
Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 124–133
http://www.floc-conference.org/ICLP-home.html

DEDICATED TABLING FOR A PROBABILISTIC SETTING

THEOFRASTOS MANTADELIS 1 AND GERDA JANSSENS 1

1 Departement Computerwetenschappen, Katholieke Universiteit Leuven
Celestijnenlaan 200A - bus 2402, 3001 Heverlee, Belgium
E-mail address: {Theofrastos.Mantadelis,Gerda.Janssens}@cs.kuleuven.be

Abstract. ProbLog is a probabilistic framework that extends Prolog with probabilistic
facts. To compute the probability of a query, the complete SLD proof tree of the query
is collected as a sum of products. ProbLog applies advanced techniques to make this
feasible and to assess the correct probability. Tabling is a well-known technique to avoid
repeated subcomputations and to terminate loops. We investigate how tabling can be used
in ProbLog. The challenge is that we have to reconcile tabling with the advanced ProbLog
techniques. While standard tabling collects only the answers for the calls, we do need the
SLD proof tree. Finally we discuss how to deal with loops in our probabilistic framework.
By avoiding repeated subcomputations, our tabling approach not only improves the execu-
tion time of ProbLog programs, but also decreases accordingly the memory consumption.
We obtain promising results for ProbLog programs using exact probability inference.

1. Introduction

ProbLog [4] is a probabilistic framework that extends Prolog with probabilistic facts
and answers several kinds of probabilistic queries. While the framework includes different
inference methods, we focus for this paper on the exact probability inference method.

The implementation of ProbLog [8] is based on the use of tries [5] and reduced ordered
binary decision diagrams (ROBDDs) [1, 2]. The execution of ProbLog programs uses SLD-
resolution to collect all the proofs for a query. ProbLog gathers for each successful proof of
the query the list of probabilistic facts the proof uses and compactly represents all proofs in
a trie. Such a trie is then considered to be a sum of products (a disjunction of conjunctions
of probabilistic facts). ROBDDs are used to solve the disjoint sum problem and to obtain
the correct probability of the query.

The challenge is to find out how tabling can be combined with the ProbLog execution
mechanism. Tabling mechanisms are available in XSB [11], YAP [12] and other Prolog
systems. The basic idea is to collect the answers of a tabled subgoal in a table and, when
the subgoal is re-encountered, to reuse the tabled answers instead of computing them. As a
consequence of this memoization, tabling ensures termination of programs with the bounded
term-size property, i.e. programs where the size of subgoals and answers produced during
an evaluation is less than some fixed number. In the case of ProbLog, tabling answers is
not sufficient, as the proofs are needed too. Also loops have to be dealt with correctly.

1998 ACM Subject Classification: I.2.2, I.2.8, D.1.6, G.3.
Key words and phrases: Tabling, Loop Detection, Probabilistic Logical Programming, ProbLog.

c© T. Mantadelis and G. Janssens
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.124

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DEDICATED TABLING FOR A PROBABILISTIC SETTING 125

The PRISM [14] assumptions such as exclusiveness and no loops imply that PRISM
computations are simpler, in the sense that they do not have to deal with the disjoint sum
problem. PRISM contains a linear tabling system [15]. Only when PRISM is executing
its learning algorithms, is its tabling extended to do something special, namely to build
support graphs which represent the shared structure of explanations for an observed goal.
The support graphs play a central role in efficient EM learning of PRISM programs. The
proofs ProbLog needs to compute are somewhat similar to these explanations.

This paper extends our early work [9]. The contributions of this paper are the identifi-
cation of the necessary tabling mechanism for ProbLog programs and their implementation
while respecting the current ProbLog optimizations, such as the exploitation of tries and
the optimized translation of tries into ROBDDs.

ProbLog’s motivating link discovery applications and other typical ProbLog programs
have only ground goals. In order to table them, we represent the SLD proof tree as nested
tries. We implemented a light-weight dedicated tabling for ground goals that supports
nested tries and obtained impressive time improvements for some classes of programs. By
the virtue of the nested tries, we also realize suffix sharing and thus a substantial memory
compaction. By adding loop detection, path-finding programs, typical for link discovery,
also benefit from the memoization.

The paper is structured as follows. First, we briefly introduce ProbLog and its relevant
implementation details in Section 2. We present the nested tries and identify the necessary
tabling support in Section 3. Transforming the nested tries to a sum of products efficiently is
in Section 4. Section 5 contains the experimental evaluation. Related work and conclusions
are in Sections 6 and 7 respectively.

2. ProbLog

ProbLog [4] is essentially an extension of Prolog where facts are labeled with proba-
bilities1 that they belong to a randomly sampled program. As such, a ProbLog program
specifies a probability distribution over all its possible non-probabilistic subprograms. The
success probability of a query is defined as the probability that it succeeds in such a random
subprogram. ProbLog follows the distribution semantics [13]. We use the ProbLog program
from Example 2.1 to describe how ProbLog calculates the exact probability of a query. The
graph in Figure 1 is represented by the probabilistic facts edge/2. The rest of the program
is normal Prolog code for finding a path in a graph. Consider the query path(1,4).

Example 2.1 (Program path/2).
path(X, Y):- path(X, Y, [X]).

path(X, Y, P):- edge(X, Z), Y \== Z, \+ member(Z, P), path(Z, Y, [Z|P]).

path(X, Y, _):- edge(X, Y).

ProbLog first uses SLD-resolution to collect all the proofs of a query. Actually, ProbLog
gathers for each successful proof of the query the list of probabilistic facts the proof uses.
For the path(1,4) query, ProbLog collects eight successful proofs and for each proof a list
of probabilistic edge/2 facts as shown in Figure 2. ProbLog uses a trie to represent such a
set of lists. The trie of a query is built during SLD-resolution: as soon as a successful proof
is found, it is added to the trie. We use proofs for SLD-refutations as well as for lists of
probabilistic facts. The trie for our example is given in Figure 2.

1Probabilistic facts are mutually independent random variables.

126 T. MANTADELIS AND G. JANSSENS

0.9::edge(1, 2). 0.9::edge(2, 1). 0.2::edge(5, 4).

0.4::edge(6, 5). 0.4::edge(5, 6). 0.2::edge(4, 5).

0.8::edge(2, 3). 0.8::edge(3, 2). 0.7::edge(1, 6).

0.5::edge(2, 6). 0.5::edge(6, 2). 0.7::edge(6, 1).

0.7::edge(5, 3). 0.7::edge(3, 5).

0.6::edge(3, 4). 0.6::edge(4, 3).

Figure 1: Graph of Example 2.1.

edge(1,2),edge(2,3),edge(3,5),edge(5,4)

edge(1,2),edge(2,3),edge(3,4)

edge(1,2),edge(2,6),edge(6,5),edge(5,3),edge(3,4)

edge(1,2),edge(2,6),edge(6,5),edge(5,4)

edge(1,6),edge(6,2),edge(2,3),edge(3,5),edge(5,4)

edge(1,6),edge(6,2),edge(2,3),edge(3,4)

edge(1,6),edge(6,5),edge(5,3),edge(3,4)

edge(1,6),edge(6,5),edge(5,4)

Figure 2: The successful proofs and the respective trie for path(1,4) of Example 2.1.

Now, think of the edge/2 facts as Boolean random variables indicating whether the
facts are in the logic program. As a consequence, each proof corresponds to a conjunction
of random variables and as a whole the trie represents a disjunction of conjunctions of
probabilistic facts, also known as a sum of products. ProbLog needs to assess the probability
of the sum of products, which has been shown to be #P-Hard [17]. ProbLog transforms the
trie into a ROBDD in two steps. First, starting from the trie, a so-called ROBDD script
is generated. Secondly, the ROBDD script is executed by a ROBDD package. From the
ROBDD, ProbLog calculates the success probability (0.53864 for our example) of the query
by a bottom-up dynamic programming algorithm over the ROBDD structure [8].

As argued in [8], representing the proofs compactly in a trie establishes prefix sharing
and this turns out to be indispensable for the typical ProbLog mining applications. This
prefix sharing can be clearly seen in Figure 2. In this paper we show how our tabling also
establishes suffix sharing and thus further reduces the memory consumption.

3. Memoization by Tabling

Typical ProbLog goals are ground; indeed, in a probabilistic framework, one is interested
in the probability that a goal can be proven, rather than in what the answers are. While
our work can be generalized for non-ground goals, we focus on ground goals for this paper.

ProbLog collects all the SLD-refutations of a query as lists of probabilistic facts in a
trie. Our tabling builds a forest of SLG-trees [3], one for the original query and one for
each tabled subgoal. For each tabled goal, we need to memoize its contribution to the trie:
we break up a single trie into a set of nested tries. The nested trie of a goal represents the
successful proofs of the goal just as a normal trie does, but the parts of the trie that are
contributed by other tabled subgoals are replaced by a reference to the trie of that subgoal.

Consider the query ?-p,q. for the program of Figure 3a. The SLD-tree and the cor-
responding trie are in Figure 3b. Tabling the predicate q/0 avoids recomputation during
resolution and results in the forest of SLG-trees and the nested tries shown in Figure 3c.
Note that the nested trie for the subgoal q is denoted by t(q) and t(/) denotes the trie of
the topquery.

DEDICATED TABLING FOR A PROBABILISTIC SETTING 127

0.1::p1. 0.3::q1.
0.7::p2. 0.2::q2.
p:-p1. q:-q1.
p:-p2. q:-q2.

(a) Tabling q/0. (b) SLD-tree and trie. (c) SLG-trees and the nested tries.

Figure 3: Example of SLD-resolution and SLG-resolution trees and tries.

When ProbLog uses tabling while proving the topquery, it constructs a set of nested
tries. This set of nested tries is equivalent with the trie that a non-tabled program would
generate: it contains all the information about the complete successful proofs, the SLD-
refutations, of the topquery. In the non-tabled evaluation, repeated subcomputations give
rise to tries with repeated suffixes. The use of nested tries such as t(q) establishes suffix-
sharing which reduces substantially the memory consumption of ProbLog.

Tabling uses a suspension/resumption mechanism to built a forest of SLG-trees. Tabling
keeps in its tables an entry for each tabled subgoal that contains the nested trie of the
subgoal. When ProbLog encounters the first instance of a tabled subgoal, the generator
subgoal, tabling suspends the resolution of the parent goal, creates an entry for the subgoal
with an empty nested trie, and starts proving it. As soon as a successful proof for the
subgoal is found, it is added to its nested trie. Note that if the subgoal fails, no proof will
be added and the nested trie will remain empty.

We eagerly collect the proofs for the generator goals. For programs without loops,
tabling deals completely with a tabled subgoal before the parent goal is resumed and it is
known whether the subgoal failed or succeeded. If a tabled subgoal fails, resumption of the
parent goal fails its current proof. If the tabled subgoal succeeds then, on resumption of
the parent goal, a reference to the nested trie of the tabled subgoal is added to the current
proof of the parent goal. For subsequent occurrences of tabled subgoals, the consumer
subgoals, tabling avoids recomputation by adding a reference to the appropriate nested trie
in the current proof.

An attentive reader might indeed have noticed that the path program of Example 2.1
is a version that encodes loop detection explicitly by using absent/2. That version does
not benefit from tabling as all the calls to path are different. The path/2 program in
Example 3.1 has no code to detect loops. We use this program and the graph of Figure 4a
to explain how tabling should support loop handling in a probabilistic framework.

Example 3.1 (Program path/2 without loop detection).
0.1::edge(1, 2). 0.5::edge(1, 3). 0.7::edge(3, 1).

0.3::edge(2, 3). 0.2::edge(3, 2). 0.6::edge(2, 4).

path(X, Y):- edge(X, Z), Y \== Z, path(Z, Y).

path(X, Y):- edge(X, Y).

For the query path(1,4) on this graph with the program of Example 2.1, we collect
the following two proofs: edge(1,2), edge(2,4) and edge(1,3), edge(3,2), edge(2,4).
While proving the query path(1,4) with the program of Example 3.1, one will enter in
infinite loops, such as the one between nodes 2 and 3 due to edge(2,3) and edge(3,2). The

128 T. MANTADELIS AND G. JANSSENS

(a) Graph of Example 3.1. (b) SLG-trees with goal suspension.

Figure 4: Graph and SLG-trees of Example 3.1.

SLD-tree for path(1,4) is indeed infinite. The SLG-trees are in Figure 4b with backward
arcs indicating the detected loops.

In the presence of loops, tabling normally uses a completion mechanism to ensure that
all answers are returned to all consumers. For our ground ProbLog goals, this boils down
to returning information about failure or success and in case of success the nested trie. A
simple way to achieve this for consumer goals that give rise to a loop, is to assume that the
generator goal will succeed and add the reference to the partially completed nested trie to
the parent goal proof. Although a nested trie represents all the proofs for the subgoal, we
do not need its final value to re-use it, as we put a reference to it in the other tries.

Now, our nested tries no longer only contain successful proofs. We optimistically as-
sumed success for consumer goals giving rise to a loop. If none of the goals involved in
the loop has a finite successful proof, they all fail. In this case, the nested tries contain
references to failed subgoals. We deal with this during the ROBDD script generation step.

We have built a light-weight tabling prototype which allow us to experiment without
having to change the ProbLog implementation. A program transformation is used to add
tabling specific predicate calls that manipulate the extra tabling data structures. In this
transformation we use findall to implement the eager proof collection for generator goals.

We implemented SLG tabling with suspension and resumption. As we have ground
goals, we do not collect answers for goals, but their success or failure. Due to the prob-
abilistic context, we need a special mechanism to construct a nested trie for each tabled
subgoal, as we do not want to lose the prefix sharing required by ProbLog. Also note that
ProbLog needs all the successful proofs, whereas clever normal tabling would stop after one
successful proof for a ground goal.

For consumer goals that give rise to a loop, our optimistic approach assumes success
of the goal, but in the end the goal might fail. Our nested tries then contain references to
failed subgoals. This failure needs to be detected during the BDD script generation step.

4. Extracting the Boolean Formula from the Set of Nested Tries

Tabling computes for the original query a set of nested tries, which contain all the
proofs of the query. As mentioned in Section 2, the ROBDD script generation step of
ProbLog extracts all collected proofs from the Trie and generates a Boolean formula that
expresses the proofs as a sum of products. In this section we are going to describe how to
generate the Boolean formula from the set of nested tries. A naive implementation would
have a performance cost similar to that of the non-tabled SLD resolution. We use dynamic

DEDICATED TABLING FOR A PROBABILISTIC SETTING 129

programming to implement a top down traversal of the nested tries with loop detection.
While generating the formula, we want to preserve the prefix sharing present in the tries
and to exploit the suffix sharing. Dynamic programming enables the re-usage of completely
unfolded tries, while re-usage of partially unfolded tries can be realized by introducing an
ancestor subset check.

Starting from the nested trie of the original query, we reconstruct its proofs as a normal
trie by unfolding the nested tries, but we also establish suffix sharing. To unfold a reference
to another nested trie t(g), we replace in the partial trie the reference by the nested trie
itself. For each branch of the partial trie, we keep an ancestor list: initially it is empty
and each time we unfold a reference to a t(g), the g is added. In programs without loops, a
nested trie t(g) is unfolded only once, dynamic programming makes the other occurrences of
references to t(g) reuse the first unfolding and as such we now have tries with suffix sharing.

For programs with loops, we start from a finite representation of the infinite SLD-tree.
The ancestor list enables us to detect loops during unfolding. Loops typically give rise to
proofs that do not contribute to the final probability.

When unfolding detects a loop, we can prune the current proof: either because is a
failing proof or because it gives rise to non-minimal proofs. If pruning results in an empty
trie, which encodes failure, we can prune the parent branch. Figure 5 shows the nested
tries, that contain infinite loops, for the query of Example 3.1.

Figure 5: Nested tries of Example 3.1.

We have to be careful not to miss proofs because of the dynamic programming mem-
oization. During unfolding, a nested trie typically occurs in different proofs. Its position
in the SLD tree determines whether it gives rise to a loop or not. Consider t(p(3, 4)) of
Figure 5, suppose we first encounter its occurrence annotated with 1. The two proofs this
occurrence gives rise to, have loops and thus they are pruned. But, the second occurrence
annotated with 2 belongs to a proof without a loop.

The t(p(3, 4)) example shows that re-using results for nested tries that introduced loops,
is not safe as different occurrences might give rise to different proofs. Actually, it depends
on the context of the occurrence of the nested trie, in particular on the ancestor list of
the occurrence. In order to improve suffix sharing, we start from the following observation.
When two occurrences of a reference to a nested trie have exactly the same ancestor list, then
obviously the unfolding of the references will introduce exactly the same loops. Generally,
the occurrence of a goal will introduce at least the same loops as a previous occurrence,
when the ancestor list of the previous occurrence is a subset of the current ancestor list.

5. Experiments

Our tabling directly interacts with the first two execution steps of ProbLog, SLD-
resolution and ROBDD script generation. The third step is affected indirectly. It is well-
known that ROBDD packages use heuristics while constructing a ROBDD and that their
behaviour depends on the input, i.e. different inputs describing the same Boolean formula

130 T. MANTADELIS AND G. JANSSENS

Memory SLD/SLG ROBDD Script ROBDD Script
(Bytes) resolution generation execution

Day non-tab tab non-tab tab non-tab tab non-tab tab

1 352 912 0 0 0 0 5 5
2 1048 2148 0 0 0 0 5 5

13 184941472 15744 115400 2 2584 4 802 37
14 554824408 16980 380011 3 7938 4 2380 36

167 - 206088 - 25 - 89 - 9728
1600 - 1977276 - 262 - 3587 - -

Table 1: Results for the weather program.

can give rise to different results and/or execution times. We address the following questions:
(1) How does our tabling implementation perform both in time and in space for the SLD-
resolution? (2) How do the nested tries compare with their flatten equivalents during the
ROBDD script generation and the ROBDD script execution? (3) How do the nested tries
with loops perform and what are the effects of the ancestor subset check?

Our benchmarks represent two typical categories of problems. Our weather benchmark
is an example of a {Hidden} Markov Model (HMM). The value of the current time state
depends on the value of the previous time state. It is well known that time series problems,
when naively implemented, are of exponential complexity. Using tabling for this type of
problems we expect significant improvement as memoization reduces the complexity of the
problem’s SLD-resolution to linear. The size of the weather problem is determined by the
“Day” argument.

From the link discovery [4] applications, we took a graph benchmark, namely a number
of graphs from the biomine database [16]. This benchmark expresses connections between
various types of objects such as genes, proteins, tissues, etc and predicts relationships among
them. We use the program of Example 2.1 for the non-tabled version and the program of
Example 3.1 for the tabled version. For our experiments we used the first sample of graphs
and the queries of [4]. The size is determined by the number of edges of the graph and the
interconnectivity between the nodes. As these graphs are cyclic, loop handling is necessary.

All the experiments are done on an IntelR CoreTM2 Duo CPU at 3.00GHz with 2GB
of RAM memory running Ubuntu 8.04.2 Linux under a usual load. The reported times are
the averages of five runs from which we dropped the best and worst, and all times are in
milliseconds. For the SLD resolution and the ROBDD script generation, we used a time-
out of 1 hour, while for the ROBDD script execution we used a 1 minute time-out (for our
benchmarks most ROBDDs either will be built within one minute or run out of memory).

For weather, figure 6a shows that the SLD-resolution execution times of the non-tabled
version are exponential with respect to the “Day” argument, while the tabled version is
linear. Figure 6b shows the scaling of the SLD-resolution for queries that the non-tabled
version fails to compute, as it exceeds the available memory. In Table 1, we see that the
tabled version manages to compute “Day 167”, while the non-tabled version stops at “Day
14”. The tabled version is limited by the ROBDD script execution step that generates the
ROBDD using a state-of-the-art ROBDD tool. For weather, the tabled version outperforms
the non-tabled version in all stages including the ROBDD script execution. The memory
usage to represent the proofs goes from exponential to linear for the tabled version as shown
in Figure 6c. In Figure 6d we see the gain in memory is similar to the gain in time. This
can be explained by the suffix sharing in the nested tries.

DEDICATED TABLING FOR A PROBABILISTIC SETTING 131

(a) SLD versus SLG resolution (b) SLG resolution

(c) SLD versus SLG resolution (d) SLG resolution

Figure 6: SLD/SLG-resolution times and memory consumption for the weather program.

In the graph benchmark, we study the benefits of tabling in combination with loop
handling. As shown in Figure 7a, the tabled version has a significant performance improve-
ment for the SLD-resolution. Figure 7b shows that increasing the number of edges in the
graph affects the SLG-resolution linearly. Table 2 displays the results of the graph bench-
mark. The effect of tabling on the memory usage is a bit different now. Using nested tries
for tabling favours suffix sharing rather than prefix sharing. It seems that in some graphs
prefix sharing is more important for memory compaction than suffix sharing. However,
in bigger graphs, the nested tries are again improving significantly memory consumption.
That the tabled version requires to construct the nested tries even for goals that fail or
succeed without probabilistic facts, introduces a significant minimum memory cost.

Unfortunately, we notice in Figure 7c that all the versions behave exponentially when
summing up the SLD/SLG-resolution times and the ROBDD script generation times. Fig-
ure 7d presents the times for generating the ROBDD scripts from the nested tries with loops
and the performance gain of the ancestor subset check. While the tabled version without
the ancestor subset check underperformed the non-tabled in total time, the version with
the ancestor subset check has significant performance gains in all cases.

6. Related Work

This paper investigates a dedicated form of tabling: memoization of all the proofs for
ground goals in nested tries. Our work is similar to the PRISM [15, 14] tabling mechanism,
as both mechanisms are restricted to grounded goals and both are memorising all the proofs.

132 T. MANTADELIS AND G. JANSSENS

(a) SLD versus SLG resolution (b) SLG resolution

(c) SLD/SLG-resolution & ROBBD script generation (d) ROBBD script generation

Figure 7: Graph program results.

Memory SLD/SLG ROBDD Script ROBDD Script
Edges (Kilobytes) resolution generation execution

n
on

-t
ab

ta
b

n
on

-t
ab

ta
b

n
on

-t
ab

ta
b

n
o-

an
c

n
on

-t
ab

ta
b

n
o-

an
c

800 < 1 192 19 17 0 22 37 3 3 4
1000 32 239 245 20 1 107 258 36 33 37
1200 3303 286 18928 25 28 1982 16844 119 214 196
1400 39020 333 255546 28 473 7832 335853 455 454 278
1600 - 380 - 33 - 145669 - - 26789 -
1800 - 426 - 37 - 1523948 - - - -

Table 2: Results for the graph program.

One could compare ProbLog’s nested tries with PRISM support graphs. The differences
are that PRISM assumes the exclusiveness condition for the proofs, while ProbLog does
not, and that ProbLog requires the handling of loops as it is intended for link discovery in
graphs. Another example of tabling that needs the memoization of proofs, is in the scope
of justification [6]. Note that tabling in justification keeps only one proof [10] instead of all
the proofs, and that it requires tabling of non-grounded goals. Finally, [7] proposes tabling
for another ProbLog inference method, namely Monte Carlo sampling.

DEDICATED TABLING FOR A PROBABILISTIC SETTING 133

7. Conclusions and Future Work

We successfully identified the requirements for a tabling mechanism for ProbLog and
we realized a light-weight implementation of such a mechanism. Our experiments have
shown that tabling is definitely beneficial for the SLD-resolution step, where the memory
and time consumption can go from exponential to linear. Nested tries establish prefix
and suffix sharing. We presented how loop handling can be performed using the nested
tries. Tabling also affects the next ROBDD related steps of ProbLog. For benchmarks
without loops, tabling further reduces the execution times, as these steps also benefit from
the compaction by the sharing. In the graph benchmark, we see that tabling improves the
overall performance of the system. While the improvement for SLD resolution is remarkable,
the work is partly transferred to the ROBDD script generation step. In the presence of loops,
the ancestor subset check is indispensable. We want to extend tabling for non-ground goals
and use tabling for approximate inference methods.

Acknowledgements: This research is supported by GOA/08/008 “Probabilistic Logic
Learning”.

References

[1] Sheldon B. Akers. Binary decision diagrams. IEEE Trans. Computers, 27(6):509–516, 1978.
[2] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers,

35(8):677–691, 1986.
[3] Weidong Chen and David S. Warren. Tabled evaluation with delaying for general logic programs. Journal

of the ACM, 43(1):20–74, 1996.
[4] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A probabilistic prolog and its appli-

cation in link discovery. In Proceedings of IJCAI, pages 2462–2467, 2007.
[5] Edward Fredkin. Trie Memory. Communications of the ACM, 3:490–499, 1962.
[6] Hai-Feng Guo, C. R. Ramakrishnan, and I. V. Ramakrishnan. Speculative beats conservative justifica-

tion. In Proceedings of ICLP, pages 150–165, 2001.
[7] Angelika Kimmig, Bernd Gutmann, and Vı́tor Santos Costa. Trading memory for answers: Towards

tabling ProbLog. In Proceedings of SRL, 2009.
[8] Angelika Kimmig, Vı́tor Santos Costa, Ricardo Rocha, Bart Demoen, and Luc De Raedt. On the efficient

execution of ProbLog programs. In Proceedings of ICLP, pages 175–189, 2008.
[9] Theofrastos Mantadelis and Gerda Janssens. Tabling relevant parts of SLD proofs for ground goals in

a probabilistic setting. In Proceedings of CICLOPS, 2009.
[10] Giridhar Pemmasani, Hai-Feng Guo, Yifei Dong, C. R. Ramakrishnan, and I. V. Ramakrishnan. Online

justification for tabled logic programs. In LNCS: Logic Programming, pages 500–501, 2003.
[11] Prasad Rao, Konstantinos F. Sagonas, Terrance Swift, David S. Warren, and Juliana Freire. XSB: A

system for effciently computing wfs. In Proceedings of LPNMR, pages 431–441, 1997.
[12] Ricardo Rocha, Fernando Silva, and Vı́tor Santos Costa. A Tabling Engine for the Yap Prolog System.

In Proceedings of AGP, 2000.
[13] Taisuke Sato. A statistical learning method for logic programs with distribution semantics. In Proceed-

ings of ICLP, pages 715–729. MIT Press, 1995.
[14] Taisuke Sato and Yoshitaka Kameya. Parameter learning of logic programs for symbolic-statistical

modeling. JAIR, 15:391–454, 2001.
[15] Taisuke Sato and Yoshitaka Kameya. Statistical abduction with tabulation. In Computational Logic:

Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part II, pages 567–587, 2002.
[16] Petteri Sevon, Lauri Eronen, Petteri Hintsanen, Kimmo Kulovesi, and Hannu Toivonen. Link discovery

in graphs derived from biological databases. In Proceedings of DILS, pages 35–49, 2006.
[17] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing,

8(3):410–421, 1979.

