
10111 Abstracts Collection

Practical Software Testing : Tool Automation and

Human Factors

� Dagstuhl Seminar �

Mark Harman1, Henry Muccini2, Wolfram Schulte3 and Tao Xie4

1 King's College - London, GB

Mark.Harman@kcl.ac.uk
2 Univ. degli Studi di L'Aquila, IT

henry.muccini@di.univaq.it
3 Microsoft Corp. - Redmond, US

schulte@microsoft.com
4 North Carolina State University, US

xie@csc.ncsu.edu

Abstract. From March 14, 2010 to March 19, 2010, the Dagstuhl Sem-

inar 10111 �Practical Software Testing : Tool Automation and Human

Factors� was held in Schloss Dagstuhl � Leibniz Center for Informatics.

During the seminar, several participants presented their current research,

and ongoing work and open problems were discussed. Abstracts of the

presentations given during the seminar as well as abstracts of seminar re-

sults and ideas are put together in this paper. The �rst section describes

the seminar topics and goals in general. Links to extended abstracts or

full papers are provided, if available.

Keywords. Software testing, Test generation, Test automation, Test

oracles, Testing tools, Human-computer interaction, Code-based testing,

Speci�cation-based testing, Model-based testing

10111 Executive Summary � Practical Software Testing :

Tool Automation and Human Factors

The main goal of the seminar �Practical Software Testing : Tool Automation
and Human Factors� was to bring together academics working on algorithms,
methods, and techniques for practical software testing, with practitioners, inter-
ested in developing more soundly-based and well-understood testing processes
and practices. The seminar's purpose was to make researchers aware of industry's
problems, and practitioners aware of research approaches. The seminar focused
in particular on testing automation and human factors. In the week of March
14-19, 2010, 40 researchers from 11 countries (Canada, France, Germany, Italy,
Luxembourg, the Netherlands, Sweden, Switzerland, South Africa, United King-
dom, United States) discussed their recent work, and recent and future trends

Dagstuhl Seminar Proceedings 10111
Practical Software Testing : Tool Automation and Human Factors
http://drops.dagstuhl.de/opus/volltexte/2010/2626

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Mark Harman, Henry Muccini, Wolfram Schulte and Tao Xie

in software testing. The seminar consisted of �ve main types of presentations
or activities: topic-oriented presentations, research-oriented presentations, short
self-introduction presentations, tool demos, and working group meetings and
presentations.

Keywords: Software testing, test generation, test automation, test oracles, test-
ing tools, human-computer interaction, code-based testing, speci�cation-based
testing, model-based testing

Joint work of: Harman, Mark; Muccini, Henry; Schulte, Wolfram; Xie, Tao

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2623

Model-Based Testing for the Cloud

Robert Hierons (Brunel University, GB)

Software in the cloud is characterised by the need to be highly adaptive and con-
tinuously available. Incremental changes are applied to the deployed system and
need to be tested in the �eld. Di�erent con�gurations need to be tested. Higher
quality standards regarding both functional and non-functional properties are
put on those systems, as they often face large and diverse customer bases and/or
are used as services from di�erent peer service implementations. The properties
of interest include interoperability, privacy, security, reliability, performance, re-
source use, timing constraints, service dependencies, availability, and so on. This
paper discusses the state of the art in model-based testing of cloud systems.
It focuses on two central aspects of the problem domain: (a) dealing with the
adaptive and dynamic character of cloud software when tested with model-based
testing, by developing new online and o�ine test strategies, and (b) dealing with
the variety of modeling concerns for functional and non-functional properties, by
devising a uni�ed framework for them where this is possible. Having discussed
the state of the art we identify challenges and future directions.

Keywords: Cloud computing, model-based testing, non-functional properties

Joint work of: Bertolino, Antonia; Grieskamp, Wolfgang; Hierons, Robert;
Le Traon,Yves; Legeard, Bruno; Muccini, Henry; Paradkar, Amit; Rosenblum,
David; Tretmans, Jan

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2625

Computing and Diagnosing Changes in Unit Test Energy

Consumption

Andrew J. Ko (University of Washington, US)

Many developers have reason to be concerned with with power consumption.

http://drops.dagstuhl.de/opus/volltexte/2010/2623
http://drops.dagstuhl.de/opus/volltexte/2010/2625

Practical Software Testing : Tool Automation and Human Factors 3

For example, mobile app developers want to minimize how much power their
applications draw, while still providing useful functionality. However, develop-
ers have few tools to get feedback about changes to their application's power
consumption behavior as they implement an application and make changes to it
over time. We present a tool that, using a team's existing test cases, performs
repeated measurements of energy consumption based on instructions executed,
objects generated, and blocking latency, generating a distribution of energy use
estimates for each test run, recording these distributions in a time series of
distributions over time. Then, when these distributions change substantially, we
inform the developer of this change, and o�er them diagnostic information about
the elements of their code potentially responsible for the change and the inputs
responsible. Through this information, we believe that developers will be better
enabled to relate recent changes in their code to changes in energy consumption,
enabling them to better incorporate changes in software energy consumption
into their software evolution decisions.

Keywords: Energy, oracles

Joint work of: Ko, Andrew J.; Young, Michal; Andrews, Jamie; Robinson,
Brian P.; Grechanik, Mark

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2624

Groundwork for the Development of Testing Plans for

Concurrent Software

Eileen Kraemer (University of Georgia, US)

While multi-threading has become commonplace in many application domains
(e.g., embedded systems, digital signal processing (DSP), networks, IP services,
and graphics), multi-threaded code often requires complex co-ordination of threads.
As a result, multi-threaded implementations are prone to subtle bugs that are
di�cult and time-consuming to locate. Moreover, current testing techniques that
address multi-threading are generally costly while their e�ectiveness is unknown.
The development of cost-e�ective testing plans requires an in-depth study of the
nature, frequency, and cost of concurrency errors in the context of real-world
applications. The full paper will lay the groundwork for such a study, with the
purpose of informing the creation of a parametric cost model for testing multi-
threaded software. The current version of the paper provides motivation for the
study, an outline of the full paper, and a bibliography of related papers.

Keywords: Concurrency, testing

Joint work of: Kraemer, Eileen; Dillon, Laura

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2621

http://drops.dagstuhl.de/opus/volltexte/2010/2624
http://drops.dagstuhl.de/opus/volltexte/2010/2621

4 Mark Harman, Henry Muccini, Wolfram Schulte and Tao Xie

Introducing Continuous Systematic Testing of Evolving

Software

Per Runeson (Lund University, SE)

In today's evolutionary development of software, continuous testing is needed to
ensure that the software is still functioning after changes. Test automation helps
partly managing the large number of executions needed, but there is also a limit
for how much automated tests may be executed. Then systematic approaches
for test selection are needed also for automated tests. This manuscript de�nes
this situation and outlines a general method and tool framework for its solution.
Experiences from di�erent companies are collected to illustrate how it may be
set into practice.

Keywords: Regression testing, Continuous testing, Test selection

Joint work of: Harrold, Mary Jean; Marinov, Darko; Oney, Stephen; Pezze,
Mauro; Porter, Adam; Penix, John; Runeson, Per; Yoo, Shin

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2622

AUTOMOCK: Automated Synthesis of a Mock

Environment for Test Case Generation

Paolo Tonella (Fondazione Bruno Kessler - Trento, IT)

During testing, there are several reasons to exclude some of the components
used by the unit under test, such as: (1) the component a�ects the state of the
world in an irreversible way; (2) the component is not accessible for testing pur-
poses (e.g., a web service); (3) the component introduces a major performance
degradation to the testing phase (e.g., due to long computations); (4) it is hard
(i.e., statistically unlikely) to obtain the output required by the test from the
component. In such cases, we replace the component with a mock one. In this
paper, we integrate the synthesis of mock components with the generation of
test cases for the current testing goal (e.g., coverage). To avoid the generation
of meaningless data, which may lead to assertion violation not related to bugs,
we include a weak mock postcondition. We consider ways to automatically syn-
thesize such postcondition. We empirically evaluate the quality of the mocks
generated by our approach, as well as the bene�ts mocks introduce in terms of
improved coverage and improved performance of the test case generator.

Keywords: Test case generation; code analysis; automated software testing.

Joint work of: Alshahwan, Nadia; Jia, Yue; Lakhotia, Kiran; Fraser, Gordon;
Shuler, David; Tonella, Paolo

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2618

http://drops.dagstuhl.de/opus/volltexte/2010/2622
http://drops.dagstuhl.de/opus/volltexte/2010/2618

Practical Software Testing : Tool Automation and Human Factors 5

FITE - Future Integrated Testing Environment

Michael W. Whalen (University of Minnesota, US)

It is a well known fact that the later software errors are discovered during the
development process, the more costly they are to repair. Recently, automatic
tools based on static and dynamic analysis have become widely used in industry
to detect errors, such as null pointer dereferences, array indexing errors, asser-
tion violations, etc. However, these techniques are typically applied late in the
development cycle, and thus, the errors detected by such approaches are ex-
pensive to repair. Additionally, these techniques can su�er from scalability and
presentation issues due to the fact that they are applied late in the development
cycle.

To address these issues we suggest that code should be continuously analyzed
from an early stage of development, preferably as the code is written. This will
allow developers to get instant feedback to repair errors as they are introduced,
rather than later when it is more expensive. This analysis should also be incre-
mental in nature to allow better scaling. Additionally, the presentation of errors
in static and dynamic analysis tools can be improved due to the small increment
of code being analyzed.

Keywords: Incremental analysis, incremental testing, human factors, static
analysis, model checking

Joint work of: Godefroid, Patrice; Mariani, Leonardo; Polini, Andrea; Till-
mann, Nikolai; Visser, Willem; Whalen, Michael W.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2619

Model-based Testing � Next Generation Functional

Software Testing

Bruno Legeard (Smartesting - Besancon, FR)

The idea of model-based testing is to use an explicit abstract model of a SUT
and its environment to automatically derive tests for the SUT: the behavior
of the model of the SUT is interpreted as the intended behavior of the SUT.
The technology of automated model-based test case generation has matured to
the point where large-scale deployments of this technology are becoming com-
monplace. The prerequisites for success, such as quali�cation of the test team,
integrated tool chain availability and methods, are now identi�ed, and a wide
range of commercial and open-source tools are available.

Although MBT will not solve all testing problems, it is an important and
useful technique, which brings signi�cant progress over the state of the practice
for functional software testing e�ectiveness, and can increase productivity and
improve functional coverage.

http://drops.dagstuhl.de/opus/volltexte/2010/2619

6 Mark Harman, Henry Muccini, Wolfram Schulte and Tao Xie

In this talk, we'll adress the current trend of deploying MBT in the industry,
particularly in the TCoE - Test Center of Excellence - managed by the big
System Integrators, as a vector for software testing "industrialization".

Keywords: Model-based testing, functional testing, test automation, process
industrialization

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2620

Preemption Sealing for E�cient Concurrency Testing

Thomas Ball (Microsoft Research - Redmond, US)

The choice of where a thread scheduling algorithm preempts one thread in
order to execute another is essential to reveal concurrency errors such as atomic-
ity violations, livelocks, and deadlocks. We present a scheduling strategy called
preemption sealing that controls where and when a scheduler is disabled from pre-
empting threads during program execution. We demonstrate that this strategy
is e�ective in addressing two key problems in testing industrial-scale concurrent
programs: (1) tolerating existing errors in order to �nd more errors, and (2) com-
positional testing of layered, concurrent systems. We evaluate the e�ectiveness
of preemption sealing, implemented in the CHESS tool, for these two scenarios
on newly released concurrency libraries for Microsoft's .NET framework.

Keywords: Concurrency, testing, correctness

Research on Design for Veri�cation of Multi-threaded

Software

Laura Dillon (Michigan State University, US)

This extended abstract describes recent and on-going research in design for veri-
�cation (D4V) of multi-threaded software, which is being conducted by the Con-
current Software Design Group at Michigan State University. Speci�cally, we out-
line work that leverages synchronization contracts to organize and connect design
artifacts with code in a way that facilitates long-term maintenance, localizes con-
formance obligations, and supports code generation and compositional correct-
ness proofs. Additionally, we highlight results of empirical assessment of several
notations and methods used in development and maintenance of concurrent soft-
ware. More information can be found at http://www.cse.msu.edu/sens/szumo,
http://www.cse.msu.edu/sens/copse.

Keywords: Design for veri�cation, synchronization contracts, empirical assess-
ment of development tools

http://drops.dagstuhl.de/opus/volltexte/2010/2620
http://www.cse.msu.edu/sens/szumo
http://www.cse.msu.edu/sens/copse

Practical Software Testing : Tool Automation and Human Factors 7

Preserving Test Coverage While Achieving Data

Anonymity For Database-Centric Applications

Mark Grechanik (Accenture Labs - Chicago, US)

Database-centric applications (DCAs) are common in enterprise computing, and
they use nontrivial databases. Testing of DCAs is increasingly outsourced to test
centers in order to achieve lower cost and higher quality. When releasing pro-
prietary DCAs, its databases should also be made available to test engineers,
so that they can test using real data. Testing with real data is important, since
fake data lacks many of the intricate semantic connections among the original
data elements. However, di�erent data privacy laws prevent organizations from
sharing these data with test centers because databases contain sensitive infor-
mation. Currently, testing is performed with fake data that often leads to worse
code coverage and fewer uncovered bugs, thereby reducing the quality of DCAs
and obliterating bene�ts of test outsourcing.

We o�er a novel approach, Testing Applications with Data Anonymization
(TaDa). With TaDa, DCAs can be released to external testing organizations
without disclosing sensitive information while retaining testing e�cacy. We built
a tool and applied it to example Java DCAs. Our results show that for the same
level of anonymity TaDa enables higher test coverage than the current state-of-
the-art anonymization algorithm, Data�y.

Keywords: K-anonymity, test coverage, quasi-identi�ers, database-centric ap-
plication

Distributed testing

Robert Hierons (Brunel University, GB)

This talk gives a brief introduction to my interest in distributed testing. Here,
we have a system under test (SUT) that has physically distributed interfaces
(ports). We place a tester at each port and a tester at port p sees only the
events (inputs and outputs) at p. Thus, testing is black-box. The distributed
nature of testing can lead to races (controllability problems) and also weaker
implementation/conformance relations.

Keywords: Distributed testing, black-box testing, controllability, observability

8 Mark Harman, Henry Muccini, Wolfram Schulte and Tao Xie

Software Engineering of Concurrent Systems

Eileen Kraemer (University of Georgia, US)

These few slides provide a brief overview of my past and current work, beginning
with a focus on the visualization of concurrent software, then on to the inter-
active steering of concurrent systems, and more recently focusing on diagrams,
notations and tools that support software engineering tasks for concurrent soft-
ware.

Keywords: Software engineering, concurrent software

Brief Overview of Darko Marinov's Group

Darko Marinov (University of Illinois - Urbana, US)

Darko Marinov is an assistant professor at the University of Illinois at Urbana-
Champaign, where he is currently (co)advising �ve PhD students who work on
the following topics. Steven Lauterburg works on testing message-passing code
(actors). Brett Daniel works on test repair and test quality/augmentation. Vilas
Jagannath works on testing shared-memory code and mutation testing. Milos
Gligoric works on test generation and regression testing. Adrian Nistor works on
hardware support for testing parallel code. More information can be found at
http://mir.cs.illinois.edu/~marinov

Keywords: Test generation, test repair, regression testing, testing parallel code

Model-Based Testing

Jan Tretmans (Embedded Systems Institute - Eindhoven, NL)

Model-based testing is one of the promising technologies to meet the challenges
imposed on software testing. In model-based testing, test cases are generated
from a model that describes the required behaviour of the implementation un-
der test. Model-based testing is more than just the generation of some test cases
from a model. A well-de�ned and sound theory of model-based testing is feasible
and necessary, and it brings many bene�ts, also practical ones. As an example
we consider the ioco-testing theory, where models are expressed as labelled tran-
sition systems and correctness is de�ned with an implementation relation called
ioco.

Keywords: Model-based testing

Full Paper:
http://dx.doi.org/10.1007/978-3-540-78917-8_1

http://mir.cs.illinois.edu/~marinov
http://dx.doi.org/10.1007/978-3-540-78917-8_1

Practical Software Testing : Tool Automation and Human Factors 9

See also: Tretmans, J., Model Based Testing with Labelled Transition Systems,
in: R. Hierons, J. Bowen and M. Harman, editors, Formal Methods and Testing,
Lecture Notes in Computer Science 4949 (2008), pp. 1�38.

Eco Testing for Components

Jan Tretmans (Embedded Systems Institute - Eindhoven, NL)

In component-based development, the correctness of a system depends on the
correctness of the individual components and on their interactions. Model-based
testing is a way of checking the correctness of a component by means of execut-
ing test cases that are systematically generated from a model of the component.
This model should include the behaviour of how the component can be invoked,
as well as how the component itself invokes other components. In many situa-
tions, however, only a model that speci�es how others can use the component,
is available. In this presentation we present an approach for model-based testing
of components where only these available models are used. Test cases for testing
whether a component correctly reacts to invocations are generated from this
model, whereas the test cases for testing whether a component correctly invokes
other components, are generated from the models of these other components.
A formal elaboration is given in the realm of labelled transition systems. This
includes an implementation relation, called eco, which formally de�nes when a
component is correct with respect to the components it uses, and a sound and
exhaustive test generation algorithm for eco.

Keywords: Model-based testing

Full Paper:
http://dx.doi.org/10.1007/978-3-540-74792-5_1

See also: Frantzen, L. and J. Tretmans, Model-Based Testing of Environmental
Conformance of Components, in: F. de Boer, M. Bosangue, S. Graf and W.-P.
de Roever, editors, Formal Methods for Components and Objects, Lecture Notes
in Computer Science 4709 (2007), pp. 1�25.

Testing in Academia and Industry

Willem Visser (Stellenbosch University - Matieland, ZA)

This talk starts with a short self-introduction by means of tracing through my
career from research at NASA, to SEVEN Networks and back to academia at
Stellenbosch University. It highlights how testing at NASA was all about the once
in a lifetime bugs, whereas at SEVEN bugs were common and the important ones
were the ones that cost the company money.

Keywords: Testing, model checking, symbolic execution

http://dx.doi.org/10.1007/978-3-540-74792-5_1

10 Mark Harman, Henry Muccini, Wolfram Schulte and Tao Xie

Integration of Testing and Analysis

Michael W. Whalen (University of Minnesota, US)

It is a well known fact that the later software errors are discovered during the
development process, the more costly they are to repair. Recently, automatic
tools based on static and dynamic analysis have become widely used in industry
to detect errors, such as null pointer dereferences, array indexing errors, asser-
tion violations, etc. However, these techniques are typically applied late in the
development cycle, and thus, the errors detected by such approaches are ex-
pensive to repair. Additionally, these techniques can su�er from scalability and
presentation issues due to the fact that they are applied late in the development
cycle.

To address these issues we suggest that code should be continuously analyzed
from an early stage of development, preferably as the code is written. This will
allow developers to get instant feedback to repair errors as they are introduced,
rather than later when it is more expensive. This analysis should also be incre-
mental in nature to allow better scaling. Additionally, the presentation of errors
in static and dynamic analysis tools can be improved due to the small increment
of code being analyzed.

Keywords: Incremental analysis, incremental testing, human factors, static
analysis

Joint work of: Godefroid, Patrice; Mariani, Leonardo; Polini, Andrea; Till-
mann, Nikolai; Visser, Willem; Whalen, Michael W.

Requirements and Coverage Metrics

Michael W. Whalen (University of Minnesota, US)

When creating test cases for software, a common approach is to create tests
that exercise requirements. Determining the adequacy of test cases, however, is
generally done through inspection or indirectly by measuring structural coverage
of an executable artifact (such as source code or a software model). We present
ReqsCov, a tool to directly measure requirements coverage provided by test
cases. ReqsCov allows users to measure Linear Temporal Logic requirements
coverage using three increasingly rigorous requirements coverage metrics: naïve
coverage, antecedent coverage, and Unique First Cause coverage. By measuring
requirements coverage, users are given insight into the quality of test suites
beyond what is available when solely using structural coverage metrics over an
implementation.

Keywords: Requirements, testing, test automation, structural coverage met-
rics,

Practical Software Testing : Tool Automation and Human Factors 11

Self Introduction: Improving Software Reliability and

Productivity via Testing and Mining

Tao Xie (North Carolina State University, US)

We have worked on two research areas for improving software reliability and pro-
ductivity: automated software testing and mining software engineering data. In
the area of mining software engineering, we have developed approaches for min-
ing source code, textual data, and program executions. In the area of automated
software testing, we have developed approaches for test generation, regression
testing, test oracles, mutation testing, and security policy testing. Along the tool
automation and human factors in practical software testing, we have developed
automated techniques to boost the upper limit of tool automation and proposed
the concept of �cooperative testing� between developers/testers and tools. More
information can be found at https://sites.google.com/site/asergrp/.

Keywords: Test automation, test generation, cooperative testing

Self Introduction: Michal Young

Michal Young (University of Oregon, US)

Michal Young works on a variety of things, but the theme running through all
of them is a concern with how to exploit modular structure to make reasoning
easier. Naturally, then, he thinks exploiting modularity is the key to human
factors in software testing.

Keywords: Self introduction

https://sites.google.com/site/asergrp/

	10111 Abstracts Collection Practical Software Testing : Tool Automation and Human Factors — Dagstuhl Seminar —
	 Mark Harman, Henry Muccini, Wolfram Schulte and Tao Xie

