
AUTOMOCK: Automated Synthesis of a Mock

Environment for Test Case Generation

Nadia Alshahwan, Yue Jia, Kiran Lakhotia

University College London, UK

Gordon Fraser, David Shuler

Saarland University, Germany

Paolo Tonella

Fondazione Bruno Kessler, Italy

Abstract—During testing, there are several reasons to exclude

some of the components used by the unit under test, such as: (1)

the component affects the state of the world in an irreversible

way; (2) the component is not accessible for testing purposes (e.g.,

a web service); (3) the component introduces a major

performance degradation to the testing phase (e.g., due to long

computations); (4) it is hard (i.e., statistically unlikely) to obtain

the output required by the test from the component. In such

cases, we replace the component with a mock one. In this paper,

we integrate the synthesis of mock components with the

generation of test cases for the current testing goal (e.g.,

coverage). To avoid the generation of meaningless data, which

may lead to assertion violation not related to bugs, we include a

weak mock postcondition. We consider ways to automatically

synthesize such postcondition. We empirically evaluate the

quality of the mocks generated by our approach, as well as the

benefits mocks introduce in terms of improved coverage and

improved performance of the test case generator.

Keywords: test case generation; code analysis; automated

software testing.

I. INTRODUCTION

Code-based test generation has made tremendous progress
in the recent past: Today, modern systems are able to generate
inputs that drive execution to almost any point in the control
flow. Automation, however, reaches its limits when it comes to
controlling the test’s environment: For example, if the tested
code accesses an external component such as a service or a
database, then this component needs to be controlled by the test
as well in order to prevent unwanted side-effects like data loss.

A common solution in test generation is to create a stub
version (mock) of the component that is difficult to control.
Such a mock object provides the same interface as the
component it represents, but returns predefined values on
method calls. In this paper, we propose an approach that
automatically generates such mock objects, helping to drive
test generation towards its goal in cases where automatic
generation is difficult or impossible otherwise. The solution
applied is to map the mocked behavior to the input space of the
test generation problem: For each method call on the mock

object in the test case we need to find an appropriate value that
the mock returns during execution.

 A main difficulty in this approach is that within the scope
of a test case the mocked component should behave similarly
to the real component. If this is not the case then that is
problematic for two reasons: First, it can lead to a false sense of
confidence in the correctness, because a coverage goal may be
satisfied in a way that cannot occur in practice. Second, it can
lead to an incorrect test failure (false positive), i.e., a failure
that is not caused by a real bug but by an invalid mocked
behavior.

To overcome this problem, we investigate different
methods to infer knowledge about the real behavior of the
mocked instance. Such knowledge can be approximated from
existing execution traces or dynamic invariants on the
component’s behavior derived from these traces, or it can be
derived precisely by solving path constraints derived from the
mocked component.

Automated mocking has been addressed in the past: Saff et
al. [2] take an existing test case and try to replace some of the
used objects with automatically generated mocks that simulate
the same behavior, thus aiming to improve performance and
making it easier to isolate and detect bugs. Tillmann and
Schulte [3] implement mock objects that represent symbolic
variables, which the test generator can interpret as inputs. A
main objective of this approach is to test for robustness, i.e.,
unlikely (but admissible) test inputs are desired. Automated
mock generation is also related to environment generation in
software model checking: Tkachuk et al. [4] simulate a
component’s environment based on user specified assumptions
and additional information derived with different types of static
analysis.

In detail, the contributions of this paper are as follows:

 Approximation of method postconditions
representing realistic behavior based on traces and
dynamic invariants (Section II).

Dagstuhl Seminar Proceedings 10111
Practical Software Testing : Tool Automation and Human Factors
http://drops.dagstuhl.de/opus/volltexte/2010/2618

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

testMe(Date startDate, Date endDate) {

 conn = new HotelConnection();

 try {

 resp = conn.makeReservation(startDate,

 endDate);

 reserved = false;

 do {

 if (resp.available()) {

 assert(endDate > startDate);

 // money processing

 } else {

 // ask user for different dates

 }

 } while (!reserved);

 } catch(WrongResDatesException e) {

 // error handling code

 }

}

Figure 1. Running example

 Automatic derivation of mock objects based on
method postconditions and test goals such as
coverage (Section II).

 Derivation of method postconditions based on
symbolic execution of path constraints (Section
IIA).

 Evaluation of the derived mock objects in terms of
their quality, i.e., false negatives / positives
(Section IIIA)

 Evaluation of the improvements achieved with auto-
mocking in terms of coverage increase and
performance gains (Section IIIB).

II. MOCK SYNTHESIS

Consider for example the code shown in Figure 1 that does a

hotel reservation for a specific date range. Internally it uses

another service via a HotelConnection. For testing however, we

cannot use this service since this would result in many

unintentional reservations. Thus, the HotelConnection needs to

be mocked.

 For the test generation this means that, in addition to the

method inputs, sensible return values for the mocked methods

have to be generated with respect to the testing goal. In our

example this would be a start and end date as input to the

method and either a response object or a

WrongResDatesException exception as return value of the

makeReservation method.

Furthermore, the mock has to have the same interface as the

original object, but it does not need to preserve all its

semantics. However, the returned values must not cause any

exceptional behavior. Thus, they have to satisfy weak

postconditions, which are relaxed postconditions of the method

that is mocked. These weak postconditions can either be

specified manually or automatically. One way to obtain

postconditions automatically is to trace the program (or the

object to be mocked) when it is regularly used and infer

dynamic invariants from the traced data (e.g. by using Daikon

[1]). These invariants can then be used as additional

constraints when generating return values for the mocked

methods. Another way to obtain or refine these invariants is to

use an algorithm that is based on symbolic execution and is

described below.

A. A symbolic execution algorithm to infer an approximate

mock postcondition

 The pseudocode for the symbolic execution algorithm used

to infer an approximate mock postcondition is provided at the

end of the paper. According to the algorithm, when required

by the test generator, a mock value is produced, initially with

an empty mock postcondition. When an assertion is reached

which fails, the path condition produced by symbolic

execution along the failing path is considered. The constraints

on mock variables in the path condition are passed to a solver.

If the constraints are satisfiable, they are added to the mock

postcondition. Otherwise we have a “likely” bug, i.e., an

assertion violation caused by the program, not by a too

permissive mock postcondition. The bug is not certain since

the mock postcondition is an approximate one, hence it may

still generate meaningless values. It should be noticed that

even when the constraints are satisfiable we may have a

problem, in that we may miss a bug and generate a wrong (too

restrictive) mock postcondition . So, in general we may have

both false positives (reported bugs which are not real bugs)

and false negatives (missed bugs).

 Let us consider the running example and assume we want

to mock the function conn.makeReservation. Further let us

assume that the assertion assert(endDate > startDate) is

violated during the execution of testMe. The symbolic path

condition corresponding to the execution (including the

assertion) is:

!thrown(WrongResDatesException) && resp.available() &&

(endDate > startDate)

After negating it and keeping only mock variables, we

synthesize the following mock postcondition:

thrown(WrongResDatesException || !resp.available()

 This postcondition expresses quite precisely the mock

values that must be generated in this case to avoid raising the

exception. Either the reservation service replies by raising the

exception WrongResDatesException or it replies that the

reservation is unavailable. Since the path condition includes

symbolic variables which are dependent on our mock

function/object, it could be that the mock function we created

is (partly) responsible for the assertion violation, and therefore

indicates a false alarm. Thus the goal is to try and refine the

post condition of our mock function in order to avoid such

false alarms.

 A more precise mock postcondition is obtained if mock

input variables are included. In the running example, we get:

2

thrown(WrongResDatesException) || !resp.available() ||

(endDate <= startDate)

This mock postcondition specifies that we need to either throw

an exception or reply that reservation is unavailable only if the

condition (endDate <= startDate) is false. Otherwise, such a

condition on the mock inputs is enough to make the

postcondition true.

III. EMPIRICAL STUDY DESIGN

A. Assessment of the quality of the syntesized mocks

We intend to investigate the following research questions:

RQ1: How good are the mocked data generated using our

approach?

 RQ1.1: Can our automatically generated mocked data

 find all bugs that are found by the manually generated

 mock, with exact mock postcondition? Is the approximate

 mock postcondition masking any real bug?

 RQ1.2: How many bugs found by the automatically

 generated mock are not real bugs, being side effects of the

 mock postcondition approximation?

 RQ1 is trying to assess the quality of our automatically

generated mocked data. In order to answer RQ1, we compare

the bugs (assertion violations) found by our mocked data with

the ones found by the manually generated mock, which

contains the exact mock postcondition. We split RQ1 into two.

In RQ1.1, we investigate the false negatives, i.e., the bugs

missed by the automatic mock because its postcondition does

not permit the generation of data that reveal them. In RQ1.2,

we analyze bugs that are originated because the data generated

by the automatically synthesized mock do not comply with the

true mock postcondition, hence giving raise to assertion

violations. These are false positives of our technique.

 The metrics we use to address RQ1.1 and RQ1.2 are the

number of false negatives and false positives respectively. The

former are obtained by manually defining the exact mock

postcondition and then determining the number of assertion

violations raised with such mock, which cannot be raised

when the approximate postcondition is used. For the latter we

count the number of false alarms reported by the synthesized

mock, i.e., assertion violations which are not bugs. We repeat

this assessment for all alternative mock synthesis techniques

and technique variants described in this paper.

B. Assessment of coverage and performance improvement

After we evaluated the quality of the mock objects our

technique generates, we need to assess how effectively these

objects serve the goal for which they were created.

Mock objects can be created for a variety of reasons. For

example when the return value of a certain object (e.g. service,

database query) affects branching statements in the system we

want to test. The objective in this case is to improve coverage.

Mock objects are also created when an object has long

execution times (e.g. large file upload). The goal here is to

improve performance during the test data generation process.

To evaluate our mock object generation technique we have

to prove that the objectives we are trying to achieve are being

met when they are relevant. We designed an experiment to

answer the following research questions:

RQ2: Does the use of automatically synthesized mocks

simplify test generation for coverage adequacy?

 To answer this research question, we need to compare the

levels of coverage achieved when using real objects and

mocked objects. The applications we need to select for this

experiment have to possess certain characteristics. They need

to use values returned from database queries or calls to

external services in control flow structures. We will use the

same test data generation technique on those applications

using the real objects and then repeat the experiment using the

mock objects generated by AUTOMOCK and compare

coverage.

RQ3: Does the use of automatically synthesized mocks

improve the performance of testing?

To answer this research question, we need to compare

execution times needed to reach a certain level of coverage

with both real and mocked objects. The level of coverage is

specified to provide a baseline when comparing the two

techniques. The applications selected for this experiment need

to have objects that require long execution times to be able to

better observe the benefit.

IV. ACKNOWLEDGEMENTS

This paper would not have come to light without the

Dagstuhl seminar 10111, where the core ideas have been

formulated and discussed.

REFERENCES

[1] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Trans. Soft. Eng., vol. 27, n. 2, pp. 99-123, 2001.

[2] Saff, D., Artzi, S., Perkins, J. H., and Ernst, M. D. Automatic test
factoring for java. In Proceedings of the 20th IEEE/ACM international
Conference on Automated Software Engineering (Long Beach, CA,
USA, November 07 - 11, 2005). ASE '05. ACM, New York, NY, 114-
123, 2005.

[3] Tillmann, N. and Schulte, W. Mock-object generation with behavior. In
Proceedings of the 21st IEEE/ACM international Conference on
Automated Software Engineering (September 18 - 22, 2006). Automated
Software Engineering. IEEE Computer Society, Washington, DC, 365-
368., 2006.

[4] Automated Environment Generation for Software Model Checking,
Oksana Tkachuk, Matthew Dwyer, Corina S. Pasareanu, in Proceedings
of the 18th IEEE International Conference on Automated Software
Engineering, 2003.

3

1. S = empty set

2. foreach uninterpreted function call i do

3. analyse the interface of i, and let the return type of i be t

4. add a mock function mf with the same interface as i

5. add a variable mi of type t to the input domain of the SUT

6. replace the call to i with a call to mf

7. add mi to S

8. end foreach

9. while not done do

10. execute the SUT dynamically and symbolically in parallel with an input I

11. form a path condition pc from the result of the symbolic execution

12. if the dynamic execution raises an assertion violation in the SUT then

13. add the assertion a to the path condition pc, describing the violation which raised the exception

14. if the symbolic variables in a are (transitively) dependent on a mock variable mi then

15. replace every symbolic variable in pc with its concrete value, except those in S

16. if pc is satisfiable then

17. add the simplified constraints over mi as a postcondition to the mock function

18. else

19. raise likely bug exception

20. endif

21. else

22. raise bug

23. endif

24. endif

25.end while

Algorithm 1. Automated synthesis of mock postcondition using symbolic execution

4

