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Abstract. Agent programming in complex, partially observable, and
stochastic domains usually requires a great deal of understanding of both
the domain and the task in order to provide the agent with the knowledge
necessary to act effectively. While symbolic methods allow the designer
to specify declarative knowledge about the domain, the resulting plan
can be brittle since it is difficult to supply a symbolic model that is
accurate enough to foresee all possible events in complex environments,
especially in the case of partial observability. Reinforcement Learning
(RL) techniques, on the other hand, can learn a policy and make use
of a learned model, but it is difficult to reduce and shape the scope of
the learning algorithm by exploiting a priori information. We propose a
methodology for writing complex agent programs that can be effectively
improved through experience. We show how to derive a stochastic process
from a partial specification of the plan, so that the latter’s perfomance
can be improved solving a RL problem much smaller than classical RL
formulations. Finally, we demonstrate our approach in the context of
Keepaway Soccer, a common RL benchmark based on a RoboCup Soccer
2D simulator.

1 Introduction

Despite the great deal of research on planning over many years and in many
different domains, planning in dynamic and uncertain domains is still a chal-
lenging task. In many applications, agents operate in highly dynamic and un-
certain environments where most of the changes are not a consequence of the
agent behavior. They usually have limited knowledge of the environment and
noisy sensors. Many approaches rely on a transitional model of the domain; in
these cases the knowledge about the environment is encoded and exploited for
planning either offline or online.

As stated by Bonet and Geffner [2], creating a controller that maps observa-
tions into actions has been mainly achieved in three ways:

– the programming approach, where the controller is programmed by hand in
a suitable high-level procedural language;

– the planning approach, where the controller is derived automatically from a
suitable description the actions, sensors and goals;

Dagstuhl Seminar Proceedings 10081 
Cognitive Robotics   
http://drops.dagstuhl.de/opus/volltexte/2010/2634

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 LearnPNP: A tool for modeling and learning agent behaviors

– the learning approach, where the controller is derived from experience.

The programming approach allows to encode procedural information about how
the task must be performed, but it makes improving the agent’s behavior quite
difficult, leaving little or no room for automation. The planning approach, on
the other hand, allows to provide the agent with declarative knowledge about
the environment, but is sensitive to inaccuracy of the model: in the class of
environments we are considering, a declarative model cannot in general be able
to foresee all possible events that can cause the plan to fail. This issue, especially
in robotics, leads to the need for execution monitoring [14], that constitutes a
whole research field. Finally, the learning approach can learn both a model of the
environment and/or a policy, but it is particularly difficult for the designer to
shape the search space, even when his/her knowledge could reduce the learning
burden significantly.

In spite of many efforts to planning and learning in complex domains, hand-
crafted plans still have a major role in many applications, even though they
require a lot of effort from the designer and the results are of limited use in
highly dynamic and uncertain domains.

Some relevant works in the direction of integrating a priori knowledge into a
learning framework are present (cf Section 5). However, these works have limited
applicability and do not scale to the class of problems we consider.

In this paper we introduce a novel use of Reinforcement Learning (RL) to
improve planning from experience, while still allowing the designer to write a
knowledge base or a set of plans. The proposed approach allows to convey prior
knowledge to the agent in a straightforward way, more specifically in the form
of a partially specified plan (or a set of plans). This is in contrast with standard
approaches to learning to perform a specific task, which usually require a non
negligible effort in the definition of the features of the environment to feed the
learning algorithm, a careful choice of a function approximator and also the
definition of proper actions.

The novelty of the approach is in the application of well established RL theory
and methods in a novel learning state space, which is obtained directly from the
plan, and it is considerably smaller with respect to standard formulations, thus
not requiring function approximation. The proposed approach is targeted at all
the “real world” applications in which the knowledge about the domain, even
from the designer perspective, does not allow him/her to establish which plan
(in a set of admissible ones) is going to perform better. In this context the agent
behavior can automatically adapt during plan execution gaining benefit from
experience.

To verify the effectiveness of our solution we implemented and tested it in
the Keepaway domain [16, 8], a benchmark for learning algorithms at the edge
of what RL can currently face. Our learning method could learn a behavior that
significantly outperforms former results in the same setting and converges to the
optimal solution several times faster.
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2 Plan Representation

Our approach addresses the planning problem in complex, dynamic environments
and is suited for reactive systems. In the rest of the paper we consider reactive
plans represented as generic state machines, like state charts [6], in which every
state corresponds to a set of actions and each transition corresponds to an event.

A plan state is a configuration of the machine that encodes the plan, as
opposed to an environment state that is a configuration of the variables that
represent the agent knowledge. Each plan state is associated the set of actions
that is being executed in that point of the plan. Notice that the same set of
actions may occur several times in different plan states. The state of the whole
system is the Cartesian product of the plan and the environment state spaces.

An event is a general happening in the environment that can be whatever
the agent is capable of detecting, for instance: a condition that becomes true, a
message received from another agent, a timeout expired or a joint that reached
its target position.

The representation of plans considered in this paper is based on a transition
system defined over plan states and events. Such a transition system determines
a set of plans, or plan schemas, as formally stated in the following definition.

Definition 1 (Plan Schema). A Plan Schema is a tuple ⟨S, s0, F, E, Φ, A,
L, T ⟩ where:

– S is a finite set of plan states
– s0 is the initial plan state
– F ⊂ S is a set of final plan states
– E is a finite set of events
– Φ is a set of conditions
– A is a set of actions
– L : S → ℘(A) is a total labeling relation that maps plan states on actions
– T : S × E × Φ → S is a transition relation augmented with a triggering

event and a condition. For each s ∈ S, e ∈ E and ϕ ∈ Φ, ϕ must entail the
pre-conditions of all the actions in L(T (s, e, ϕ))

The underlying assumption is that all actions are indeed procedures that
involve some actuators and then take time to execute. During the execution of
an action the environment state changes continuously while the plan state does
not. Indeed this representation does not model explicitly the agent’s knowledge,
but only the execution state of the plans.

The outcome of actions may be uncertain and we assume that a knowledge
base (KB) exists such that at any moment it is possible to check whether or not
it entails a certain condition. We also assume that appropriate modules keep
such a KB updated with respect to the agent’s perceptions.

In addition to events, edges are labeled with guard conditions that must hold
for the edge to be enabled. The behavior of the machine is the following: the
current state contains the currently executed set of actions which is performed
until one of the events associated to the outgoing edges happens. Whenever such
an event is sensed by the agent we say that the event triggers the transition which
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makes it available for execution. For the edge to be actually enabled at that time
another condition must be met, namely the guard of the transition must hold.
When an edge is triggered (the associated event happens) and enabled (its guard
condition holds) it is allowed to be followed and the next state represents the set
of actions the agent is to execute next. If an action was present in the previous
plan state and it is not in the next one that action must be terminated. On the
other hand, if an action appears in the next state it must be started. All actions
that are both in the previous and next plan state keep being executed. To make
the operational semantic clearer we assume that all events are external (i.e., they
cannot be generated by the machine itself) and transitions are instantaneous, so
that no event can be lost during a transition execution. Final states are absorbing
states that cannot be left once entered and determine the execution termination.

If the state machine is deterministic (it can never happen that two transitions
are triggered and enabled at the same time), then the plan schema is actually
a single plan since no choices are left to the executor and the entire behavior
is specified. On the other hand, if the machine is non-deterministic the plan
schema represents multiple plans and each non-deterministic choice is a fork
among them. Nothing prevents different plans from sharing common paths and
depart only where their behavior differs.

Such a state machine can easily represent any reactive, conditional plan with
also while-loops. Transformation from plans in classical state-based represen-
tation to plan schemas as defined above is straightforward, since events may
model post-conditions that become true and the guards can easily represent
the pre-condition of the following action. But events can do much more, they
can represent communication among agents (recall that an event can be associ-
ated to the receipt of a message), allowing the specification of multi-agent plan
schemas. Events can also represent unexpected conditions (not necessarily the
awaited post conditions), so that the plan may also account for interrupts. Fi-
nally, it is possible to easily extend the representation for hierarchical plans in
which actions can be low level behaviors or state machines themselves, even if
for this paper we limit the analysis to non-hierarchical plans. Thus, the proposed
plan representation is quite general and we do not pose any restriction on the
origin of plans, they can come from anything between automatic generation and
handcrafting. The only assumption we require is that plans must be correct, in
the sense that they should reach goal situations without violating action pre-
conditions or domain constraints. Checking correctness of input plan schemas is
outside the scope of the proposed approach.

2.1 Keepaway Soccer example

In order to make the plan representation and execution clear, we show a sim-
ple example borrowed by the Keepaway Soccer domain proposed by Stone and
Sutton [16, 8]. Keepaway Soccer is a subtask of RoboCup Soccer in which one
team, the keepers, must keep possession of the ball in a limited region as long
as possible while another team, the takers, tries to gain possession. The task is
episodic and one episode ends whenever the takers manage to catch the ball or
the ball leaves the region.
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Keepaway soccer retains some of the complexity of real world for the sensors
are noisy, the environment is highly dynamic, also due to adversarial agents, and
the communication among agents is limited.

holdBall

passToPlayer1

takerApproaching
[Player1Ready]

passToPlayer2

 takerApproaching
[Player2Ready]

moveToPlayer2

player2calling

Fig. 1. An example of a simple plan. Actions label states, events and guards label
transitions.

As an example, consider the plan schema in Figure 1. In the initial state
the agent simply holds the ball until an event occurs. If takerApproaching hap-
pens two transitions are triggered. When at least one transition is triggered the
post-conditions are checked, and if a transition is also enabled (its condition at
that moment holds), it is followed setting the plan in a new state. Of course not
necessarily there must be at least one enabled transition when an event hap-
pens and some events may be uncaught. In that case, the system remains in its
current state waiting for the next event to happen. Notice that, if the guards
Player1Ready and Player2Ready are not mutually exclusive, two transitions can
be triggered and enabled at the same time. Thus, the transition system is non-
deterministic and, in the same situation, two plans are available: the first one is
⟨holdBall, passToP layer1⟩ while the second one is ⟨holdBall, passToP layer2⟩.

In other words, in general, plan schemas are a compact way of representing
multiple plans providing for different alternatives to achieve a goal.

3 Learning Framework

The learning framework is focused on exploiting the non determinism of a plan
schema to make an informed choice.

Reinforcement Learning allows us to make use of experience to improve an
agent’s performance over time and seems a reasonable choice to achieve our
goal. RL has been thoroughly studied within the MDP framework, since this
framework provides a formal and neat mathematical notation for studying an
important class of sequential decision problems. In traditional RL applications
it is assumed that all relevant knowledge about an agent’s environment can be
encoded in a structure, usually a Markov Decision Process (MDP). Moreover,
both in “model-free” and “model-based” RL techniques, it is assumed that even
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though the agent might not know exactly what the structure of the MDP is
(e.g. the transition matrix, etc), all sample observations are drawn from some
underlying MDP. In the class of problems we are considering, however, assuming
the existence of a fully observable MDP, or even trying to come up with a
reasonable possible encoding for the states, which could somehow guarantee
that the Markovian assumption is respected, might be infeasible. One reason
for that is that it can be quite hard, or even impossible, to represent all the
required information about other agents, their policies, unpredictable events,
parallel action execution, unexpected changes in the task or in the environment,
etc. In other words, it might be unreasonable or infeasible to assume that the
task being solved can be well represented by an MDP. This is still true despite
the sophisticated work on function approximation.

For this reason we rely on a generic knowledge base that reflects the beliefs
of the agent about the environment, without building a dynamic model of it. In
the following, we will define a stochastic decision process by deriving it from the
plan and we will use this model to gather the experience to use in subsequent
trials.

The state of the system is composed by both the state of the plan and the
state of the environment but the latter is in general not completely known. The
reward depends on how the state of the environment is perceived by the agent.
In order to make a decision in non-deterministic choice points, we want to look
forward in the plan having a value function associated with plan states, but not
looking forward in the environment state space trying to predict the outcome of
actions (i.e. the next environment state).

The plan executor must adhere to the state machine operational semantic as
long as the choices are deterministic. Whenever a non-deterministic choice must
be taken, the executor can refer to the value function to evaluate the alternatives
and then exploit or explore as usual in RL.

3.1 Problem Definition

In order to properly characterize the stochastic process associated to the pre-
viously described state machine, and to set the proposed method in the RL
framework, we define it in terms of a Semi Non-Markov Decision Process (SN-
MDP), since the actions do not have the same duration and the process is in
general non Markovian.

We first show the construction of the SNMDP with an example and then
we provide its formal definition. Suppose that at some point of the plan schema
you have a choice point like the one previously described (Figure 1). The nodes
that allow for non-determinism (i.e., that have more than a transition associated
with the same event, and whose guard conditions are not mutually exclusive)
are split into a number of nodes equal to the constituent events of the condition.
In the example, the event takerApproaching (abbreviated as ta) is associated
to the conditions Player1Ready (p1r) and Player2Ready (p2r). This gives raise
to four possible constituents, namely: only p1r is true, only p2r is true, both
are true or none is. To the first three we associate a state and an arc from the
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original holdBall state. The last situation, in which none of the conditions holds,
translates into a loop on the holdBall state.

The resulting graph is represented in Figure 2. All the created edges corre-
spond to the same non-deterministic action of the SNMDP reported as ta. Since
it is caused by the perception of the event ta, the result of this action depends
on the environment and cannot be chosen by the agent. In this section we make
use of the term “action” as it is in the literature of stochastic processes when
we refer to the SNMDP. Therefore, while an action in the plan schema is the
actual intervention of the agent in the environment, an action in the SNMDP is
an instantaneous transition available to the controller. An action in the SNMDP
causes a change in the state of the process but cannot modify the state of the
environment while this is the primary intention of an action in the plan schema.

Each node associated to a constituent of the conditions is connected to the
action node containing the actions enabled by that constituent. In our example,
p1r is connected to the node representing the action passToPlayer1 (pp1 ), while
p2r is connected to passToPlayer2 (pp2 ) and p1r&p2r is connected to both. At
this level the edges reaching different action nodes are associated to different
actions of the SNMDP. The resulting graph has a choice point in the state
p1r&p2r since in that case two actions are simultaneously available.

holdBall  ta

p1r

 ta

p2r

 ta

p1r&p2r

 ta

pp1

 pp1

pp2

 pp2 pp1  pp2

Fig. 2. Creation of the SNMDP. The original node with the action holdBall is split
creating nodes to represent the conditions

The number of nodes in which a choice point in the original plan is split
is exponential in the number of conditions. This is not surprising, and in the
case of full observability and discrete state space this number would be equal to
the number of states storing an entire Q-function. Nonetheless, the underlying
assumption is that the domain is continuous and partially observable so that
there is no notion of single state and considering single states or many small
regions is not possible nor desirable. Hence, even if it is possible to consider
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function approximation, it is not necessary for the number of nodes generated
in practice.

To give a formal definition of the SNMDP we have informally previously
introduced, we define the set Ccnd(s, e) of the constituent events generated
by overlapping conditions in a specific choice point (denoted as ⟨s, e⟩) of a
plan schema PS = ⟨S, s0, F,E, Φ, T,A, L⟩ as follows: if there exist k condi-
tions ϕ1 . . . ϕk and a state sj s.t. ⟨s, e, ϕi, sj⟩ ∈ T for each i ∈ {1, . . . , k} then
Ccnd(s, e) = ℘({ϕk}) \ ∅ while Ccnd(s, e) = ∅ otherwise. In our example Ccnd(
holdball, takerApproaching) = {{p1r}, {p2r}, {p1r, p2r}}.

Next, we define the set Sc of the states generated by condition overlapping
in all choice points:

Sc = {⟨s, e, cond⟩|s ∈ S, e ∈ E, cond ∈ Ccnd(s, e)}

In our example

Sc = { ⟨holdball, takerApproaching, {p1r}⟩,
⟨holdball, takerApproaching, {p2r}⟩,
⟨holdball, takerApproaching, {p1r, p2r}⟩,
⟨holdball, player2calling, {true}⟩}

Those states constitute the second layer of Figure 2 except for the last one since
the event player2calling has been omitted for simplicity. Finally, we also define
a utility function Se

c to select in Sc the states that are generated by a specific
choice point as follows:

Se
c (s, e) = {⟨s, e, cond⟩ ∈ Sc|cond ∈ Ccnd(s, e)}

Time has not been addressed yet so far. We consider time in discrete timesteps
and actions can take multiple timesteps to complete. We use the following no-
tation:

– tk: the time of occurrence of the kth transition. By convention we denote
t0 = 0

– sk = s(tk) where s(t) = sk for tk ≤ t ≤ tk+1

– ak = a(tk) where a(t) = ak for tk ≤ t ≤ tk+1

We define a Semi Non-Markov Decision Process SNMDP = ⟨ Ssp, Asp, Psp,
rsp⟩ such that:

– Ssp = Sc ∪ S, is the state set. The set Sc is the set generated by overlap-
ping conditions, whereas S is borrowed directly from the plan schema and
accounts for action states, that is states that are not the result of a choice
point split but are associated to actions in execution. The first and last layer
of Figure 2 are an example of the states in S while the intermediate layer is
an example of the states in Sc.

– Asp = {a ∈ ℘(A)|∃s ∈ S s.t. L(s) = a} ∪ E, is the action set. The first part
is the co-domain of the labeling function in the plan schema. We create an
action for each possible set that labels the states of the plan schema. Notice
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that those actions are deterministic and we give them the same name of their
target state. In our example of Figure 1 the co-domain of labeling function is
{{holdBall}, {pp1}, {pp2}, {mp2}}. In this example there is no parallelism,
so all sets are singletons. You can spot the corresponding actions in Figure
2. The set E (events in the plan schema) is used to define the actions on
which the agent has no control. These actions are non-deterministic and their
outcome depends on the environment. Again, in Figure 2, ta is an example
of such an action.

– Psp(s′, a, τ, s) = Pr(tk+1−tk ≤ τ, sk+1 = s′|sk = s, ak = a) is the probability
for action a to take τ time steps to complete, and to reach state s′ from state
s
• if a /∈ E: the action is deterministic. An action that is not in E connects a

state in Sc to the state in S (second to third layer in the example) labeled
with the actions enabled by the condition in that state. Moreover, those
actions do not reflect any change in the environment so they always
complete in zero time. That is,

Psp(s′, a, τ, s)


= 1 if ∃ si, e, ϕ.

⟨si, e, ϕ, s′⟩ ∈ T
∧ s ∈ Ce

s (si, e)
∧ L(s′) = a ∧ τ = 0

= 0 otherwise

A state s is connected to the state s′ by a iff s is a state generated by a
condition constituent, it is linked to s′ by the plan schema, and a is the
label of that link.

• if a ∈ E: the action is non-deterministic. These actions take the time
spent in the previous state waiting for the event. An action that is in E
connects a state in S to itself and to all the condition states that its split
generate (first to second layer in the example). Therefore, events cannot
connect all pairs of states, which translates into:

Psp(s′, a, τ, s)



= 0 if s /∈ S ∨
s′ /∈ Ce

s (s, a) ∪ {s}
=

∫
H

p(tk+1 − tk ≤ τ, sk+1 =
s′|sk = s, ak = a,h)
p(h) dh

otherwise

If a connection between s and s′ through e exists according to the plan
schema, the value of the transition function is the probability for the
event a to happen in the state ⟨s,h⟩ ∈ S ×H where H is the domain of
(continuous) hidden variables. Since those variables are not observable,
the sample distribution is the (hidden) underlying one marginalized over
the hidden variables. This makes the stochastic process non Markovian
due to partial observability.

– rsp(s′, a, k, st) is the reward function. It is Markovian (but the total reward
in general is not) and we define its value to be 0 if a /∈ E. Therefore the
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immediate reward is non-zero only for events. Since events can take time
(the time spent waiting in the previous state for the event to happen) the
reward is defined in terms of immediate rewards as:

rsp(s′, a, k, st) =
k∑

i=1

γi−1rt+i

where the rt+i are the instantaneous rewards collected during the action
execution, and γ such that 0 ≤ γ ≤ 1 is the discount factor. Instantaneous
rewards are defined over perceptions, that is they are a function of the state
of the knowledge base.

In order to define a decision problem, we establish a performance criterion
that the controller of the stochastic decision process tries to maximize. As such,
we consider the expected discounted cumulative reward, defined for a stochastic
policy π(s, a) and for all s ∈ Ssp and a ∈ Asp as:

Qπ(s, a) = E{
∞∑

i=1

γi−1ri}

=
∑

s′∈Ssp

∞∑
τ=0

π(s, a)Psp(s′, a, τ, s) ·

·
(
rsp(s′, a, τ, s) +

+ γτ
∑

a′∈Asp(s′)

π(s′, a′)Qπ(s′, a′)}
)

(1)

where Asp(s) is the set of actions for which Psp(s′, a, τ, s) > 0 for some value of
τ . The optimal discounted reward function is defined as:

Q∗(s, a) = maxπ Qπ(s, a), s ∈ Ssp, a ∈ Asp (2)

3.2 Learning Algorithm

Since the stochastic process is in general non Markovian, extra attention must
be paid at the algorithm used to evaluate the expected reward of a given policy.
Usual algorithms based on a value function for MDPs make use of temporal
difference (TD) methods to compute the expected reward from a state onward.
The actual proof of convergence for TD relies on the Markov property and,
even if Sarsa(λ) can be quite robust to partial observability [9], it is in general
not guaranteed to converge. It has also been shown that adding memory to the
observations can solve some POMDPs [11] and the plan schema allows to add ar-
bitrary memory: if the plan schema is a tree the whole history is considered, but
loops can create any situation in between memory-less and full memory. Prac-
tically, Sarsa(λ) should converge to a policy that, even if suboptimal, can allow
for behavior improvement. A sound algorithm for the general case is MCESP by
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Perkins [13], and good other candidates can be found in policy search methods,
whose evaluation on our framework we leave for future work. For a brief review
of results we can leverage, please refer to Section 5

The value function, that is the cumulative discounted reward from each state
executing each action onward, will converge to the expected value of the reward
influenced by the experience. It might happen that a choice point in the stochas-
tic process corresponds to a region of the actual state space in which no action
is in most of the cases better than any other. In such a case the value of all the
available actions in that choice point would average out each other giving no re-
liable estimation of the expected reward. For this reason, a method (such as the
aforementioned MCESP and Sarsa(λ)) that performs some form of Monte Carlo
update must be preferred, so that is does not spoil the estimation of the for-
mer states. If the available knowledge does not allow to separate the conflicting
regions in the actual state space, the agent cannot do any better.

4 Experimental Evaluation

The learning approach described in this paper has been tested in Soccer Keep-
away on the 3 vs 2 task, i.e. with three keepers and two takers. Although the
agents learn separately and there is no communication involved in the task,
Keepaway is still a multi-agent task since the agents share the reward signal and
each agent’s action has an impact on all the others. Thus, credit assignment is
particularly difficult since the reward for the whole team behavior is received by
each agent as if it was its own.

In our work, we focus on the keepers and leave the takers’ behavior to their
predefined policy that consists in both of them following the ball. We refer to
Stone at al. [16] and especially to the more recent work by Kalyanakrishnan and
Stone [8] as representatives of the “RL way” to face Keepaway Soccer and we
show our methodology applied to this task. As in that last reference, we consider
the problem of learning both a behavior for the agent in possession of the ball
and a behavior for the agents that are far from the ball. This is an additional
challenge since the two behaviors interact making credit assignment even more
problematic.

The first step consists in devising a proper set of actions. We consider three
actions for the agent closer to the ball and three for the other two agents. The
actions available to an agent close enough to kick are holdBall that just keeps
possession of the ball, passToCloser that passes the ball to the agent that is
closer to the kicker and passToFree that passes the ball to the agent whose line
of pass is further from the takers. The first action is clearly wrong since a player
cannot hold the ball indefinitely without being reached by the takers but we
added it as a control, to make sure that our algorithm assigns the correct value
to it and never chooses that action after convergence. The actions available to
the agents far from the ball are searchForBall that just turns in place, getOpen
that is the default handcoded behavior provided by the framework described
as “move to a position that is free from opponents and open for a pass from
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the ball’s current position”, and goToTheNearestCorner that goes to the corner
closer to the agent.

Fig. 3. A representative run of experiments. The x axis is the number of episodes in
the run while y axis is the hold time in tenths of seconds

After the definition of the available actions we create a plan schema to ac-
commodate our choice points. The entire plan schema used in these experiments
is shown in Figure 4. States labeled with noaction have the empty action set
associated, while noevent is a special event that takes zero time. This event has
no impact on learning but it allows to add states in the plan schema convenient
for representation and readability. Similarly, when no condition is indicated the
guard of that edge is assumed to be true, i.e. the condition that is always fulfilled.
Again, this is just syntactic sugar and does not affect the method. The leftmost
node is the initial state, the control flows from left to right and it reaches the
rightmost node within a simulation server cycle. In each cycle the agent must
send a command to the server, thus performing an action, therefore every path
from the leftmost to the rightmost nodes contains exactly one action. All of the
conditions except those that guard the edges with event takerApproaching are
mutually exclusive and leave no choice to the executor. As already mentioned, in
the case of the passing actions since all three of them are triggered by the same
event (takerApproaching) and their conditions (true) always hold at the same
time, there is a non-determinism that can be exploited to make an informed
choice. TakerApproaching is triggered when the agent perceives that a taker is
closer than a certain threshold, actionPerfomed happens when the previous ac-
tions has queued its command for the server, and the conditions are similarly
defined over state variables. In a similar way, the three choices for the position-
ing behavior getOpen, searchForBall and goToTheNearestCorner are taken into
account when the player is not the one closest to the ball. In this setting even
the simple Sarsa algorithm converged to the optimal solution.
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noaction

noaction

noevent [BallSeen &
 BallKickable]

noaction
noevent [BallSeen &

 not BallKickable]

searchForBall

noevent [not BallSeen]

passToClosertakerApproaching

holdBall
 takerApproaching

passToFree
 takerApproaching

intercept noevent [NearestToBall]

getOpen
 noevent [not NearestToBall]

searchForBall noevent [not NearestToBall]

goToTheNearestCorner

 noevent [not NearestToBall]

actionPerformed

actionPerformed

 actionPerformed

actionPerformed

actionPerformed

actionPerformed

actionPerformed

actionPerformed

Fig. 4. The plan schema for a keeper with choice points on the passing and positioning
behaviors

We performed different trials learning the two behaviors simultaneously and
also the passing behavior and the positioning behavior separately. Our imple-
mentation used a greedy policy with optimistic initialization, a value of α = 0.3
and γ = 1.0 which is sound since the task is episodic and the cumulative reward
is limited. The reward signal is given by the duration of the episode: at every
server cycle each agent receives a reward of 1/10 of second. Even if the immedi-
ate reward is the same after every action, the cumulative reward depends on the
previous choices and on the behavior of all the agents resulting in being highly
non Markovian. Indeed what each agent aims maximize is actually the team per-
formance. A representative trial is plotted in Figure 3 where each point is the
average over a window of 50 episodes. With our approach we obtain the optimal
behavior (that can be manually verified to be when passToFree and goToTheN-
earestCorner are chosen) after about 200 episodes in the case of learning both
passing and positioning, with an average episode duration after learning of about
31 seconds. In previous works [16, 8] the best results are about 16 seconds of hold
time and they take tens of thousands of episodes to be learned. We also show the
learning curves of the single behaviors separately when coupled with the optimal
choice for the other one. It appears that the passing behavior is the harder to
learn, while positioning is learned in the first few episodes. Moving to the nearest
corner without the ball then proves to be the crucial action that outperforms its
alternatives quite quickly. In Figure 5 we show the box-plot of the distributions
of the episodes’ duration before (random behavior) and after learning. Both plots
are drawn from 250 runs. We first used the Shapiro-Wilk normality test to check
whether the two samples come from a normally distributed population, which
turned out to be false for the second sample. Then, we used the non-parametric
Mann-Whitney U test to confirm that the two samples do not (are extremely
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unlikely to: p = 5.7271 ∗ 10−26) come from the same distribution. This means
that the learning algorithm has indeed had a statistically significant impact on
the duration of the episodes. The domain proved to be extremely noisy and the
variance of both the samples is quite noteworthy.

Fig. 5. Box-plot of the distributions of the episodes’ duration (1) before and (2) after
learning.

At the cost of devising a few (quite simple indeed) actions, and creating
a partially specified plan exploiting the designer’s knowledge about the task,
we obtained a performance twice as high as the previous works in a number of
learning episodes thousands of times smaller even with an algorithm as simple as
Sarsa. The burden of creating the state representation and tailoring the function
approximation for traditional RL is quite remarkable compared to the effort
required of a designer to define such a plan schema and implement those actions.
Also notice we made little use of perceptions, since conditions and events consider
only a few aspects of the environment.

5 Related Work

Our work can be considered as part of the field of Hierarchical Reinforcement
Learning (HRL). The overall idea of HRL is the ability of expressing constraints
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on the behavior of the agent so that knowledge about the task and the envi-
ronment can be exploited to shrink the search space. The optimal policy in this
setting is the best one among those compatible with the constraints. The ap-
proaches closest to ours are Parr and Russell’s HAM [1] and Andre and Russell’s
ALisp [10]. A similar approach can also be found in the field of symbolic agent
programming, as this is the case of Decision Theoretic Golog (DTGolog) [3, 5].
All of the mentioned works allow to partially define the agent behavior in a
high-level language (hierarchical state machines, Lisp and Golog respectively)
and learn (or compute, in the case of DTGolog) the best behavior when this
is not specified. While we share their motivation, our work departs from the
previous ones in at least two aspects: (1) the formalism we adopt allows for deal-
ing with reactive plans, non atomic actions, and continuous state spaces: these
aspects are strictly related, leading to the representation of actions as states (in-
stead of transitions) and to the need for events to both determine the end of an
action and to mark those perceptions among the continuous infinity of possible
ones that the agent should pay attention to; (2) even more importantly, we do
not assume the existence of a Markov process as the underlying environment (an
assumption common to all of the previous methods), but we derive a controllable
process directly from the plan. Notice that the implementation of Kalyanakr-
ishnan and Stone [8] fixes the behavior of the agent everywhere except for the
two aspects they want to learn actually implementing a HAM. Therefore, the
performance evaluation we carried can also be considered with respect to HAMs.

As a result of giving up the Markov assumption, and since partial observ-
ability is an aspect of common applications we consider in our approach, the
control of the stochastic process resulting from the plan schema belongs to the
class of problems usually referred to as with hidden states. The most general
formulation of learning with hidden state are Partially Observable Markov Deci-
sion Processes (POMDP) [4]. Most of the methods for POMDPs attempt some
state estimation, while we do not.

The stochastic process resulting from the observations in a POMDP (ignor-
ing the underlying state space) is non-Markovian, and it is in some sense similar
to the process we generate. The literature about N-MDPs is not as extensive as
the one about MDPs, nonetheless some interesting results have been proved. A
review of the available results is beyond the scope of this section, but we refer
to the analysis by Pendrith and McGarity [11] and Singh et al. [15] about the
characteristics of optimal policies in N-MDP and the effects of applying direct
RL to them. An algorithm sound in the general case (although potentially sub-
optimal) is provided by Perkins [13] and the role of the exploration policy in
the convergence of Sarsa and Q-learning is pointed out by Perkins and Pendrith
[12]. Moreover, while examples can be constructed to prove that some (extremely
simple indeed) implementation of direct RL on N-MDPs can diverge, there are
promising empirical results about eligibility traces and partial observability [9].
Thus, although a comprehensive study about classes of N-MDPs and the tradi-
tional RL algorithms able to cope with them is still an issue, the lack of general
results about convergence in non Markovian environments does not imply that
those methods are doomed, it simply entails that further work is still needed.
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We have shown through experiments that standard RL on the SNMDP built
from a plan schema as shown before converges in a well-known (quite difficult)
benchmark domain.

6 Discussion and Future Work

In this paper we have presented a methodology to write agent programs and
to improve the agent’s behavior through learning for a quite general category
of plans. We have defined a proper controllable stochastic process deriving it
from a partial specification of plans, in order to use it as a model for RL algo-
rithms to improve the performance of the agent through experience. Finally, we
have discussed the applicability of the available RL algorithms to the particular
class of stochastic processes that our method generates and we have proved the
effectiveness of our approach on a widely adopted test bed.

In our work we used actions as procedures that are usually referred in Hi-
erarchical RL as skills. A popular model for skills is provided by the option
framework [17] in which options and basic actions can be simultaneously con-
sidered. The role of options and their utility has been regarded as arguable [7]
when the focus is on optimality. Nonetheless, in the class of problems we are
considering optimality is quite difficult to achieve anyway, and our approach
semi-automatically combining a set of handcoded skills proved to be more effec-
tive than flat RL which, even though is supposed to eventually reach the optimal
behavior, was outperformed making use of a number of training episodes several
orders of magnitude lower. In this context, having a good set of reusable skills
to combine is of the utmost importance, and the work on temporal abstraction
to create them automatically can profitably be integrated with our method pro-
viding different levels of intervention. Thus, where flat RL suffers in scaling up
the search for a global optimum, the role of skills can be less arguable.

We have demonstrated in this paper a simple application of our approach to
Keepaway Soccer limiting for simplicity the number of actions, and by no means
obtaining the best behavior achievable. Our method is conceived to scale up to
domains in which RL has not yet been successfully applied. In future work we
plan to face more complicated settings possibly defining a new benchmark for
hierarchical methods. We also plan to extend our formalism to multi-agent plans,
exploiting events to represent message delivery or, more in general, coordination
signals, thus learning team behaviors and coordination. Finally, we will further
investigate the properties of the RL algorithms when applied to the stochastic
process generated from a plan schema, and how to make use of the structure of
plan schemas to obtain processes that favor convergence and/or optimality.
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