
Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 241–247

http://www.floc-conference.org/ICLP-home.html

PROGRAM ANALYSIS FOR CODE DUPLICATION IN LOGIC

PROGRAMS

CÉLINE DANDOIS

University of Namur
Faculty of Computer Science
rue Grandgagnage 21
B-5000 Namur (Belgium)
E-mail address: cda@info.fundp.ac.be

URL: http://www.fundp.ac.be/info

Abstract. In this PhD project, we deal with the issue of code duplication in logic pro-
grams. In particular semantical duplication or redundancy is generally viewed as a possible
seed of inconvenience in all phases of the program lifecycle, from development to mainte-
nance. The core of this research is the elaboration of a theory of semantical duplication,
and of an automated program analysis capable of detecting such duplication and which
could steer, to some extent, automatic refactoring of program code.

1. Introduction and problem description

Program understanding or program comprehension refers to the process of acquiring
knowledge about the structure and the functioning of a computer program [Rug96]. Such
knowledge proves useful in support of a variety of software-engineering related activities
including documentation, corrective and adaptive maintenance, migration and evolution
of existing software systems [Sto06]. As a research area, program comprehension spans
several subfields ranging from cognitive science and software psychology [Cou83, Shn93],
over the development of abstract comprehension models [Bro83, Sol84, Sne98] and software
visualization techniques [Bal96, JTS98] to using program analysis to (partially) automate
program comprehension.

In this project, we will investigate program analysis techniques that allow to detect
duplication within the source code of a given program. In its most general form, the notion
of duplication refers to code fragments that are related in the sense that they subsume
the same functionality. Note that this definition covers not only code fragments that are
textually similar (“copy-paste programming”) but also code fragments that are function-

ally similar but possibly implemented in a different way. Since duplication constitutes an
existential and non-trivial program property, the discovery of duplication is obviously an
undecidable problem that can nevertheless be approximated by using program analysis.

1998 ACM Subject Classification: D.1.6, D.2.7, F.3.2.
Key words and phrases: logic programming, program comprehension, static program analysis, code du-

plication, code clone, software engineering.

c© C. Dandois
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.241

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

242 C. DANDOIS

Detailed knowledge about duplication in a program is valuable for various reasons :

• Several studies show that software in which code duplication is present is more error-

prone and difficult to understand and maintain than software without duplication
[Kos06, Wal07a]. Hence the presence of certain forms of duplication is generally
considered a bad smell [Fow99] and believed to have a negative impact on software
evolution [Gei06]. Although there is some disagreement as to know whether du-
plication removal is always beneficial [Kap06], there seems to be a consensus that
duplication should at the very least be detected [SD02, Joh94, Man06, JM96, Fow99].

• From a purely technical viewpoint, duplication reflects redundancy in the source code
since it contains distinct code fragments that are semantically equivalent. Although
removing such redundancy may offer a practical interest (e.g. code compaction that
aims at decreasing the executable program size [Bes03]), it also raises an interest-
ing theoretical question [Kos06] whether and to what extend program code can be
normalized – i.e. being brought into a form such that it contains as few duplica-
tion as possible – in a sense similar to the normalization of relational databases
[Kho02, Lee95].

• Identifying duplication in a program allows to steer advanced analyses and transfor-
mations on the program code such as refactoring [Fow99], cliche recognition [Rug96],
aspect mining [JZ08, AK07], virus detection [Wal07b] and plagiarism detection
[Lan04]. In addition, an analysis for detecting duplication could be integrated in the
code development process in such a way that the creation of duplicates of a certain
size is avoided from the beginning [Lag97].

2. Background and overview of the existing literature

No consensus exists in the literature about an exact definition of code duplication. One
also finds the notion of code clones, although this notion sometimes describes textually
similar fragments, sometimes refers to a more general case of duplication [Kos06, Wal07a].
The scope of the proposed definition often depends on the detection technique.

This lack of standardization about code duplication is clearly addressed in three impor-
tant recent papers which constitute complete overviews of this domain: [Kos06], [Roy07]
and [Roy09]. In addition to code duplication terminology, they treat the reasons for code
duplication and its consequences, they give the general code duplication detection process,
they describe, then evaluate and compare, the existing detection techniques and tools, they
talk about visualization, removal, avoidance and management of duplication, they explain
evolution and quality analyses based on duplication, they synthesize the applications and
related research for code duplication detection, and finally, they expose the open problems
in this research field.

Among the vast amount of research done about code duplication during the last decade,
to the best of our knowledge, the problem has not received much attention in a logic
programming setting. The majority of the results have indeed been reported upon in the
context of imperative and object-oriented languages, as showed in the above references. In
the functional paradigm, even if it has not really more success than the logic paradigm,
some works are emerging. We can point [Li09] which presents the tool Wrangler, able of

PROGRAM ANALYSIS FOR CODE DUPLICATION IN LOGIC PROGRAMS 243

detecting duplication, among other things, in Erlang programs. [Bro10] is another work,
complementing the latter, which proposes a code duplication detection technique for Haskell,
built into the framework of the Haskell Refactorer (HaRe). Some language-independent
detection tools exist but, as experimented in [Roy09], such tools lose in precision what they
gain with their versatility since they cannot be tuned for the target language.

Furthermore, despite the fact that useful techniques and tools have been developed,
most of these code duplication detection techniques are based on the text, syntax and struc-

ture of a particular programming language. As such, they are capable of detecting dupli-
cated syntactical programming constructs (real duplication in the terminology of [Roy07])
rather than duplicated program logic within the source code of a program [Kos06, Roy07].
Nevertheless, concentrating on the program logic or the computations performed by the
program rather than its syntactical appearance is deemed essential [Kos06, Roy07] if du-
plication detection techniques are to become more powerful, more generally applicable and
independent of particular programming language constructs.

3. Goal of the research

The cornerstone of this project is to study duplication in programs written in a logic
programming language. Compared with other programming paradigms, logic program-
ming languages have an arguably simple syntax and a small, clear and well-defined seman-
tics. These characteristics make the development of a duplicated-code analysis both more
manageable (less dependent on cumbersome syntax) and at the same time more powerful.
Indeed, a logic program basically specifies a number of relations that hold between data
objects rather than the algorithms to compute certain results as is the case in an impera-
tive language. Consequently, rather than comparing syntactical algorithmic constructs, one
can directly compare control- and data-flow relations, in particular when the program is
augmented with mode information [Sma00].

4. Current status of the research

This project is still in its infancy and no result have been produced yet. For the
moment, we focus on the dissection of the state of the art and we familiarize with some
previous recent work realized inside our research group. Indeed, in [Van05], an initial study
was made on the concept of code duplication in logic programs and the outline for a basic
code duplication analysis of logic programs has been reported upon in [Van08]. The current
project presents the natural continuation of both papers. The first ideas extracted from
these works were presented at the GRASCOMP 2010 Contact Day, as a hotbed for future
development.

5. Open issues and expected achievements

Although promising, devising a duplicated-code analysis for logic programs remains a
daunting and non-trivial task. Finding duplication between the data-flow relations exhib-
ited by a program is equivalent to finding isomorphic subgraphs in the data-flow graph
of a program which is known to be NP-hard [Kri01, Kom01]. Consequently, sophisticated
algorithms guided by heuristics will be necessary in order to make the analysis scalable to
medium- and large-size programs. Topics of interest that will be studied in this project

244 C. DANDOIS

include the following:

• Elaborate a theory of duplication in logic programs, including a classification of
different kinds of duplication. On the one hand, this will allow to formally define
what duplication is about and to state and prove certain results on analyses that
try to detect duplicated code. On the other hand, these results could pave the way
to develop a theory of normalization of logic programs by removing redundancies.
A possible starting point for the latter topic is [Deg07] in which a first attempt
was made to define a normal form in the restricted setting of Mercury [Som96] pro-
grams. However, [Deg07] does not deal with a number of important issues such as
the normalization of data terms and predicate arguments.

• Based on the theory developed above, we will aim at developing an analysis that is
able to detect duplication into a logic program up to a certain degree. Issues that
need to be taken into account include precision (maximize the number of real du-
plicates while possibly minimizing the number of false positives), granularity (what
is considered a useful duplicate), and scalability of the analysis. With respect to
granularity, it seems that the notion of a useful duplicate may depend on the con-
text of the analysis or the transformation aimed for. Hence, it seems desirable to
design an analysis that can be parameterized with respect to the characteristics of
the duplication it should search for.

• We will study the relation with advanced programming analysis and transformation
techniques. A first topic of interest is automatically detecting opportunities for
refactoring source code. Preliminary work on refactoring of logic programs [Ser08,
Van05] has showed that a number of interesting refactorings can effectively be based
on knowledge about duplication in a program. Nevertheless, the exact coupling
between duplication in a program and the possibilities for automatic refactoring
remains an open problem.

Another topic of interest is the automatic detection of cross-cutting concerns,
sometimes called aspect-mining [Kic96, AK07]. Basically, a cross-cutting concern is
a functionality of the program that is implemented by a set of semantically similar
code fragments that are scattered through the source code of a program (a typical ex-
ample being the “logging” functionality within an application). Recent research has
showed that duplication detection techniques can be beneficial for aspect-mining
but stronger techniques capable of finding semantically related program code are
necessary [Bru05, AK07].

Finally, since a logic program can be seen as a set of relations capturing data-flow infor-
mation, we expect our research on automatically finding duplication within logic programs
to be beneficial for analyses trying to find semantically related code in other programming
languages and paradigms.

Acknowledgement

This PhD research is done under the supervision of Professor Wim Vanhoof.

PROGRAM ANALYSIS FOR CODE DUPLICATION IN LOGIC PROGRAMS 245

References

[AK07] Kim Mens Andy Kellens and Paolo Tonella. A survey of automated code-level aspect mining
techniques. Transactions on Aspect-Oriented Software Development, 4(4640):143–162, 2007.

[Bal96] Thomas Ball and Stephen G. Eick. Software visualization in the large. IEEE Computer, 29(4):33–
43, 1996.

[Bes03] Árpád Beszédes, Rudolf Ferenc, Tibor Gyimóthy, André Dolenc, and Konsta Karsisto. Survey of
code-size reduction methods. ACM Computing Surveys, 35(3):223–267, 2003. doi:http://doi.acm.
org/10.1145/937503.937504.

[Bro83] Ruven Brooks. Towards a theory of the comprehension of computer programs. International Jour-
nal of Man-Machine Studies, 18(6):543–554, 1983.

[Bro10] Christopher Brown and Simon Thompson. Clone detection and elimination for haskell. In PEPM
’10: Proceedings of the 2010 ACM SIGPLAN workshop on Partial evaluation and program manip-
ulation, pp. 111–120. ACM Press, 2010.

[Bru05] Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom Tourwé. On the use of clone
detection for identifying crosscutting concern code. IEEE Trans. Software Eng, 31(10):804–818,
2005. doi:http://doi.ieeecomputersociety.org/10.1109/TSE.2005.114.

[Cou83] Neal S. Coulter. Software science and cognitive psychology. IEEE Transactions on Software Engi-
neering, 9(2):166–171, 1983.

[Deg07] François Degrave and Wim Vanhoof. Towards a normal form for mercury programs. In Andy
King (ed.), LOPSTR, Lecture Notes in Computer Science, vol. 4915, pp. 43–58. Springer, 2007.
doi:http://dx.doi.org/10.1007/978-3-540-78769-3 4.

[Fow99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring: improving
the design of existing code. Object Technology Series. Addison-Wesley, 1999.

[Gei06] Reto Geiger, Beat Fluri, Harald Gall, and Martin Pinzger. Relation of code clones and change
couplings. In Luciano Baresi and Reiko Heckel (eds.), Fundamental Approaches to Software En-
gineering, 9th International Conference, FASE 2006 March 27-28, 2006, Proceedings, Lecture
Notes in Computer Science, vol. 3922, pp. 411–425. Springer, 2006. doi:http://dx.doi.org/10.1007/
11693017 31.

[JM96] Claude Leblanc Jean Mayrand and Ettore M. Merlo. Experiment on the automatic detection
of function clones in a software system using metrics. In Proceedings of the 12th International
Conference on Software Maintenance (ICSM ’96), pp. 244–253. 1996.

[Joh94] John Howard Johnson. Substring matching for clone detection and change tracking. In Proceedings
of the International Conference on Software Maintenance (ICSM ’94), pp. 120–126. 1994. doi:
10.1109/ICSM.1994.336783.

[JTS98] Marc H. Brown John T. Stasko, John B. Domingue and Blaine A. Price. Software Visualization:
Programming As a Multimedia Experience. Cambridge, Mass: MIT Press, 1998.

[JZ08] Yuehua Lin Jing Zhang, Jeff Gray and Robert Tairas. Aspect mining from a modelling perspective.
Int. J. of Computer Applications in Technology, 31:74–82, 2008.
URL http://www.inderscience.com/link.php?id=17720

[Kap06] Cory Kapser and Michael W. Godfrey. Cloning considered harmful. In Proceedings of the 13th
Working Conference on Reverse Engineering (WCRE2006), pp. 19–28. IEEE Computer Society,
2006. doi:http://doi.ieeecomputersociety.org/10.1109/WCRE.2006.1.

[Kho02] V. V. Khodorovskii. On normalization of relations in relational databases. Program. Comput.
Softw., 28(1):41–52, 2002. doi:http://dx.doi.org/10.1023/A:1013759617481.

[Kic96] G. Kiczales. Aspect-oriented programming. ACM Computing Surveys, 28(4es), 1996.
[Kom01] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in source code. In

Proceedings of the 8th International Symposium on Static Analysis (SAS). Springer-Verlag, Paris,
France, 2001.
URL http://www.cs.wisc.edu/~raghavan/sas01.pdf

[Kos06] Rainer Koschke. Survey of research on software clones. In Rainer Koschke, Ettore Merlo, and
Andrew Walenstein (eds.), Duplication, Redundancy, and Similarity in Software, Dagstuhl Semi-
nar Proceedings, vol. 06301. Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2006.
URL http://drops.dagstuhl.de/opus/volltexte/2007/962

246 C. DANDOIS

[Kri01] Jens Krinke. Identifying similar code with program dependence graphs. In Proceedings Eigth Work-
ing Conference on Reverse Engineering (WCRE’01), pp. 301–309. IEEE Computer Society, 2001.
doi:10.1109/WCRE.2001.957835.

[Lag97] Bruno Laguë, Daniel Proulx, Jean Mayrand, Ettore Merlo, and John P. Hudepohl. Assessing the
benefits of incorporating function clone detection in a development process. In ICSM, pp. 314–321.
1997.

[Lan04] Thomas Lancaster and Culwin Finta. A comparison of source code plagiarism detection engines.
Computer Science Education, 14(2):101–112, 2004.

[Lee95] Heeseok Lee. Justifying database normalization: a cost/benefit model. Inf. Process. Manage.,
31(1):59–67, 1995. doi:http://dx.doi.org/10.1016/0306-4573(94)E0011-P.

[Li09] Huiqing Li and Simon Thompson. Clone detection and removal for erlang/otp within a refactor-
ing environment. In PEPM ’09: Proceedings of the 2009 ACM SIGPLAN workshop on Partial
evaluation and program manipulation, pp. 169–178. ACM Press, 2009.

[Man06] Zoltán Ádám Mann. Three public enemies: Cut, copy, and paste. IEEE Computer, 39(7):31–35,
2006. doi:http://doi.ieeecomputersociety.org/10.1109/MC.2006.246.

[Roy07] C. K. Roy and J. R. Cordy. A survey on software clone detection research. Tech. rep., 2007. TR
2007-541 School of Computing Queen’s University at Kingston Ontario, Canada.

[Roy09] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach. Science of Computer Programming,
74(7):470–495, 2009.

[Rug96] Spencer Rugaber. Program understanding. Encyclopedia of Computer Science and Technology,
1996.

[SD02] Stéphane Ducasse Serge Demeyer and Oscar Nierstrasz. Object-Oriented Reengineering Patterns.
Morgan Kaufmann, 2002.
URL http://www.iam.unibe.ch/~scg/OORP

[Ser08] Alexander Serebrenik, Tom Schrijvers, and Bart Demoen. Improving prolog programs: Refactoring
for prolog. TPLP, 8(2):201–215, 2008. doi:http://dx.doi.org/10.1017/S1471068407003134.

[Shn93] Ben Shneiderman. Software psychology: Sparks of innovation in human-computer interaction,
1993.

[Sma00] J.-G. Smaus, P. Hill, and A. King. Mode analysis domains for typed logic programs. In A. Bossi
(ed.), LOPSTR. Springer-Verlag, 2000.
URL http://www.cs.kent.ac.uk/pubs/2000/1011

[Sne98] Gregor Snelting. Concept Analysis — A New Framework for Program Understanding. In SIG-
PLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE),
pp. 1–10. ACM Press, Montreal, Canada, 1998.

[Sol84] Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge. IEEE Transactions
on Software Engineering, 10(5):595–609, 1984. Special Issue on Software Reusability.

[Som96] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury: an efficient purely
declarative logic programming language. Journal of Logic Programming, 29(1–3), 1996.

[Sto06] Margaret-Anne D. Storey. Theories, tools and research methods in program comprehension: past,
present and future. Software Quality Journal, 14(3):187–208, 2006. doi:http://dx.doi.org/10.1007/
s11219-006-9216-4.

[Van05] W. Vanhoof. Searching semantically equivalent code fragments in logic programs. In S. Etalle and
Springer-Verlag (eds.), Proceedings of LOPSTR 2004, LLNCS, vol. 3573. 2005.

[Van08] W. Vanhoof and F. Degrave. An algorithm for sophisticated code matching in logic programs. In
M. Garcia de la Banda, E. Pontelli, and Springer-Verlag (eds.), Proceedings of ICLP 2008, LLNCS,
vol. 5366. 2008.

[Wal07a] Andrew Walenstein, Mohammad El-Ramly, James R. Cordy, William S. Evans, Kiarash Mahdavi,
Markus Pizka, Ganesan Ramalingam, and Jürgen Wolff von Gudenberg. Similarity in programs.
In Rainer Koschke, Ettore Merlo, and Andrew Walenstein (eds.), Duplication, Redundancy, and
Similarity in Software, no. 06301 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany,
2007.
URL http://drops.dagstuhl.de/opus/volltexte/2007/968

PROGRAM ANALYSIS FOR CODE DUPLICATION IN LOGIC PROGRAMS 247

[Wal07b] Andrew Walenstein and Arun Lakhotia. The software similarity problem in malware analysis.
In Rainer Koschke, Ettore Merlo, and Andrew Walenstein (eds.), Duplication, Redundancy, and
Similarity in Software, no. 06301 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany,
2007.
URL http://drops.dagstuhl.de/opus/volltexte/2007/964

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

