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Abstract—During testing, there are several reasons to exclude 

some of the components used by the unit under test, such as: (1) 

the component affects the state of the world in an irreversible 

way; (2) the component is not accessible for testing purposes (e.g., 

a web service); (3) the component introduces a major 

performance degradation to the testing phase (e.g., due to long 

computations); (4) it is hard (i.e., statistically unlikely) to obtain 

the output required by the test from the component. In such 

cases, we replace the component with a mock one. In this paper, 

we integrate the synthesis of mock components with the 

generation of test cases for the current testing goal (e.g., 

coverage). To avoid the generation of meaningless data, which 

may lead to assertion violation not related to bugs, we include a 

weak mock postcondition. We consider ways to automatically 

synthesize such postcondition. We empirically evaluate the 

quality of the mocks generated by our approach, as well as the 

benefits mocks introduce in terms of improved coverage and 

improved performance of the test case generator. 

Keywords: test case generation; code analysis; automated 

software testing. 

I.  INTRODUCTION 

Code-based test generation has made tremendous progress 
in the recent past: Today, modern systems are able to generate 
inputs that drive execution to almost any point in the control 
flow. Automation, however, reaches its limits when it comes to 
controlling the test’s environment: For example, if the tested 
code accesses an external component such as a service or a 
database, then this component needs to be controlled by the test 
as well in order to prevent unwanted side-effects like data loss. 

A common solution in test generation is to create a stub 
version (mock) of the component that is difficult to control. 
Such a mock object provides the same interface as the 
component it represents, but returns predefined values on 
method calls. In this paper, we propose an approach that 
automatically generates such mock objects, helping to drive 
test generation towards its goal in cases where automatic 
generation is difficult or impossible otherwise. The solution 
applied is to map the mocked behavior to the input space of the 
test generation problem: For each method call on the mock 

object in the test case we need to find an appropriate value that 
the mock returns during execution. 

 A main difficulty in this approach is that within the scope 
of a test case the mocked component should behave similarly 
to the real component. If this is not the case then that is 
problematic for two reasons: First, it can lead to a false sense of 
confidence in the correctness, because a coverage goal may be 
satisfied in a way that cannot occur in practice. Second, it can 
lead to an incorrect test failure (false positive), i.e., a failure 
that is not caused by a real bug but by an invalid mocked 
behavior. 

To overcome this problem, we investigate different 
methods to infer knowledge about the real behavior of the 
mocked instance. Such knowledge can be approximated from 
existing execution traces or dynamic invariants on the 
component’s behavior derived from these traces, or it can be 
derived precisely by solving path constraints derived from the 
mocked component. 

Automated mocking has been addressed in the past: Saff et 
al. [2] take an existing test case and try to replace some of the 
used objects with automatically generated mocks that simulate 
the same behavior, thus aiming to improve performance and 
making it easier to isolate and detect bugs. Tillmann and 
Schulte [3] implement mock objects that represent symbolic 
variables, which the test generator can interpret as inputs. A 
main objective of this approach is to test for robustness, i.e., 
unlikely (but admissible) test inputs are desired. Automated 
mock generation is also related to environment generation in 
software model checking: Tkachuk et al. [4] simulate a 
component’s environment based on user specified assumptions 
and additional information derived with different types of static 
analysis. 

In detail, the contributions of this paper are as follows: 

 Approximation of method postconditions 
representing realistic behavior based on traces and 
dynamic invariants (Section II). 
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testMe(Date startDate, Date endDate) { 

  conn = new HotelConnection(); 

  try { 

    resp = conn.makeReservation(startDate,  

           endDate); 

    reserved = false; 

    do { 

       if (resp.available()) { 

          assert(endDate > startDate); 

          // money processing 

       } else { 

          // ask user for different dates 

       } 

    } while (!reserved); 

  } catch(WrongResDatesException e) { 

     // error handling code 

  } 

} 

Figure 1. Running example 

 Automatic derivation of mock objects based on 
method postconditions and test goals such as 
coverage (Section II). 

 Derivation of method postconditions based on 
symbolic execution of path constraints (Section 
IIA). 

 Evaluation of the derived mock objects in terms of 
their quality, i.e., false negatives / positives 
(Section IIIA) 

 Evaluation of the improvements achieved with auto-
mocking in terms of coverage increase and 
performance gains (Section IIIB). 

II. MOCK SYNTHESIS 

Consider for example the code shown in Figure 1 that does a 

hotel reservation for a specific date range. Internally it uses 

another service via a HotelConnection. For testing however, we 

cannot use this service since this would result in many 

unintentional reservations. Thus, the HotelConnection needs to 

be mocked. 

 

 For the test generation this means that, in addition to the 

method inputs, sensible return values for the mocked methods 

have to be generated with respect to the testing goal. In our 

example this would be a start and end date as input to the 

method and either a response object or a 

WrongResDatesException exception as return value of the 

makeReservation method.  

Furthermore, the mock has to have the same interface as the 

original object, but it does not need to preserve all its 

semantics. However, the returned values must not cause any 

exceptional behavior. Thus, they have to satisfy weak 

postconditions, which are relaxed postconditions of the method 

that is mocked. These weak postconditions can either be 

specified manually or automatically. One way to obtain 

postconditions automatically is to trace the program (or the 

object to be mocked) when it is regularly used and infer 

dynamic invariants from the traced data (e.g. by using Daikon 

[1]).  These invariants can then be used as additional 

constraints when generating return values for the mocked 

methods. Another way to obtain or refine these invariants is to 

use an algorithm that is based on symbolic execution and is 

described below. 

A. A symbolic execution algorithm to infer an approximate 

mock postcondition 

 

 The pseudocode for the symbolic execution algorithm used 

to infer an approximate mock postcondition is provided at the 

end of the paper. According to the algorithm, when required 

by the test generator, a mock value is produced, initially with 

an empty mock postcondition. When an assertion is reached 

which fails, the path condition produced by symbolic 

execution along the failing path is considered. The constraints 

on mock variables in the path condition are passed to a solver. 

If the constraints are satisfiable, they are added to the mock 

postcondition. Otherwise we have a “likely” bug, i.e., an 

assertion violation caused by the program, not by a too 

permissive mock postcondition. The bug is not certain since 

the mock postcondition is an approximate one, hence it may 

still generate meaningless values. It should be noticed that 

even when the constraints are satisfiable we may have a 

problem, in that we may miss a bug and generate a wrong (too 

restrictive) mock postcondition . So, in general we may have 

both false positives (reported bugs which are not real bugs) 

and false negatives (missed bugs). 

 Let us consider the running example and assume we want 

to mock the function conn.makeReservation. Further let us 

assume that the assertion assert(endDate > startDate) is 

violated during the execution of testMe. The symbolic path 

condition corresponding to the execution (including the 

assertion) is: 

 

!thrown(WrongResDatesException) && resp.available() && 

(endDate > startDate) 

 

After negating it and keeping only mock variables, we 

synthesize the following mock postcondition: 

 

thrown(WrongResDatesException  || !resp.available() 

 

 This postcondition expresses quite precisely the mock 

values that must be generated in this case to avoid raising the 

exception. Either the reservation service replies by raising the 

exception WrongResDatesException or it replies that the 

reservation is unavailable. Since the path condition includes 

symbolic variables which are dependent on our mock 

function/object, it could be that the mock function we created 

is (partly) responsible for the assertion violation, and therefore 

indicates a false alarm. Thus the goal is to try and refine the 

post condition of our mock function in order to avoid such 

false alarms.  

 A more precise mock postcondition is obtained if mock 

input variables are included. In the running example, we get: 
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thrown(WrongResDatesException) || !resp.available() || 

(endDate <= startDate) 

 

This mock postcondition specifies that we need to either throw 

an exception or reply that reservation is unavailable only if the 

condition (endDate <= startDate) is false. Otherwise, such a 

condition on the mock inputs is enough to make the 

postcondition true. 

III. EMPIRICAL STUDY DESIGN 

A. Assessment of the quality of the syntesized mocks 

We intend to investigate the following research questions: 

RQ1: How good are the mocked data generated using our 

approach? 

 RQ1.1: Can our automatically generated mocked data 

 find all bugs that are found by the manually generated 

 mock, with exact mock postcondition? Is the approximate 

 mock postcondition masking any real bug? 

 RQ1.2: How many bugs found by the automatically 

 generated  mock are not real bugs, being side effects of the 

 mock postcondition approximation?  

 RQ1 is trying to assess the quality of our automatically 

generated mocked data. In order to answer RQ1, we compare 

the bugs (assertion violations) found by our mocked data with 

the ones found by the manually generated mock, which 

contains the exact mock postcondition. We split RQ1 into two. 

In RQ1.1, we investigate the false negatives, i.e., the bugs 

missed by the automatic mock because its postcondition does 

not permit the generation of data that reveal them. In RQ1.2, 

we analyze bugs that are originated because the data generated 

by the automatically synthesized mock do not comply with the 

true mock postcondition, hence giving raise to assertion 

violations. These are false positives of our technique.  

 The metrics we use to address RQ1.1 and RQ1.2 are the 

number of false negatives and false positives respectively. The 

former are obtained by manually defining the exact mock 

postcondition and then determining the number of assertion 

violations raised with such mock, which cannot be raised 

when the approximate postcondition is used. For the latter we 

count the number of false alarms reported by the synthesized 

mock, i.e., assertion violations which are not bugs. We repeat 

this assessment for all alternative mock synthesis techniques 

and technique variants described in this paper. 

 

B. Assessment of coverage and performance improvement 

After we evaluated the quality of the mock objects our 

technique generates, we need to assess how effectively these 

objects serve the goal for which they were created.  

Mock objects can be created for a variety of reasons. For 

example when the return value of a certain object (e.g. service, 

database query) affects branching statements in the system we 

want to test. The objective in this case is to improve coverage.  

Mock objects are also created when an object has long 

execution times (e.g. large file upload). The goal here is to 

improve performance during the test data generation process. 

To evaluate our mock object generation technique we have 

to prove that the objectives we are trying to achieve are being 

met when they are relevant. We designed an experiment to 

answer the following research questions: 

  

RQ2: Does the use of automatically synthesized mocks 

simplify test generation for coverage adequacy? 

 

 To answer this research question, we need to compare the 

levels of coverage achieved when using real objects and 

mocked objects.  The applications we need to select for this 

experiment have to possess certain characteristics. They need 

to use values returned from database queries or calls to 

external services in control flow structures. We will use the 

same test data generation technique on those applications 

using the real objects and then repeat the experiment using the 

mock objects generated by AUTOMOCK and compare 

coverage. 

 

RQ3: Does the use of automatically synthesized mocks 

improve the performance of testing? 

 

To answer this research question, we need to compare 

execution times needed to reach a certain level of coverage 

with both real and mocked objects. The level of coverage is 

specified to provide a baseline when comparing the two 

techniques. The applications selected for this experiment need 

to have objects that require long execution times to be able to 

better observe the benefit.  
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1. S = empty set  

2. foreach uninterpreted function call i do  

3.  analyse the interface of i, and let the return type of i be t  

4.  add a mock function mf with the same interface as i  

5.  add a variable mi of type t to the input domain of the SUT  

6.  replace the call to i with a call to  mf 

7.  add mi to S  

8. end foreach  

 

9.  while not done do  

10.    execute the SUT dynamically and symbolically in parallel with an input I  

11.   form a path condition pc from the result of the symbolic execution  

12.   if the dynamic execution raises an assertion violation in the SUT then  

13.      add the assertion a to the path condition pc, describing the violation which raised the exception  

14.      if the symbolic variables in a are (transitively) dependent on a mock variable mi then  

15.         replace every symbolic variable in pc with its concrete value, except those in S  

16.         if pc is satisfiable then  

17.            add the simplified constraints over mi as a postcondition to the mock function  

18.         else  

19.            raise likely bug exception  

20.         endif  

21.      else  

22.         raise bug  

23.      endif  

24.  endif  

25.end while 

Algorithm 1. Automated synthesis of mock postcondition using symbolic execution 
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