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Abstract. Reasoning about social networks (labeled, directed, weighted graphs) is be-
coming increasingly important and there are now models of how certain phenomena (e.g.
adoption of products/services by consumers, spread of a given disease) “diffuse” through
the network. Some of these diffusion models can be expressed via generalized annotated
programs (GAPs). In this paper, we consider the following problem: suppose we have a
given goal to achieve (e.g. maximize the expected number of adoptees of a product or
minimize the spread of a disease) and suppose we have limited resources to use in trying
to achieve the goal (e.g. give out a few free plans, provide medication to key people in the
SN) - how should these resources be used so that we optimize a given objective function
related to the goal? We define a class of social network optimization problems (SNOPs)
that supports this type of reasoning. We formalize and study the complexity of SNOPs
and show how they can be used in conjunction with existing economic and disease diffusion
models.

1. Introduction

There is a rapid proliferation of different types of graph data in the world today.
These include social network data (FaceBook, Flickr, YouTube, etc.), cell phone network
data [NE08] collected by virtually all cell phone vendors, email network data (such as
those derived from the Enron corpus or Gmail logs), as well as information on disease net-
works [FC08, And79]. In addition, the World Wide Consortium’s RDF standard is also a
graph-based standard for encoding semantic information contained in web pages. There
has been years of work on analyzing how various properties of nodes in such networks “dif-
fuse” through the network - different techniques have been invented in different academic
disciplines including economics [Jac05, Sch78], infectious diseases [FC08], sociology [Gra78]
and computer science [Kem03].
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Many of these methods focus on modeling a specific type of diffusion in an SN and
often, they only rely on the network topology [Wat99, Cow04, Ryc08], rather than on
properties of vertices, and the nature of the relationships between vertices. In this paper,
we first argue that Generalized Annotated Programs (GAPs) [Kif92b, Kif92a, Thi93] and
their variants [Ven04, Kra04, Lu96, Lu93, Dam99] form a convenient method to express
many diffusion models. Next, unlike most existing work in social networks which focus on
learning diffusion models, we focus on reasoning with previously learned diffusion models
(expressed via GAPs). In particular, if we wish to achieve certain goals based on a social
network, how best can we achieve these goals? Two examples are given below.

• (Q1) Cell phone plans. A cell phone company is promoting a new cell phone
plan - as a promotion, it is giving away k free plans to existing customers. Which k
people should they pick so as to maximize the (expected) number of plan adoptees
predicted by a cell phone plan adoption diffusion model they have learned from their
past promotions?
• (Q2) Medication distribution plan. A government combating a disease spread

by physical contact has limited stocks of free medication to give away. Based on
a diffusion model of how the disease spreads (e.g. kids might be more susceptible
than adults, those previously inoculated against the disease are safe, etc.), they want
to find the k people who maximally spread the disease (so that they can provide
immediate treatment to these k people in an attempt to halt the disease’s spread).

Both the above problems are instances of a class of queries that we call SNOP queries.
They differ from queries studied in the past in quantitative (both probabilistic and anno-
tated) logic programming in two fundamental ways: (i) They are specialized to operate on
graph data, (ii) They optimize complex kinds of objective functions. Neither of these has
been studied before by any kind of quantitative logic programming framework, though work
on optimizing objective functions in the context of different types of semantics (minimal
model and stable model semantics) has been studied before[Leo04]. And of course, con-
straint logic programming[Apt03] has also extensively studied optimization issues as well in
logic programming - however, here, optimization and constraint solving is embedded in the
constraint logic program, whereas in our case, they are part of the query over an annotated
logic program.

This paper is organized as follows. In Section 2, we provide an overview of GAPs (past
work), define a social network, and explain how GAPs can represent some types of diffusion
in SNs. Section 3 formally defines different types of social network optimization problems
and provides results on their computational complexity. Finally, section 4 shows how our
framework can represent several existing diffusion models for social networks including one
each from economics, epidemiology, and computer science.

2. Technical Preliminaries

In this section, we first formalize social networks, then briefly overview generalized
annotated logic programs (GAPs)[Kif92b] and then describe how GAPs can be used to
represent concepts related to diffusion in SNs. Throughout this paper, we assume the
existence of two arbitrary but fixed disjoint sets VP,EP of vertex and edge predicate symbols
respectively. Each vertex predicate symbol has arity 1 and each edge predicate symbol has
arity 2.
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Definition 2.1. A social network (S) is a 5-tuple (V,E, `vert, `edge, w) where:

(1) V is a set whose elements are called vertices.
(2) E ⊆ V× V is a multi-set whose elements are called edges.
(3) `vert : V→ 2VP is a function, called vertex labeling function.
(4) `edge : E→ EP is a function, called edge labeling function. 1

(5) w : E× EP→ [0, 1] is a function, called weight function.

We now present a brief example of an SN that will be used throughout this paper.

Example 2.2. Let us return to the cell phone example (query (Q1)). Figure 1 shows
a toy SN the cell phone company might use. Here, we might have VP = {male, female,
adopters, temp adopter, non adptr} denoting the sex and past adoption behavior of each
vertex; EP might be the set {phone, email, IM} denoting the types of interactions between
vertices. w(v1, v2, ep) denotes the percentage of communications of type ep ∈ EP initiated
by v1 that were with v2 (measured either w.r.t. time or bytes). The function `vert is shown
in the figure by the shape (denoting past adoption status) and shading (male/female). The
type of edges (bold for phone, dashed for email, dotted for IM) is used to illustrate `edge.

Figure 1: Example cellular network.

It is important to note that our defini-
tion of social networks is much broader than
that used by several researchers[And79, FC08,
Jac05, Kem03] who often do not consider ei-
ther `edge or `vert — these can have a signifi-
cant impact on what we do with such networks.
Note. We note that each social network must
satisfy various integrity constraints. In Ex-
ample 2.2, it is clear that `vert(V ) should in-
clude at most one of male, female and at most
one of adopters, temp adopter,non adptr. We
assume the existence of some integrity con-
straints to ensure this kind of semantic in-
tegrity – they can be written in any reason-
able syntax to express ICs – in the rest of this
paper, we assume that social networks have
associated ICs and that they satisfy them. In
our example, we will assume ICs ensuring that a vertex can be marked with at most one of
male/female and at most one of adopters, temp adopter, non adptr.

We now recapitulate the definition of generalized annotated logic programs from [Kif92b].
We assume the existence of a set AVar of variable symbols ranging over the unit real interval
[0, 1] and a set F of function symbols each of which has an associated arity. We start by
defining annotations.

Definition 2.3 (annotation term). (i) Any member of [0, 1] ∪ AVar is an annotation.
(ii) If f is an n-ary function symbol over [0, 1] and t1, . . . , tn are annotations, then so is
f(t1, . . . , tn).

We define a separate logical language whose constants are members of V and whose
predicate symbols consist of VP ∪ EP. We also assume the existence of a set V of variable

1Each edge e ∈ E is labeled by exactly one predicate symbol from EP. However, there can be multiple
edges between two vertices labeled with different predicate symbols.
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symbols ranging over the constants (vertices). No function symbols are present. Terms and
atoms are defined in the usual way (cf. [Llo87]). If A = p(t1, . . . , tn) is an atom and p ∈ VP
(resp. p ∈ EP), then A is called a vertex (resp. edge) atom.

Definition 2.4 (annotated atom/GAP-rule/GAP). If A is an atom and µ is an annotation,
then A : µ is an annotated atom. If A0 : µ0, A1 : µ1, . . . , An : µn are annotated atoms, then

A0 : µ0 ← A1 : µ1 ∧ . . . ∧ An : µn

is called a GAP rule. When n = 0, the above GAP-rule is called a fact. A generalized
annotated program Π is a finite set of GAP rules.

Every social network SN = (V,E, `vert, `edge, w) can be represented by the GAP ΠSN =
{q(v) : 1 ← | v ∈ V ∧ q ∈ `vert(v)} ∪ {ep(V1, V2) : w(V1, V2, ep) ← | (V1, V2) ∈ E ∧
`edge(V1, V2) = ep}.

Definition 2.5 (embedded social network). A social network SN is said to be embedded
in a GAP Π iff ΠSN ⊆ Π.

We see immediately from the definition of ΠSN that all social networks can be repre-
sented as GAPs. When we augment ΠSN with other rules — such as rules describing how
certain properties diffuse through the social network, we get a GAP Π ⊇ ΠSN that captures
both the structure of the SN and the diffusion principles. Here is a small example of such
a GAP.

Example 2.6. The GAP Πcell might consist of ΠSN using the social network of Figure 1
plus the GAP-rules:

(1) will adopt(V ) : 0.8×X + 0.2← adopter(V ) : 1 ∧ male(V ) : 1∧
IM(V, V ′) : 0.3 ∧ female(V ′) ∧ will adopt(V ′) : X.

(2) will adopt(V ) : 0.9×X + 0.1← adopter(V ) : 1 ∧ male(V ) : 1∧
IM(V, V ′) : 0.3 ∧ male(V ′) ∧ will adopt(V ′) : X.

(3) will adopt(V ) : 1← temp adopter(V ) : 1 ∧ male(V ) : 1 ∧ email(V ′, V ) : 1∧ female(V ′) :
1 ∧ will adopt(V ′) : 1.

Rule ( 1) says that if V is a male adopter and V ′ is female and the weight of V ’s instant
messages to V ′ is 0.3 or more, and we previously thought that V would be an adopter with
confidence X, then we can infer that V will adopt the new plan with confidence 0.8×X+0.2.
The other rules may be similarly read.

GAPs have a formal semantics that can be immediately used. An interpretation I is
any mapping from the set of all grounds atoms to [0, 1]. The set I of all interpretations can
be partially ordered via the ordering: I1 � I2 iff for all ground atoms A, I1(A) ≤ I2(A). I
forms a complete lattice under the � ordering.

Definition 2.7 (satisfaction/entailment). An interpretation I satisfies a ground annotated
atom A : µ, denoted I |= A : µ, iff I(A) ≥ µ. I satisfies the ground GAP-rule AA0 ←
AA1 ∧ . . . ∧ AAn (denoted I |= AA0 ← AA1 ∧ . . . ∧ AAn) iff either (i) I satisfies AA0

or (ii) there exists an 1 ≤ i ≤ n such that I does not satisfy AAi. I satisfies a non-ground
atom (rule) iff I satisfies all ground instances of it. GAP Π entails AA, denoted Π |= AA,
iff every interpretation I that satisfies all rules in Π also satisfies AA.

As shown by [Kif92b], we can associate a fixpoint operator with any GAP Π that maps
interpretations to interpretations.
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Definition 2.8. Suppose Π is any GAP and I an interpretation. The mapping TΠ that
maps interpretations to interpretations is defined as TΠ(I)(A) = sup{µ | A : µ ← AA1 ∧
. . . ∧ AAn is a ground instance of a rule in Π and for all 1 ≤ i ≤ n, I |= AAi}.

[Kif92b] show that TΠ is monotonic and has a least fixpoint lfp(TΠ). Moreover, they
show that Π entails A : µ iff µ ≤ lfp(TΠ)(A) and hence lfp(TΠ) precisely captures the
ground atomic logical consequences of Π.

Thus, we see that any social network S can be represented as a GAP ΠS . We will
show (in Section 4) that many existing diffusion models of ΠS can be expressed as a GAP
Π ⊇ ΠS by adding some GAP-rules describing the diffusion process to ΠS .

3. Social Network Optimization (SNOP) Queries

In this section, we develop a formal syntax and semantics for optimization in social
networks, taking advantage of the above embedding of SNs into GAPs. We see from queries
(Q1),(Q2) that a SNOP-query looks for a set V′ of vertices and has the following compo-
nents: (i) an aggregate operator, (ii) an integer k ≥ 0, (iii) a set of conditions that each
vertex in V′ must satisfy, and (iv) a goal atom g(V ) where g is a vertex predicate and V is
a variable.
Aggregates. It is clear that in order to express queries like (Q1),(Q2), we need aggregate
operators which are mappings agg : FM([0, 1]) → R (R is the set of reals) where FM(X)
denotes the set of all finite multisets that are subsets of X. Relational DB aggregates like
SUM,COUNT,AVG,MIN,MAX are all aggregate operators which can take a finite multiset of
reals as input and return a single real.

Aggregates may be monotonic or not. We first define a partial ordering v on multi-sets
of numbers as follows. X1 v X2 iff there exists an injective mapping β : X1 → X2 such
that (∀x1 ∈ X1)x1 ≤ β(x1). The aggregate agg is monotonic (resp. anti-monotonic) iff
whenever X1 v X2, it is the case that agg(X1) ≤ agg(X2) (resp. agg(X2) ≤ agg(X1)).
Vertex condition. A vertex condition is a conjunction V C of annotated vertex atoms
containing at most one variable.

Thus, in our example, male(V ) : 1 ∧ adopter(V ) : 1 is a conjunctive vertex condition,
but male(V ) : 1 ∧ email(V, V ′) : 1 is not. We are now ready to define a SNOP-query.

Definition 3.1 (SNOP-query). A SNOP-query is a 4-tuple (agg, V C, k, g(V )) where agg
is an aggregate, V C is a vertex condition, k ≥ 0 is an integer, and g(V ) is a goal atom.

If we return to our cell phone example, we can set agg = SUM, k = 3 (for example),
V C = true and the goal to be adopter(V ). Here, the goal is to find a set X of annotated
ground atoms of the form adopter(v) : µ such that X’s cardinality is 3 or less and such that
SUM{µ | adopter(v) : µ ∈ X} is maximized. Here, the SUM is applied to a multiset rather
than a set.

Definition 3.2 (pre-answer/value). Suppose an SN S = (V,E, `vert, `edge, w) is embedded
in a GAP Π. A pre-answer to the SNOP query Q = (agg, V C, k, g(V )) w.r.t. Π is any
set V′ ⊆ V such that: (i) |V′| ≤ k, (ii) for all vertices v′ ∈ V′, lfp(T{Π∪{g(v′):1← | v′∈V′}) |=
V C[V/v′]. We use pre ans(Q) to denote the set of all pre-answers to query Q.

The value, value(V′), of a pre-answer V′ is agg({lfp(TΠ∪{g(v′):1← | v′∈V′})(g(V )) | V ∈
V}) — here, the aggregate is applied to a multi-set rather than a set. We also note that we
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can define value as a mapping from interpretations to reals based on a SNOP query. We
say value(I) = agg({I(g(v)) | v ∈ V}).

If we return to our cell phone example, V′ is the set of vertices to which the company
is considering giving free plans. The value of this set (value(V′)) is computed as follows.
Find the least fixpoint of TΠ′ where Π′ is Π expanded with annotated atoms of the form
adopter(V ′) : 1 for each vertex V ′ ∈ V′. For each vertex V ∈ V (the entire set of vertices,
not just V′ now), we now find the confidence assigned by the least fixpoint. Summing up
these confidences gives us a measure of the expected number of plan adoptees.

Definition 3.3 (answer). Suppose an SN S = (V,E, `vert, `edge, w) is embedded in a GAP
Π and Q = (agg, V C, k, g(V )) is a SNOP-query. A pre-answer V′ is an answer to the SNOP-
query Q iff the SNOP-query has no other pre-answer V′′ such that value(V′′) > value(V′).2

The answer set, ans(Q), to the SNOP-query Q = (agg, V C, k, g(V )) w.r.t. Π is the set
of all answers to Q.

Example 3.4. Consider the GAP Πcell with the social network from Figure 1 embed-
ded and the SNOP-query Qcell = (SUM, true, 3, will adopt). The sets V′1 = {v15, v19, v6}
and V′2 = {v15, v18, v6} are both pre-answers. In the case of V′1, two applications of
the TΠ operator yield a fixpoint where the vertex atoms formed with will adopt in set
{v15, v19, v6, v12, v18, v7, v10} are annotated with 1. For V2, only one application of TΠ is
required to reach a fixpoint, and the corresponding set of vertices (where the vertex atom
formed with will adopt is annotated with 1) is {v15, v6, v12, v18, v7, v10}. As these are the
only vertex atoms formed with will adopt that have a non-zero annotation after reaching
the fixed point, we know that value(V′1) = 7 and value(V′2) = 6. As value(V′1) > value(V′2),
it is easy to see that V′1 is an answer to this SNOP-query.

Theorem 3.5. Answering SNOP-queries is NP-Hard.3

Under some reasonable conditions, the problem of answering SNOP-queries is also in
NP.

Theorem 3.6. If both the aggregate function agg and the functions in F are polynomially
computable, then the problem of finding an answer to a SNOP-query is in NP4.

Most common aggregate functions like SUM, AVERAGE, Weighted average, MIN,
MAX, COUNT are all polynomially computable. Moreover, the assumption that the func-
tions in F are polynomially computable is also reasonable. The counting problem version
of SNOP-query answering seeks to find the number of answers to a SNOP query. Unfortu-
nately, this problem is #P -complete under the same assumptions.

2Throughout this paper, we only treat maximization problems - minimizing an objective function f is
the same as maximizing −f .

3Proof Sketch: Due to space constraints, we only explain the hardness result by reducing SET COVER
to the problem of answering SNOP queries. Given a SET COVER problem instance consisting of a set S, a
family H = {H1, . . . , Hmax} of subsets of S, and a positive integer K, we can reduce this problem instance
to a SNOP query by polynomially constructing a graph whose vertices correspond to the members of S and
to the Hi’s - there is an edge from an s ∈ S to Hi iff s ∈ Hi. All edges have a weight of 1. Every vertex
v ∈ S has an associated propositional symbol marked set to “true.” There is only one label and all edges
are labeled with it and there are no integrity constraints. We have a GAP consisting of one rule marked(v) :
1 ← marked(v′) : 1 ∧ (v′, v, label) : 1. If we now consider the SNOP-query (SUM, true,K,marked(v)), we
see that solutions to the SNOP-query (which cause certain Hi’s to get marked) correspond precisely to a
solution of the SET COVER problem.

4By abuse of notation, we refer to the obvious decision problem associated with answering SNOP-queries.
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Theorem 3.7. The counting version of the SNOP query answering problem is #P-complete.

Although the counting version of the query is #P -hard, finding the union of all answers
to a SNOP query is no harder than a SNOP query. We shall refer to this problem as SNOP-
ALL - and it reduces both to and from a regular SNOP query5.

4. Applying SNOPs to Real Diffusion Problems

In this section, we briefly show how SNOPs may be used to solve two diffusion problems
- one each in economics and disease spread.
The Jackson-Yariv Diffusion Model [Jac05]. In this framework, a set of agents is
associated with each vertex in an undirected graph G′ = (V′,E′). Each agent has a default
behavior (A) and a new behavior (B). Suppose di denotes the degree of a vertex vi. [Jac05]
use a function g : {0, . . . , |V| − 1} → [0, 1] to describe how the number of neighbors of v
affects the benefits to v for adopting behavior B. For instance, g(3) specifies the benefits
(in adopting behavior B) that accrue to an arbitrary vertex v ∈ V′ that has three neighbors.
Let πi denote the fraction of neighbors of vi that have adopted behavior B; Let constants
bi and ci be the benefit and cost for vertex vi to adopt behavior B, respectively. [Jac05]

state that node vi switches to behavior B iff bi
ci
· g(di) · πi ≥ 1.

Returning to our cell-phone example, one could potentially use this model to describe
the spread of the new plan. In this case, behavior B would be the use of the new plan. The
associated SNOP-query would ask to simply find the nodes given a free plan that would
maximize use of the plan in the network. Cost and benefit could be computed from factors
such as income, time invested in switching plans, etc.

Given a Jackson-Yariv model consisting of G′ = (V′,E′) and g, we can set up an SN
(V′,E′′, `vert, `edge, w) as follows. We define E′′ = {(x, y), (y, x) | (x, y) ∈ E′}. We have a
single edge predicate symbol edge and `edge assigns 1 to all edges in E′′. Our associated
GAP ΠJY now consists of ΠSN plus the single rule:

B(Vi) : bbi
ci
· g(

∑
j

Ej) ·
∑

j Xj∑
j Ej
c ←

∧
Vj |(Vj ,Vi)∈E′′

(edge(Vj , Vi) : Ej ∧B(Vj) : Xj)

It is easy to see that this rule (when applied in conjunction with ΠSN for a social
network SN) precisely encodes the Jackson-Yariv semantics.
The Kempe-Kleinberg-Tardos Framework.[Kem03] If we take the above construction,

and for each vi replace the
∑

j Xj∑
j Ej

in the head with a monotone threshold function, fi, we have

embedded the general framework of [Kem03], of which the [Jac05] model is a special case.
It is important to note that the framework of [Kem03] captures a wide variety of diffusion
models seen in social sciences and interacting particle systems. These include the “linear
threshold model” - which is based on models in social science made popular by [Sch78] and
[Gra78] and the “independent cascade model,” introduced in [JG01]. However, this work
provides a further generalization, as we allow for multiple properties to be “activated” on
the vertices, permit labeled edges signifying different relationships, and provide a rule-based

5Our proofs of this statement rely on two constructions. First, a regular SNOP query, where the answer
must be of size k, can be solved with k successive SNOP-ALL queries. Likewise, a SNOP-ALL query can be
answered by solving |V| SNOP queries. Details are omitted due to lack of space.
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framework which can allow for learned diffusion models. Additionally, [Kem03] does not
solve SNOP queries with complex aggregates.
The SIR Model of Disease Spread. The SIR (susceptible, infectious, removed) model
of disease spread [And79] is a classic disease model which labels each vertex in a graph
G = (V,E) (of humans) with susceptible if it has not had the disease but can receive it from
one of its neighbors, infectious if it has caught the disease and trec units of time have not
expired, and removed where the vertex can no longer catch or transmit the disease. The
SIR model assumes that a vertex v that is infected can transmit the disease to any of its
neighbors v′ with a probability pv,v′ for trec units of time. We would like to “find k vertices
that would maximize the expected number of vertices that become infected”. These are
obviously good candidates to treat with appropriate medications.

Let S = (V,E, `vert, `edge, w) be an SN where each edge is labeled with the predicate
symbol e and w(v, v′, e) = pv,v′ . We use the predicate inf to designate the initially infected
vertices. In order to create a GAP ΠSIR capturing the SIR model of disease spread, we
first define trec predicate symbols rec1, . . . , rectrec where reci(v) intuitively means that node
v was infected i days ago. Hence, rectrec(v) means that v is “removed.” We embed S into
GAP ΠSIR by adding the following diffusion rules. If trec > 1, we add a non-ground rule
for each i = {2, . . . , trec} - starting with trec:

reci(V ) : R ← reci−1(V ) : R

rec1(V ) : R ← inf(V ) : R

inf(V ) : (1−R) · PV ′,V · (PV ′ −R′) ← rectrec(V ) : R ∧ e(V ′, V ) : PV ′,V ∧
inf(V ′) : PV ′ ∧ rectrec(V

′) : R′.

The first rule says that if a vertex is in its (i− 1)’th day of recovery with certainty R in
the j’th iteration of the TΠSIR

operator, then the vertex is i days into recovery (with the
same certainty) in the j + 1’th iteration of the operator. Likewise, second rule intuitively
encodes the fact that if a vertex became infected with certainty R in the j’th iteration of
the TΠSIR

operator, then the vertex is one day into recovery in the j+ 1’th iteration of the
operator with the same certainty. The last rule says that if a vertex V ′ has been infected
with probability PV ′ and there is an edge from V ′ to V in the social network (weighted with
probability PV ′,V ), and the vertex V ′ has recovered with certainty R′, given the probability

1−R that V is not already recovered, (and hence, cannot be re-infected)6, then the certainty
that the vertex V gets infected is (1 − R) · PV ′,V · (PV ′ − R′). Here, PV ′ − R′ is one way
of measuring the certainty that V ′ has recovered (difference of the probability that it was
infected and the probability it has recovered) and PV ′,V is the probability of infecting the
neighbor.

To see how this GAP works, we execute a few iterations of the TΠSIR
operator and show

the fixpoint that it reaches on a toy sample graph shown in Figure 2. In this graph, the
initial infected vertices are those shown in a shaded circle. The transmission probabilities
weight the edges in the graph.

6Note that the SIS (Susceptible-Infectious-Susceptible) model [Het76], where an individual becomes sus-
ceptible to disease after recovering (as opposed to SIR, where an individual acquires immunity) can be easily
represented by a modification to the described construction. Simply change the annotation function in the
head of the third rule to PV ′,V · (PV ′ − R′). In this way, we do not consider the probability that vertex V

is immune.
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Figure 2: Left: Sample network for disease spread. Right:
annotated atoms entailed after each applica-
tion of TΠSIR

(maximum, non-zero annotations
only).

The SNOP-query is (SUM, true, k, inf)
to count the number of infected
vertices in the least fixpoint of
TΠ. This query says “find the
k vertices in the social network
which, if infected, would cause
the maximal number of ver-
tices to become infected in the
future.” However, the above
set of rules can be easily used
to express other things. For in-
stance, an epidemiologist may
not be satisfied with only one
set of k vertices that can cause
the disease to spread to the
maximum extent - as there may be another, disjoint set of k vertices that could cause
the same effect. Note that a single set of vertices may still be sufficient for other appli-
cations, such as viral marketing. The epidemiologist may want to find all members of the
population, that if in a group of size k could spread the disease to a maximum extent. This
can be answered using a SNOP-ALL query, described in Section 3.

5. Conclusion

In this paper, we described how General Annotated Logic Programs can be used to
represent a variety of diffusion models in social networks. Based on this formulation, we
presented the social network optimization problem (SNOP) - which queries the GAP for
a set of nodes that cause a given phenomenon to spread through the social network to a
maximum extent - shown here to be NP-Complete. We also showed how several well-known
diffusion models can be represented in our framework. In future work, we intend to explore
heuristic approaches for large sub-classes of SNOPs to answer queries on real-world datasets.
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