A PROOF CALCULUS 137

unspecified logic):
A ∧B
−−−−−−−
C ∧B
−−−−−−−
C ∧D

and

A ∧B
−−−−−−−
A ∧D
−−−−−−−
C ∧D

;

this is an obvious case of independent rewriting on two terms, but the sequential notion of
proof does not allow for a canonical proof.

This paper shows that we can do better. The situation where the formalism imposes
an irrelevant order of application of two rules to two independent subformulae is called
bureaucracy of type A [Gug04a, Str09]. We define here a new formalism, called open
deduction, that contains the calculus of structures as a special case and that provides a wider
universe of proofs, where it is possible to normalise proofs into proofs where bureaucracy of
type A is absent, using a simple procedure which is confluent and terminating. We call the
proofs in this normal form synchronal. Referring to the example provided before, we have
that open deduction allows the proof

A
−−
C

∧
B
−−
D

.

In fact, the definition of open deduction is based on a very simple, alternative but equivalent
deep-inference notion to the term-rewriting one of the calculus of structures: proofs can be
composed by connectives.

It should be emphasised that open deduction is a logic-independent formalism, which
applies to all usual logics, thanks to its deep-inference foundation. Even if we are working
at a high level of abstraction, we can still prove meaningful properties. In section 2, we
exhibit a simple rewrite procedure that is confluent and terminating and that allows to
transform any derivation into one in synchronal form, which is, moreover, of smaller size.

Of course, a natural question that pops up is: what happens to cut elimination? In
particular, can we generalise the technique of atomic flows, that has been used in the
particular case of the SKS system for classical propositional logic, to open deduction? We
provide the basis of a positive answer in section 3. Thanks to deep inference, which allows
us to represent logics with rules that are either atomic or linear, we define a general notion
of atomic flows for open deduction. We show that the bureaucracy-elimination procedure
of section 2, which transforms any open-deduction derivation into a synchronal one, has an
important property: atomic flows are invariant under it.

In section 4, we restrict to system SKS for classical propositional logic and show that
the rewrite rules of atomic flows, which are known to be sound with respect to sequential
and synchronal derivations, are also sound with respect to open deductions in general. This
means, in particular, that open-deduction cut elimination can be controlled by atomic flows
the same way calculus-of-structures cut elimination is.

2. The Open Deduction Formalism

In this section, we present the open deduction formalism in a logic-independent way
and illustrate it with the standard formalisation of propositional classical logic in deep
inference. We define a canonical form of open deductions, called synchronal, which is free
of the bureaucracy of type A described in the introduction. We prove that there is a

138 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

simple confluent and terminating rewriting procedure which transforms an arbitrary open
deduction into a synchronal one.

Definition 2.1. We have the following mutually disjoint, countable sets:

• the set of atoms A, whose elements are denoted by a, b, c and d (possibly with
subscripts);

• for each m < ω and n < ω, the set Rm,n of logical relations of positive arity m and
negative arity n; we denote by R, the set

⋃

m,n≥0Rm,n of all logical relations; the

elements of R are denoted by r (possibly with subscripts) and dedicated symbols
for usual logical relations; the logical relations of positive and negative arity 0 are
called logical constants.

Comment 1. The intended meaning of the positive and negative arities is that the fol-
lowing holds in the deduction system under consideration: if r is a logical relation of
Rm,n and for each i ≤ n + m, the formula Bi is deducible from the formula Ai then
r(B1, . . . , Bn, An+1, . . . , An+m) is deducible from r(A1, . . . , An, Bn+1, . . . , Bn+m) . The def-
inition of derivation we will take in this paper ensures this property.
The connectives ∧ and ∨ of classical logic are in R2,0, → is in R1,1 and ¬ is in R0,1.
It should be noted that there are also connectives of classical logic that do not satisfy the
required property, for instance ↔, but they can always be defined from connectives that do.

Definition 2.2. Let a set of logical relations R =
⋃

m,n≥0Rm,n, where Rm,n ⊆ Rm,n, be
given.

(1) The set FR of formulae, denoted by A, B, C and D (possibly with subscripts), is
defined inductively by:
(a) A ⊆ FR;
(b) FR is closed by logical relation composition: if r ∈ Rm,n and A1, . . . , Am+n ∈

FR, then r(A1, . . . , Am+n) ∈ FR.
(2) The set DR of prederivations, denoted by Φ and Ψ (possibly with subscripts), is

defined inductively by :
(a) A ⊆ DR;
(b) DR is closed by logical relation composition: if r ∈ Rm,n and Φ1, . . . ,Φm+n ∈

DR, then r(Φ1, . . . ,Φm+n) ∈ DR; and

(c) DR is closed by inference composition: if Φ1,Φ2 ∈ DR then
Φ1
−−−
Φ2

∈ DR.

Inference composition is supposed to be associative.
(3) The premiss and conclusion functions pr, cn : DR → FR are defined inductively as

follows:
(a) if Ψ ∈ A, then prΨ = cnΨ = Ψ;
(b) if r ∈ R and Ψ = r(Φ1, . . . ,Φm,Φ

′
1, . . . ,Φ

′
n), then

prΨ = r(prΦ1, . . . , prΦm, cnΦ
′
1, . . . , cnΦ

′
n) and

cnΨ = r(cnΦ1, . . . , cnΦm, prΦ
′
1, . . . , prΦ

′
n) ; and

(c) if Ψ =
Φ1
−−−
Φ2

, then prΨ = prΦ1 and cnΨ = cnΦ2.

(4) The sets of positive contexts and negative contexts are defined inductively as follows:
(a) { } is a positive context;

A PROOF CALCULUS 139

(b) if r ∈ Rm,n, k ≤ m, Ak is a positive (resp. negative) context and for each i 6= k,
Ai is a formula, then r(A1, . . . , Am+n) is a positive (resp. negative) context;

(c) if r ∈ Rm,n, m < k ≤ m+ n, Ak is a positive (resp. negative) context and for
each i 6= k, Ai is a formula, then r(A1, . . . , Am+n) is a negative (resp. positive)
context.

Contexts are denoted K{ }. We use K+{ } and K−{ } when we need to specify the
polarity of the context.

The size |Ψ| of a prederivation (or formula or context) Ψ is the number of occurrences of
atoms and logical relations in it.

Comment 2. Prederivations in open deduction have a natural planar representation where
the inference composition is represented vertically and the logical relation composition is
represented horizontally (see example 2.4)

Notation 1. For typographic convenience, inference composition of two prederivations Φ1

and Φ2 is also denoted by Φ1|Φ2. A prederivation Φ with prΦ = A and cnΦ = B is denoted
Φ : A→ B and represented in figures by

A
Φ
∥

∥
∥

B
.

Example 2.3. Classical propositional logic.

• The logical relations are:
– disjunction ∨ and conjunction ∧ which are in R2,0;
– negation ¬ is which is in R0,1;
– logical constants, f (false) and t (true), which are in R0,0.

• In the usual presentation of classical propositional logic, the SKS system, negation
is not taken as a primitive connective, but defined by duality from its atomic case.
The negation of an atom a is denoted ā. The disjunction and conjunction of two
formulae A and B are denoted respectively [A ∨B] and (A ∧B): the different brack-
ets have the only purpose of improving legibility. We usually omit external brackets
of formulae and sometimes we omit superfluous brackets under associativity. Ex-
ample of formulae are b ∧ [a ∨ c] and ¬ [a ∨ b] ∧ [a ∨ c]. An example of context K{ }
is b ∧ [{ } ∨ c]; in this case K{a} is b ∧ [a ∨ c], K{b} is b ∧ [b ∨ c] and K{a ∧ d} is
b ∧ [(a ∧ d) ∨ c].

Example 2.4. The prederivation






a1
−−
a2
−−
a3

∧ a4







∨ ¬







(

a6
−−
a5

∧ a7

)

−−−−−−−−−−−−
a8

∨ a9






.

has (a1 ∧ a4) ∨ ¬ [a8 ∨ a9] as premiss and (a3 ∧ a4) ∨ ¬ [(a6 ∧ a7) ∨ a9] as conclusion.

Notation 2. If K{ } is a context and Φ a prederivation, we denote by K{Φ} the pred-
erivation obtained by putting Φ in place of the hole in K{ }. For example,

if K{ } is b ∧ [{ } ∨ c] and Φ is

(

a6
−−
a5

∧ a7

)

, then K{Φ} is b ∧

[(

a6
−−
a5

∧ a7

)

∨ c

]

.

140 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

Definition 2.5. Given two prederivations Φ1 : A → B and Φ2 : B → C, the composition
of Φ1 and Φ2 , denoted Φ1; Φ2 : A→ C, is a prederivation defined inductively as follows:

• if Φ1 ∈ A then Φ1; Φ2 = Φ2,

• if Φ1 =
Φ′
1

−−−
Φ′′
1

then Φ1; Φ2 =
Φ′
1

−−−−−−−
Φ′′
1; Φ2

• if Φ1 = r(Φ1
1, . . . ,Φ

1
n,Φ

1
m+1, . . .Φ

1
m+n) with r ∈ Rn,m, then

– if Φ2 =
Φ′
2

−−−
Φ′′
2

then Φ1; Φ2 =
Φ1; Φ

′
2

−−−−−−−
Φ′′
2

– if Φ2 = r(Φ2
1, . . . ,Φ

2
n,Φ

2
n+1, . . .Φ

2
n+m) then

Φ1; Φ2 = r(Φ1
1; Φ

2
1, . . . ,Φ

1
n; Φ

2
n,Φ

2
n+1; Φ

1
n+1, . . . ,Φ

2
n+m; Φ1

n+m)

Lemma 2.6. The composition of two prederivations is well defined: the definition is com-
patible with associativity of inference composition. Moreover, though being given by an
asymmetric double induction, the composition of two prederivations Φ1 and Φ2 is symmet-
ric in the sense that:

• Φ; a = a; Φ = Φ (and more generally Φ;A = A; Φ = Φ); and
• (Φ1|Φ2); Ψ = Φ1|(Φ2; Ψ) and Φ; (Ψ1|Ψ2) = (Φ;Ψ1)|Ψ2.

Notation 3. For typographic convenience, composition of two prederivations Φ1 : A → B
and Φ2 : B → C is represented in figures by

Φ1.....
Φ2

.

Lemma 2.7. |Φ1; Φ2| = |Φ1|+ |Φ2| − | cnΦ1|.

Lemma 2.8. Composition of prederivations is associative.

Proposition 2.9. Given any two prederivations Φ and Ψ, we have: Φ|Ψ = Φ; (cnΦ| prΨ);Ψ.

Proof. By the previous lemmas, we have:
Φ|Ψ = (Φ; cnΦ)|(prΨ;Ψ) = Φ; (cnΦ|(prΨ;Ψ)) = Φ; ((cnΦ| prΨ);Ψ) = Φ; (cnΦ| prΨ);Ψ.

Comment 3. The previous proposition states an important property: any prederivation
can be ‘decomposed’ in such a way that inference composition only applies to formulae.

Definition 2.10. An basic inference step ρ is an inference composition
A
−−
B
, where A and

B are formulae called premiss and conclusion, respectively: it is denoted
A

ρ −−
B

or A|ρB. In

concrete deduction systems, the set of basic inference steps is generated by a (finite) set
of inference rules (with names for arbitrary atoms and formulae) from which the inference
steps are instances.

If ρ is a basic inference step
A
−−
B
, then the flipped basic inference step

B
−−
A

is denoted ρ⊥,

where ·⊥ is an involution on the set of inference steps, i.e. (ρ⊥)⊥ = ρ. If S is a set of basic
inference steps, then S⊥ is the set of basic inference steps (ρ⊥) for ρ ∈ S.

A PROOF CALCULUS 141

If K{ } is a positive (resp. negative) context and ρ is the basic inference step
A
−−
B
, then

we denote by K{ρ} the inference step
K{A}
−−−−−−−
K{B}

(resp.
K{B}
−−−−−−−
K{A}

).

The concept of derivation is obtained from the one of prederivation by restricting the
inference composition to given inference steps.

Definition 2.11. Let a set of relations R and a set of basic inference steps S be given. The
set DR,S of S-derivations is defined inductively by

(1) A ⊆ DR;
(2) if r ∈ Rm,n and Φ1, . . . ,Φm+n ∈ DR, then Ψ = r(Φ1, . . . ,Φm+n) ∈ DR;

(3) if Φ1,Φ2 ∈ DR,S then
Φ1
−−−
Φ2

∈ DR,S if there exists a context K{ } and a basic inference

step ρ from S such that
cnΦ1
−−−−−−
prΦ2

is the inference step K{ρ}.

Notation 4. An inference composition of Φ1 and Φ2 is denoted
Φ1

K{ρ} −−−
Φ2

or Φ1|K{ρ}Φ2,

where K{ρ} is the inference step
cnΦ1
−−−−−−
prΦ2

. A S-derivation Φ : A→ B is denoted
A

Φ
∥

∥
∥S

B
.

When it is clear from the context, we use the term derivations instead of S-derivations and
omit S from the notation.

Definition 2.12. We define two canonical forms of S-derivations:

(1) the set of sequential S-derivations is the set of S-derivations where, in case (2) of
Definition 2.11, Φ1, . . . ,Φn+m are formulae.

(2) the set of synchronal S-derivations is the set of S-derivations where, in case (3) of
Definition 2.11, K{ } = { }, i.e. inference composition is restricted to basic inference
steps.

Comment 4. Sequential derivations are the usual derivation of the calculus of structures.
Synchronal derivations are derivations which are free of the type A bureaucracy described
in the introduction (see example 2.15).

Lemma 2.13. If Φ1 and Φ2 are S-derivations (resp. sequential S-derivations, synchronal
S-derivations), then Φ1; Φ2 is a S-derivation (resp. sequential S-derivation, synchronal
S-derivation).

Example 2.14. The system SKS for classical propositional logic.
The set S of basic inference steps is the set of instances of the inference rules given below.
The (usual) deep inference derivations of SKS are the sequential S-derivations.

142 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

Structural inference rules:

t
ai↓ −−−−−
a ∨ ā

f
aw↓ −−

a

a ∨ a
ac↓ −−−−−

a

identity (interaction) weakening contraction

a ∧ ā
ai↑ −−−−−

f

a
aw↑ −−

t

a
ac↑ −−−−−

a ∧ a

cut (cointeraction) coweakening cocontraction

,

Logical inference rules:

A ∧ [B ∨ C]
s −−−−−−−−−−−−−
(A ∧B) ∨ C

(A ∧B) ∨ (C ∧D)
m −−−−−−−−−−−−−−−−−−−−

[A ∨ C] ∧ [B ∨D]

switch medial

.

In addition to these two rules, there are equality rules
C

= −−
D
, for C and D in opposite sides

in one of the following equations:

A ∨B = B ∨A A ∨ f = A

A ∧B = B ∧A A ∧ t = A

[A ∨B] ∨ C = A ∨ [B ∨ C] t ∨ t = t

(A ∧B) ∧ C = A ∧ (B ∧ C) f ∧ f = f

. (2.1)

Comment 5. The SKS system shows an important property of deep inference formalism
that we will use in the next section. The rules are of one of the two following kinds:

• atomic rules: only one atom name appears and no formula name appears.
• linear rules: each atom or formula name which appears in the premiss (resp. con-
clusion) appears exactly once in the conclusion (resp. premiss)

Example 2.15. We give here an example of a sequential derivation in SKS and its corre-
sponding synchronal form.

(a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
m −−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ b) ∨ (a ∧ b)] ∧ [c ∨ c]

ac↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ b) ∨ (a ∧ b)] ∧ c

m −−−−−−−−−−−−−−−−−−−−−−
[a ∨ a] ∧ [b ∨ b] ∧ c

ac↓ −−−−−−−−−−−−−−−−−−−−
a ∧ [b ∨ b] ∧ c

ac↓ −−−−−−−−−−−−−−
a ∧ b ∧ c

(a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(a ∧ b) ∨ (a ∧ b)
m −−−−−−−−−−−−−−−−−

a ∨ a
−−−−−
a

∧
b ∨ b
−−−−−
b

∧
c ∨ c
−−−−−
c

One can see on this example that the size of the synchronal derivation is smaller than the
size of the sequential one.

Definition 2.16. (1) A synchronisation redex is an inference composition
Φ1

K{ρ} −−−
Φ2

where

K{ } 6= { }. Note that thanks to proposition 2.9, a synchronisation redex can always be
written Φ1; (cnΦ1|K{ρ}

prΦ2); Φ2.

(2) The contractum of a synchronisation redex Φ1; (cnΦ1|K{ρ}
prΦ2); Φ2 is Φ1;K{C|ρD}; Φ2,

where C and D are the premiss and conclusion of the inference step ρ.

A PROOF CALCULUS 143

(3) The synchronisation reduction
sync
→ on DR,S is defined by: Φ

sync
→ Ψ iff Ψ is obtained

from Φ by replacing a synchronisation redex by its contractum.

Lemma 2.17. If Φ is a redex and Ψ its contractum, then |Ψ| < |Φ|.

Proof. Let Φ = Φ1; (cnΦ1|K{ρ}
prΦ2); Φ2 be a redex and Ψ = Φ1;K{C|ρD}; Φ2 its contrac-

tum. We have |K{C|ρD}| = |K{ }|+ |C|+ |D|. By Lemma 2.7 we then have

|Ψ| = |Φ1|+ |K{ }|+ |C|+ |D|+ |Φ2| − |K{C}| − |K{D}| = |Φ1|+ |Φ2| − |K{ }| < |Φ|

Theorem 2.18. The synchronisation reduction is confluent and terminating. Moreover,
each derivation reduces in a number of steps less than its size to its normal form which is
a synchronal derivation.

Proof.
sync
→ is terminating because of Lemma 2.17. We show that

sync
→ is locally confluent.

Consider a derivation Ψ with two synchronisation redexes r1 and r2. Let Φ the smallest
subderivation of Ψ which contains r1 and r2. There are two cases:
(1) Φ = r(Φ1, . . . ,Φi, . . . ,Φj , . . . ,Φ1) with r1 in Φi, r2 in Φj and i 6= j. Then the order of
reduction of the two redexes obviously doesn’t matter.
(2) Φ = Φ1|ρΦ2. Then one of the following holds:

• One redex is in Φ1 and the other in Φ2. Then the order of reduction of the two
redexes obviously doesn’t matter.

• Φ is one of the redexes and the other one is in Φ1 or Φ2. Suppose for exam-
ple that Φ = r1 and r2 is in Φ1. Thanks to proposition 2.9, we can write Φ as
Φ1; (cnΦ1|K{ρ}

prΦ2); Φ2. If the result of reducing r2 in Φ1 is Φ′
1, then the result of

reducing both redexes in any order is Φ′
1;K{C|ρD}; Φ2.

The fact that a normal form is a synchronal derivation directly follows from definition 2.12.

Comment 6. The reduction of a redex doesn’t create any new redex. As a consequence,
one can obtain the synchronal form by reducing all the redexes in parallel.

Example 2.19. We show here how the sequential derivation in Example 2.15 can be rewrit-

ten to the synchronal derivation in the same example by several applications of the
sync
→

rewriting. The sequential derivation is written as a composition of inference steps, which is

possible by 2.9, before the
sync
→ rewriting is applied in parallel.

144 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

(a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
m −−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ b) ∨ (a ∧ b)] ∧ [c ∨ c]
...
[(a ∧ b) ∨ (a ∧ b)] ∧ [c ∨ c]

ac↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ b) ∨ (a ∧ b)] ∧ c
......................................
[(a ∧ b) ∨ (a ∧ b)] ∧ c

m −−−−−−−−−−−−−−−−−−−−−−
[a ∨ a] ∧ [b ∨ b] ∧ c
..................................
[a ∨ a] ∧ [b ∨ b] ∧ c

ac↓ −−−−−−−−−−−−−−−−−−−−
a ∧ [b ∨ b] ∧ c
........................
a ∧ [b ∨ b] ∧ c

ac↓ −−−−−−−−−−−−−−
a ∧ b ∧ c

sync
→

⋆

(a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
m −−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ b) ∨ (a ∧ b)] ∧ [c ∨ c]
...

[(a ∧ b) ∨ (a ∧ b)] ∧
c ∨ c
−−−−−
c

...
(a ∧ b) ∨ (a ∧ b)

m −−−−−−−−−−−−−−−−−
[a ∨ a] ∧ [b ∨ b]

∧ c

..
a ∨ a
−−−−−
a

∧ [b ∨ b] ∧ c

....................................

a ∧
b ∨ b
−−−−−
b

∧ c

= =

(a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
m −−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ b) ∨ (a ∧ b)] ∧ [c ∨ c]

ac↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ b) ∨ (a ∧ b)] ∧ c

m −−−−−−−−−−−−−−−−−−−−−−
[a ∨ a] ∧ [b ∨ b] ∧ c

ac↓ −−−−−−−−−−−−−−−−−−−−
a ∧ [b ∨ b] ∧ c

ac↓ −−−−−−−−−−−−−−
a ∧ b ∧ c

(a ∧ b ∧ c) ∨ (a ∧ b ∧ c)
m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(a ∧ b) ∨ (a ∧ b)
m −−−−−−−−−−−−−−−−−

a ∨ a
−−−−−
a

∧
b ∨ b
−−−−−
b

∧
c ∨ c
−−−−−
c

.

Definition 2.20. Given a derivation Φ, we denote the normal form of Φ with respect to
sync
→ by sync(Φ).

Lemma 2.21. sync(Φ;Ψ) = sync(Φ); sync(Ψ).

Proof. We proceed by structural induction on Φ:

• the base case is trivial;
• sync((Φ1|K{ρ}Φ2); Ψ)
= sync(Φ1|K{ρ}(Φ2; Ψ))
= sync(Φ1); sync(cnΦ1|K{ρ}

prΦ2); sync(Φ2; Ψ)

= sync(Φ1); sync(cnΦ1|K{ρ}
prΦ2); sync(Φ2); sync(Ψ)

= sync(Φ); sync(Ψ);
• when Φ = r(Φ1, . . . ,Φn), we proceed by structural induction on Ψ

– if Ψ = Ψ1|Ψ2 we argue similarly to the previous case;
– if Ψ = r(Ψ1, . . . ,Ψn), we have that

sync(Φ;Ψ) = r(sync(Φ1; Ψ1), . . . , sync(Φn; Ψn)) = sync(Φ); sync(Ψ).

3. Atomic Flows

We now introduce a special kind of directed acyclic graphs, called atomic flows. Atomic
flows associated with classical propositional derivations have been used to describe their
normal forms, to define normalisation procedures on derivations and to prove properties

A PROOF CALCULUS 145

of these procedures. The atomic flow associated with a derivation represents the causal
relationship between the creation and destruction of atoms in the derivation.

In this section we show that atomic flows can be associated with derivations in a logic-
independent way, given certain very mild assumptions about the inference rules we use. We

then show that atomic flows are invariants of the rewriting
sync
→ .

We first define atomic flows independently of derivations and deductive systems.

Definition 3.1. An atomic flow is a directed, acyclic graph (V,E, up, lo), such that

• V is a set of vertices and E a set of edges ;
• up: E → V ∪ {⊤} and lo : E → V ∪ {⊥} are, respectively, the upper and lower
maps, where ⊤,⊥ 6∈ V and ⊤ 6= ⊥.

Atomic flows are denoted by φ and ψ (possibly with subscripts).
For every ν ∈ V ∪ {⊤,⊥}, we define the set Lν = { ǫ | up(ǫ) = ν } of lower edges of ν, the
set Uν = { ǫ | lo(ǫ) = ν } of upper edges of ν, and the set Eν = Lν ∪ Uν of edges of ν.
For an atomic flow φ, we call the set Uφ = L⊤ (resp., Lφ = U⊥) the upper (resp., lower)
edges of φ.

We can compose atomic flows similarly to how we compose derivations, and later we
will see that the two notions work nicely together. We compose atomic flows by pairwise
‘identifying’ lower edges of one with upper edges of the other, according to a given one-to-one
correspondence between the two.

Definition 3.2. Let φ1 = (V1, E1, up1, lo1), φ2 = (V2, E2, up2, lo2) be two atomic flows and
f a bijection from a subset U ′

φ2
of Uφ2

to a subset L′
φ1

of Lφ1
. The composition φ1;f φ2 of

φ1 and φ2 with respect to f is the flow (V,E, up, lo) defined as follows:

• the set of vertices V is the disjoint union of V1 and V2;
• the set of edges E is the disjoint union of E1 and E2, minus Lφ1

;
• the up and lo maps of φ;f ψ are inherited from the correspondind maps of φ1 and
φ2 in the obvious way, except that, for every ǫ ∈ U ′

φ2
, we have up(ǫ) = up1(f(ǫ)).

Atomic flows are top-down symmetric, and in the same way that derivations are ‘flipped’
in a negative context, we might also want to ‘flip’ atomic flows. We now define the flipping
operation.

Definition 3.3. The flipping operator ·⊥ on atomic flows is defined as follows: if φ =
(V,E, up, lo) an atomic flow, then φ⊥ is the atomic flow (V,E, up⊥, lo⊥) where, for every

ǫ ∈ E, if up(ǫ) = ⊤ (resp., lo(ǫ) = ⊥), then up⊥(ǫ) = ⊥ (resp., lo⊥(ǫ) = ⊤), otherwise

up⊥(ǫ) = lo(ǫ) (resp., lo⊥(ǫ) = up(ǫ)).

In deep inference most common logics can be expressed using only atomic and linear
inference rules. In that case, we are able to separate the logical from the structural content
of derivations, and atomic flows represent the structural content.

For the rest of this section we fix a set of logical relations R and a set of of basic
inference steps S = Sa ∪ Sl, where Sa is a set of instances of atomic rules, Sl is a set of
instances of linear rules.

Atomic flow associated to a derivation

Intuitively, every vertex of the atomic flow corresponds to an atomic inference rule or
its converse, and its incident edges to the atom occurrences of this inference rule.

146 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

If Φ is a derivation, then oc(Φ) is the set of occurrences of atoms in Φ. We de-
fine in the following the enriched atomic flow (fl(Φ), f⊤Φ , f

⊥
Φ) of a derivation Φ ∈ DR,S ,

where fl(Φ) is an atomic flow called the atomic flow of Φ and f⊤Φ : oc(pr(Φ)) → Ufl(Φ) and

f⊥Φ : oc(cn(Φ)) → Lfl(Φ) are bijections relating the upper (resp. lower) edges of the flow to
the atom occurrences of the premiss (resp. conclusion) of the derivation.

(1) The enriched atomic flow (fl(a), f⊤a , f
⊥
a) of an atom a is defined as follows: fl(a) is

the flow consisting of no vertex and one edge, and f⊤a = f⊥a is the bijection mapping
the atom to the edge.

(2) The enriched atomic flow (fl(Φ), f⊤Φ , f
⊥
Φ) of a derivation Φ = r(Φ1, . . . ,Φm,Φ

′
1, . . . ,Φ

′
n)

with r ∈ Rm,n is defined as follows: fl(Φ) is the disjoint union of fl(Φ1), . . . , fl(Φm),

fl(Φ′
1)

⊥, . . . , fl(Φ′
n)

⊥ and f⊤Φ (resp., f⊥Φ) is the disjoint union of f⊤Φ1
, . . . , f⊤Φm

, f⊥Φ′
1

,

. . . , f⊥Φ′
n
(resp., f⊥Φ1

, . . . , f⊥Φm
, f⊤Φ′

1

, . . . , f⊤Φ′
n
)

(3) The enriched atomic flow (fl(ρ), f⊤Φ , f
⊥
Φ) of a basic inference step ρ is defined as

follows:
• If ρ is an instance C|D of a linear rule, then fl(ρ) = fl(C), f⊤ρ = f⊤C and

f⊥ρ = g ◦ f⊥C , where g is the bijection between the occurrences of atoms in D
and the corresponding occurrences in C, which exits thanks to the linearity of
the rule.

• If ρ is an instance C|D of an atomic rule, then fl(ρ) = ({v}, Ufl(C)+Lfl(D), up, lo),
where up and lo are defined as follows:

– up(e) is v, if e ∈ Ufl(C) and ⊤, otherwise.
– lo(e) is v, if e ∈ Lfl(D) and ⊥, otherwise.

The flow φ is enriched by taking f⊤ρ = f⊤C and f⊥ρ = f⊥D .

(4) The enriched atomic flow (fl(Φ), f⊤Φ , f
⊥
Φ) of a derivation Φ = Φ1|K{ρ}Φ2 is defined

as follows. Suppose that ρ is C|D . We write Φ as Φ1;K{C}|K{D}; Φ2 if K{ } is
positive and Φ as Φ1;K{D}|K{C}; Φ2 if K{ } is negative. We then obtain the flow
of Φ by composing the flows of the compound derivations:

• fl(Φ) = fl(Φ1);g fl(K{C|D});h fl(Φ2), where g = f⊥Φ1
◦ (f⊤

fl(K{C|D}))
−1 and h =

f⊥
fl(K{C|D}) ◦ (f

⊤
Φ2
)−1 ;

• f⊤Φ = f⊤Φ1

• f⊥Φ = f⊥Φ2

Examples of atomic flows associated to derivations

We consider atomic flows for classical propositional derivations in SKS [GG08].
We first give the atomic flows associated to the basic inference steps associated to

structural rules of SKS, from which the flows of all the SKS derivations are build. Vertices
corresponding to the structural rules are represented by three different symbols (,
and) and their incident edges (represented by vertical lines) correspond to the atom
occurrences of the rules. The labels of the occurrences of atoms are also indicated on the
edges they correspond to, in order to ease the reading.

A PROOF CALCULUS 147

t
ai↓ −−−−−−−−
a1 ∨ ā2

→ 1 2

f
aw↓ −−

a1
→ 1

a1 ∨ a2
ac↓ −−−−−−−−

a3
→

1 2

3

a1 ∧ ā2
ai↑ −−−−−−−−

f
→ 1 2

a1
aw↑ −−

t
→ 1

a3
ac↑ −−−−−−−−

a1 ∧ a2
→

1 2

3

Here is now the example of a flow associated to a general inference step, which consist of
an application of a basic inference step in a context. The context creates edges not related
to vertices.

a1 ∧
[

b2 ∨
[

a3 ∨ a4
]]

ac↓ −−−−−−−−−−−−−−−−−−−−−−−
a1 ∧

[

b2 ∨ a5
] →

1 2 3 4

5
.

We finally give the example of a flow associated to to a sequential derivation.

(

a1 ∧
[

ā3 ∨ t
])

∧ ā8
ai↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(

a1 ∧
[

ā3 ∨
[

ā4 ∨ a5
]])

∧ ā8
= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(

a1 ∧
[[

ā3 ∨ ā4
]

∨ a5
])

∧ ā8
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[(

a1 ∧
[

ā3 ∨ ā4
])

∨ a5
]

∧ ā8
ac↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[(

a1 ∧ ā2
)

∨ a5
]

∧ ā8
ai↑ −−−−−−−−−−−−−−−−−−−−−−−[

f ∨ a5
]

∧ ā8
= −−−−−−−−−−−−−−

a5 ∧ ā8
ac↑ −−−−−−−−−−−−−−−−(

a6 ∧ a7
)

∧ ā8
= −−−−−−−−−−−−−−−−
a6 ∧

(

a7 ∧ ā8
)

ai↑ −−−−−−−−−−−−−−−−
a6 ∧ f

→

31 8

4

2 7

5

6

By design the composition of flows and the composition of derivations work together
as expected:

Lemma 3.4. For any atomic flows Φ: A → B and Ψ: B → C, we have that fl(Φ;Ψ) =
fl(Φ);f⊥

Φ
◦(f⊤

Ψ
)−1 fl(Ψ).

Atomics flows have been defined for sequential derivations in [GG08] and for synchronal
derivations in [Gun09], in the case of classical propositionnal derivations in SKS. We now
show that the two notions coincide in general, and that atomic flows are in fact invariants

of the
sync
→ rewriting.

Theorem 3.5. If Φ
sync
→ Ψ, then fl(Φ) = fl(Ψ).

Sketch of proof. We first remark that fl(K{A′}|K{ρ}K{B′}) = fl(K{A′|ρB
′}). It then fol-

lows by the previous lemma that the flow of a synchronisation redex is the same as the flow
of its contractum. The result is obtained by checking that the flow of a derivation is the
same as the flow of the result of replacing a synchronisation redex by its contractum.

148 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

Example 3.6. The sequential derivation on the left reduces to the synchronal derivation
on the right, and they both have the atomic flow in the middle, where the correspondence
between atom occurrences and edges is indicated by colours:

(a ∧ [ā ∨ t]) ∧ ā
ai↓ −−−−−−−−−−−−−−−−−−−−−−

(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā
= −−−−−−−−−−−−−−−−−−−−−−
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s −−−−−−−−−−−−−−−−−−−−−−
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓ −−−−−−−−−−−−−−−−−−−−−−
[(a ∧ ā) ∨ a] ∧ ā

ai↑ −−−−−−−−−−−−−−−−−
[f ∨ a] ∧ ā

= −−−−−−−−−−
a ∧ ā

ac↑ −−−−−−−−−−−
(a ∧ a) ∧ ā

= −−−−−−−−−−−
a ∧ (a ∧ ā)

ai↑ −−−−−−−−−−−
a ∧ f

















a ∧

[

ā ∨
t

−−−−−
ā ∨ a

]

s −−−−−−−−−−−−−−−−−−−−−−

a ∧
ā ∨ ā
−−−−−
ā

−−−−−−−−−−−
f

∨
a

−−−−−
a ∧ a

∧ ā

















= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a ∧
a ∧ ā
−−−−−
f

.

4. Atomic Flow Rewriting

We now give an example of the use of atomic flows with respect to the system SKS

for propositional classical logic. We define reductions on flows and then we show how they
can be lifted to derivations. This has been done for sequential derivations in [GG08] and
for synchronal derivations in [Gun09]: here we show that the reductions on synchronal

derivations correspond exactly to reductions on sequential derivations modulo
sync
→ .

Definition 4.1. We define graphical expressions of the kind r : φ′ → ψ′, where r is a name
and φ′ and ψ′ are flows:

w↓-i↑ : → i↓-w↑ : →

w↓-c↑ : → c↓-w↑ : →

w↓-w↑ : → c↓-c↑ : →

c↓-i↑ : → i↓-c↑ : →

.

Definition 4.2. For every expression r : φ′ → ψ′ from Definition 4.1, the reduction →r is
defined, such that φ →r ψ if and only if φ′ is a subflow in φ and we obtain ψ by replacing
φ′ with ψ′ in φ, while respecting the correspondence of edges.

Theorem 4.3. For each r ∈ {w↓-i↑, i↓-w↑,w↓-c↑, c↓-w↑,w↓-w↑, c↓-c↑, c↓-i↑, i↓-c↑} and ev-
ery SKS-derivation (resp., synchronal or sequential SKS-derivation) Φ: A → B and every
atomic flow ψ, such that fl(Φ) →r ψ; there exists an SKS-derivation (resp., synchronal or
sequential SKS-derivation) Ψ: A→ B with flow ψ.

A PROOF CALCULUS 149

Proof. We consider the case for c↓-c↑, the other cases can be proven similarly. Assuming
fl(Φ) contains

• ,

let every atom occurrence a in Φ that is mapped to the edge labelled with • be labelled a•.

By Proposition 2.9 Φ must contain the two subderivations Φ′ = Φ′
1;

(

K1 [a ∨ a]
ac↓ −−−−−−−−−−−

K1{a
•}

)

; Φ′
2

and Φ′′ = Φ′′
1;

(

K2{a
•}

ac↑ −−−−−−−−−−−
K2 (a ∧ a)

)

; Φ′′
2.

If Φ is synchronal, we have that K1{ } = K2{ } = { } and we define

Ψ̂′ =

[

a
−−−−−
a ∧ a

∨
a

−−−−−
a ∧ a

]

m −−−−−−−−−−−−−−−−−−
[a ∨ a] ∧ [a ∨ a]

and Ψ̂′′ =

(

a ∨ a
−−−−−
a

∧
a ∨ a
−−−−−
a

)

.

Otherwise, we define

Ψ̂′ =

K1 [a ∨ a]
ac↑ −−−−−−−−−−−−−−−−−

K1 [(a ∧ a) ∨ a]
ac↑ −−−−−−−−−−−−−−−−−−−−−−−

K1 [(a ∧ a) ∨ (a ∧ a)]
m −−−−−−−−−−−−−−−−−−−−−−−
K1 ([a ∨ a] ∧ [a ∨ a])

and Ψ̂′′ =

K2 ([a ∨ a] ∧ [a ∨ a])
ac↓ −−−−−−−−−−−−−−−−−−−−−−

K2 ([a ∨ a] ∧ a)
ac↓ −−−−−−−−−−−−−−−−−

K2 (a ∧ a)

.

Finally, we define

Ψ′ = Φ′
1; Ψ̂

′; Φ′
2{a

•/ ([a ∨ a] ∧ [a ∨ a])} and Ψ′′ = Φ′′
1{a

•/ ([a ∨ a] ∧ [a ∨ a])}; Ψ̂′′; Φ′′
2 .

This allows us to obtain the derivation Ψ: A→ B with the required atomic flow from Φ, by
simultaneously applying the substitution {a•/ ([a ∨ a] ∧ [a ∨ a])}, replacing Φ′ with Ψ′, and
replacing Φ′′ with Ψ′′.

Definition 4.4. Given r ∈ {w↓-i↑, i↓-w↑,w↓-c↑, c↓-w↑,w↓-w↑, c↓-c↑, c↓-i↑, i↓-c↑}, an SKS-
derivation Φ, a flow ψ, such that fl(Φ) →r ψ, and the SKS-derivation Ψ constructed in the
proof of Theorem 4.3, we write Φ →r Ψ.

Theorem 4.5. Given SKS-derivations Φ1 and Φ2, such that sync(Φ1) = sync(Φ2), then if
Φ1 →r Ψ1 and Φ2 →r Ψ1 for some r ∈ {w↓-i↑, i↓-w↑,w↓-c↑, c↓-w↑,w↓-w↑, c↓-c↑, c↓-i↑, i↓-c↑},
we have sync(Ψ1) = sync(Ψ2).

Sketch of proof. We sketch the proof for r = c↓-c↑, the other cases can be proved similarly:
The result follows by Lemma 2.21 and the fact that

K1 [a ∨ a]
−−−−−−−−−−−−−−−−−
K1 [(a ∧ a) ∨ a]

−−−−−−−−−−−−−−−−−−−−−−−
K1 [(a ∧ a) ∨ (a ∧ a)]
−−−−−−−−−−−−−−−−−−−−−−−
K1 ([a ∨ a] ∧ [a ∨ a])

sync
→

⋆
K1











a
−−−−−
a ∧ a

∨
a

−−−−−
a ∧ a

−−−−−−−−−−−−−−−−
[a ∨ a] ∧ [a ∨ a]











and

K2 ([a ∨ a] ∧ [a ∨ a])
−−−−−−−−−−−−−−−−−−−−−−
K2 ([a ∨ a] ∧ a)
−−−−−−−−−−−−−−−−−
K2 (a ∧ a)

sync
→

⋆
K2

(

a ∨ a
−−−−−
a

∧
a ∨ a
−−−−−
a

)

.

150 A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

5. Conclusions

We have seen, in this paper, that we can reduce the syntactic bureaucracy of proof
systems using a logic-independent formalism, without sacrificing the usual proof-theoretic
tools and properties like cut-elimination and complexity. We eliminate ‘type A’ bureaucracy,
i.e., the irrelevant order of application of two rules to two independent subformulae [Gug04a].

The formalism here introduced, called open deduction, generalises the calculus of struc-
tures, which in turn generalises the sequent calculus and natural deduction. This generality
does not claim a price on the naturalness of the formalism: it simply extends to proofs the
structure of formulae, that is only partly used in the sequent calculus.

However, the necessary technology to deal with cut elimination is not trivial, and only
now we are in a position to deal with it, relying on recent developments of the calculus of
structures. This paper shows that if we can normalise a proof in the calculus of structures,
then we can eliminate its bureaucracy in open deduction. Moreover, since the atomic flow
of proofs is invariant under bureaucracy elimination, we can start developing atomic-flow-
based cut elimination directly in open deduction.

In a forthcoming paper, we will define an even more general formalism, containing open
deduction and eliminating a further type of bureaucracy, namely the irrelevant order of ap-
plication of two rules to two nested subformulae. This is dubbed ‘type B’ bureaucracy in
[Gug04b]. The reason to separate, at this stage, open deduction and its further generali-
sation, is that addressing type B bureaucracy requires a level of abstraction that would be
best supported by further developments of atomic flows, to which our efforts are dedicated.

References

[BGGP09] Paola Bruscoli, Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A quasipolynomial cut-
elimination procedure in deep inference via atomic flows and threshold formulae. Submitted.
http://cs.bath.ac.uk/ag/p/QPNDI.pdf, 2009.

[Brü03] Kai Brünnler. Two restrictions on contraction. Logic Journal of the IGPL, 11(5):525–529, 2003.
http://www.iam.unibe.ch/~kai/Papers/RestContr.pdf.

[Brü04] Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. Logos Verlag, Berlin, 2004.
http://www.iam.unibe.ch/~kai/Papers/phd.pdf.

[BT01] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In R. Nieuwenhuis and
A. Voronkov, editors, LPAR 2001, volume 2250 of Lecture Notes in Computer Science, pages
347–361. Springer-Verlag, 2001. http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf.

[GG08] Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference via atomic flows.
Logical Methods in Computer Science, 4(1:9):1–36, 2008. http://www.lmcs-online.org/ojs/
viewarticle.php?id=341.

[Gug] Alessio Guglielmi. Deep inference. Web site at http://alessio.guglielmi.name/res/cos.
[Gug04a] Alessio Guglielmi. Formalism A. http://cs.bath.ac.uk/ag/p/AG11.pdf, 2004.
[Gug04b] Alessio Guglielmi. Formalism B. http://cs.bath.ac.uk/ag/p/AG13.pdf, 2004.
[Gug07] Alessio Guglielmi. A system of interaction and structure. ACM Transactions on Computational

Logic, 8(1):1–64, 2007. http://cs.bath.ac.uk/ag/p/SystIntStr.pdf.
[Gun09] Tom Gundersen. A General View of Normalisation Through Atomic Flows. PhD thesis, Univer-

sity of Bath, 2009.
[Str09] Lutz Straßburger. From deep inference to proof nets via cut elimination. Journal of Logic and

Computation, 2009. In press. http://www.lix.polytechnique.fr/~lutz/papers/deepnet.pdf.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

