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ABSTRACT. In recent years, manufacturers of processors are focusing on parallel archi-
tectures in order to increase performance. This shift in hardware evolution is provoking
a fundamental turn towards concurrency in software development. Unfortunately, de-
veloping concurrent programs which are correct and efficient is hard, as the underlying
programming model is much more complex than it is for simple sequential programs. The
goal of this research is to study and to develop program analysis to support and improve
concurrent software development in declarative languages. The characteristics of these lan-
guages offer opportunities, as they are good candidates for building concurrent applications
while their simple and uniform data representation, together with a small and formally
defined semantics makes them well-adapted to automatic program analysis techniques. In
our work, we focus primarily on developing static analysis techniques for detecting race
conditions at the application level in Mercury and Prolog programs. A further step is to
derive (semi-) automatically the location and the granularity of the critical sections using
a data-centric approach.

1. Introduction and Problem Description

Since the mid-70s, the power of the microprocessor, which is the basic component
of the computer responsible for instruction execution and data processing, has increased
constantly. For decades, we have witnessed a dramatic and continuous growth of clock
speed, which is one of the main factors determining the performance of processors [Olu05].
Recently, however, this growth appears to have stabilized. Indeed, the manufacturers en-
counter several physical problems, notably the impossibility to dissipate the heat and a
too high power consumption [Sut05]. Instead of driving clock speeds and straight-line in-
struction throughput ever higher, processor manufacturers are, for these reasons, turning
to hyperthreading and multicore architectures, i.e. processors with multiple identical units
of calculation [Her06, Sut05, Lu08].

This hardware revolution is going to change fundamentally the way people write soft-
ware. Indeed, to benefit from the power of the new processors, software must be able to
exploit their innate parallelism, which is not the case for traditional software which is, in
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most cases, written following the sequential model of programming. In this new context,
software must be designed following the concurrency model [Her06, Her08, Mat04, Mag99,
BA90, Hug08] of programming: the application is made of a set of interacting processes
that are executed, at least conceptually, in parallel and often in a shared memory space
[Don08].

Unfortunately, developing concurrent programs that are correct and efficient is really
hard, as potential bugs related to concurrent execution are difficult to detect and to isolate.
Indeed, the underlying programming model is much more complex than it is for simple
sequential programs [Lu08, BA90, Gro07, AZ08]. What makes concurrent programming
hard in any language is that one has to deal with the interactions between processes and
the nondeterministic interleaving of executions, especially if these processes handle shared
memory. That is how undesirable phenomena, which are called race conditions, occur: two
or more threads attempt to change a shared piece of data at (almost) the same time and
the final value of the data depends simply in what order threads access it [Hug08|. These
race conditions occur because of a bad synchronization between threads [Lu08, BA90].

To avoid errors, so-called critical sections have to be identified in the source code
and mutual exclusion between execution of these sections must be guaranteed, using for
example locks [BA90] or software transactional memories (STM) [Sha97, Lar06, Jon07,
Har05, Har03, Mul06, Mik07, Kel05]. Whatever the way in which this mutual exclusion is
ensured, a crucial point is to determine the location and the size of the critical sections. On
the one hand, if they are too small or badly located, it can introduce race conditions at the
application level. One the other hand, it is essential to keep the critical section as small as
possible in order not to loose more performance than necessary and to avoid inter-blocking
[Gro07]. Moreover, ensuring mutual exclusion is far from trivial. Locks are not composable
[Har05] — i.e. correctly protected pieces of codes can’t be simply reused to form larger
correctly protected operations — and using them can lead to deadlocks, livelocks, priority
inversion [BA90, Ho05, Eng03, Nai07, Bec08] or security breaks [Tip06, Che04, How09].
While STM avoid these issues, their implementation is complex and irreversible operations,
like i/o operations, are traditionnaly prohibited inside the atomic blocks [Gro07, Men08,
Har09, Dal09, Luc08, Boe09].

Obviously, programmers desperately need a higher-level programming model for con-
currency than what languages offer today [Sut05]. Logic programming languages are known
to be particularly well-adapted to parallelism [Tic91] but program analysis is needed as it
can be used to detect race conditions and other bugs related to concurrency. It can also be
used to (help to) determine the appropriate location and granularity of the critical sections.

2. Background and Overview of the Existing Literature

The interest of program analysis to support concurrent programming is increasingly
prevalent with the actual multicore crisis. In the context of explicit parallelism — where the
programmer decides where and how to integrate the parallelism in his program, classical
analysis tools target to detect race conditions [McC06, Pra06]. Some of these tools are on
the base of transformation programs methods, the goal of which is to combine conceptual
advantages of STM with those of locks [McC06, Pra06, HicO6]. But these tools are only
able to detect low-level race conditions —i.e. simple reading and writing of a memory space.
These tools are not able to detect the errors that occur at the level of the logic of the
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application. For example, bad utilisation of critical sections can lead to violate an invariant
related to a data structure of the application.

Recently, the problem has caught the attention in the context of declarative languages
and very recent works are targeting race conditions detection in these languages [Chrl0,
Cla09]. In the context of object-oriented languages, [Bec08] proposes to use typestate
specifications [Del04] and linear logic [Gir87] to express invariant related to an object and the
input and output conditions of its methods. The goal is to statically detect race conditions
involving these objects at the application level on the basis of the specified behaviour. A
related work [Har06] presents a dynamic analysis for STM in Haskell which ensures that an
invariant will not be violated during an execution.

A still more ambitious but complex objective is to (semi-)automatically determine the
location and the size of the critical sections. Recent work [Vaz06, McCO06] has proposed a
data-centric approach to synchronize threads which consists of a two-step procedure: first,
the programmer associates synchronization constraints to the data structures that must
be accessed atomically; second, these information are used to complete, through program
transformation, the source code with the adequate locking mechanism where the synchro-
nisation is necessary. One main advantage of this approach is the control of the granularity
of the concurrent system.

Despite numerous works about concurrency, we are far from being able to detect all
kind of errors related to concurrent programming [Vaz06, Lu08]. In most cases, analysis is
able to detect synchronization mistakes related to only one variable. Moreover, it generally
does not deliver pertinent informations about the way one can correct it [Lu08|. Test case
generation to expose concurrency errors must also be considered, but has to cope with
a high complexity issue: the number of possible interleaving to consider is exponential
[Tay92, Yan97]. This imposes to explore subtle methods to produce pertinent tests in
practice [Lu08, Qad04].

Although the primary goal of these program analysis is to assist the programmer in
writing concurrent programs, they can also be useful to guide so-called implicit parallelism
transformation that aim at the automatic parallelisation of programs [Cos08]. This field is
particularly active in the context of logic languages [Bon08, Gup01, Cha08, Mou08, Cas08,
Cas07]. In this kind of code analysis, the detection and the exploitation of the parallelism
is made completely automatically, often at compilation time, without clear contribution of
the programmer.

3. Goal of the Research

The goal of this research is to study and to develop program analysis to support and
improve concurrent software development in declarative languages. In contrast with more
classic imperative ones, declarative languages allow to describe the logic behind a solution
instead of having to describe the step-by-step process of how this solution must be computed
by the computer. Declarative languages are mostly pure —i.e. they do not allow programs to
provoke side-effects [Hen96] — which is known to increase the productivity of the developers
and the reliability of the programs, and makes these languages good candidates to use for
building concurrent applications. Moreover, their simple and uniform data representation,
together with a small and formally defined semantics, makes these languages well-adapted
to automatic program analysis techniques. In our work, we focus primarily on Mercury.
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Mercury [Som96] is a modern logic programming language, which is designed to develop
modular and reliable large-size software applications.

4. Current Status of the Research

This research is still in its beginning. For the moment, we focus on the dissection of
the state of the art and we familiarize with the very large field of concurrency by reading
papers, books and by trying to make constructive contacts with other researcher working
on related projects. We are trying to figure out in what directions it is the most valuable
to guide the research. Since the latter is highly related to logic programming, the ICLP
Doctoral Consortium would be an excellent opportunity, not only to acquire a profound
complement to the state of the art, but also to get in touch with both experts and other
PhD students working on related topics and to exchange point of views and opinions about
my future work. It goes without doubt that the consortium would be a valuable experience
from which we will be able to take full advantage in pursuing our project.

5. Open Issues and Expected Achievements

We plan to develop static analysis techniques for detecting race conditions at the ap-
plication level in Mercury in first phase, Prolog in a following phase, languages that are
particularly well-suited for concurrency [Bon08, Tan07, Wan08]. Such an analysis can be
done based on the location of the critical sections and a abstract specification of the be-
haviour of the shared data. We study how a very expressive formalism, such as linear
temporal logic [Pnu77], can be used for this behavioural specification.

Also in the context of declarative languages, a further step is to derive (semi-) auto-
matically the location and the granularity of the critical section, possibly by extending a
data-centric approach as suggested by recent work [Vaz06, McC06]. The particular type
representation in declarative languages, like Mercury, is expected to fit well with such an
analysis and to open new perspectives compared to traditional imperative languages.

Further elements of interest are the automatic generation of test cases targeted to
detecting concurrency bugs and how our techniques can be used to advance research on
implicit parallelism [Cos08] in declarative languages.
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