
Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 114–123
http://www.floc-conference.org/ICLP-home.html

CONTRACTIBILITY AND CONTRACTIBLE APPROXIMATIONS

OF SOFT GLOBAL CONSTRAINTS

MICHAEL J. MAHER 1,2

1 NICTA, Locked Bag 6016, The University of New South Wales, Sydney, NSW 1466, Australia

2 School of Computer Science and Engineering, The University of New South Wales, Sydney, NSW
2052, Australia
E-mail address: michael.maher@nicta.com.au

Abstract. We study contractibility and its approximation for two very general classes
of soft global constraints. We introduce a general formulation of decomposition-based
soft constraints and provide a sufficient condition for contractibility and an approach to
approximation. For edit-based soft constraints, we establish that the tightest contractible
approximation cannot be expressed in edit-based terms, in general.

1. Introduction

Soft constraints are useful for addressing problems that might be overconstrained. Open
global constraints [1, 11, 14] allow variables to be added to the global constraint during exe-
cution, which is vital when we want to interleave problem construction and problem solving.
Contractible approximations of global constraints are a necessary part of implementing open
versions of the constraint. In this paper we investigate contractibility [13] and contractible
approximations [14] of soft constraints in the sense of Petit et al [18] for the purpose of
implementing versions that are dynamic, or open, in the sense of Barták [1]. Contractibility
of soft constraints was studied in [15] but approximations have not been investigated.

We investigate two general classes of soft constraints based, respectively, on decompo-
sitions and edit-distance. We improve on several results of [15] and establish new results
for these classes. While hard constraints seem to be amenable to tight contractible approx-
imation, at least in the cases studied so far [14], we show that soft constraints are much less
so.

Section 2 provides some preliminaries on open global constraints and contractibility. In
section 3 we introduce a very general class of decomposition-based soft constraints, repeat
the definition of edit-based soft constraints from [15] and explore some consequences of

1998 ACM Subject Classification: D.1.6 Logic Programming; D.3.2 Language Classifications, Constraint
and logic languages; D.3.3 Language Constructs and Features, Constraints .

Key words and phrases: constraint logic programming, global constraints, open constraints, soft
constraints.

NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT Centre of
Excellence program.

c© M.J. Maher
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.114

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONTRACTIBLE APPROXIMATIONS 115

these definitions. Section 4 investigates contractible approximations for soft constraints in
these two classes.

2. Background

The reader is assumed to have a basic knowledge of constraint logic programming,
CSPs, global constraints, and filtering, as might be found in [9, 19, 2].

For the purposes of this paper, a global constraint is a relation over a single sequence of
variables. Other arguments of a constraint are considered parameters and are assumed to

be fixed before execution. A sequence of variables will be denoted by ~X or [X1, . . . , Xn]. We
make no a priori restriction on the variables that may participate in the sequence except
that, in common with most work on global constraints, we assume that no variable appears
more than once in a single constraint.

We assume that each use of a global constraint has a static type T that assigns, for

every position i of its argument, a set of values. Thus every variable Xi in ~X has a static
type T (Xi) of values that it may take. This is distinct from the domain D(X) of a variable
X, which changes during execution. We always have D(X) ⊆ T (X).

We formalize the semantics of a global constraint C as a formal language LC . A
word d1d2 . . . dn appears in LC iff the constraint C([X1, X2, . . . , Xn]) has a solution X1 =
d1, . . . Xn = dn. Thus, for example, the semantics of AllDifferent is {a1 . . . an | ∀i, j i 6=
j → ai 6= aj , n ∈ N} and the semantics of Regular(A, ~X) is L(A), the language accepted
by A. When it is convenient, we will describe languages with Kleene regular expressions.

We will need the following definitions later. Let P (L) = {w | ∃u wu ∈ L} denote the
set of prefixes of a language L, called the prefix-closure of L. We say L is prefix-closed if
P (L) = L.

Constraint logic programming supports the generation of new variables and new con-
straints during execution. Use of open constraints pre-supposes additional capabilities to
add variables to an open constraint and to close an open constraint. In this paper we will
abstract away the details of the language mechanisms that provide these capabilities so that
we can focus on the filtering/propagation for open constraints.

There are three models of open constraint that have been proposed [1, 11, 14]. In this
paper we follow the model of Barták [1] as refined in [13]: the collection of variables forms
a sequence, to which variables may be added at the right-hand end only.

We take filtering to refer to any function f that reduces domains, that is, ∀X f(D)(X) ⊆
D(X). A filtering algorithm f for a constraint C is sound if every solution of C in D also
appears in f(D). We say a domain D defines an assignment if ∀X |D(X)| = 1; in that case
the assignment maps each X to the element of D(X). We say filtering performs complete
checking if, whenever D defines an assignment, the result of filtering with a constraint C
is D iff the assignment satisfies C. Soundness and complete checking can be considered
minimal requirements for filtering methods [20].

Consistency conditions like domain consistency are inappropriate for open constraints
because some of the variables in an open constraint will be unspecified during part of the
execution. The counterpart of domain consistency is open D-consistency, defined in [14].

During execution, we may extend an open constraint C(~X) with an extra variable Y to

C(~XY). We would like to do filtering on the smaller constraint without knowing whether
it will be extended by Y , or further, and without creating a choicepoint. When we can do

116 M.J. MAHER

this, we have a kind of monotonicity property of C, called contractibility [13], which can be
characterized as follows.

Definition 2.1. We say a constraint C(~X) is contractible iff LC is prefix-closed.

Any filtering method satisfying the minimal requirements discussed above requires con-
tractibility to guarantee that closed filtering is sound for an open constraint. This refines a
result of [13].

Theorem 2.2. Let C be a constraint, and consider a sound filtering method that performs
complete checking. It is always sound to interleave filtering and the addition of new variables
iff C is contractible.

Consequently, for contractible constraints, filtering does not need to be undone if the
list is lengthened. That is, algorithms for filtering a closed contractible constraint are valid
also for the corresponding open constraint.

Conversely, any constraint C that is not contractible might need to undo the effects of
filtering if the list is lengthened. Barták [1] proposed an implementation approach to avoid
this effect. Essentially, a propagator for a contractible approximation of C is used until C is
closed, when a propagator for C is used. The importance of contractible approximations lies
in this ability to provide filtering for open uncontractible constraints. Tight approximations
can yield best-possible filtering [14].

Theorem 2.3. Let Capp be the tightest contractible approximation to C, and suppose we

have closed propagators for Capp and C that maintain domain consistency wrt ~X. Then
Barták’s proposal maintains open D-consistency for C.

3. Contractibility of Soft Constraints

We consider “soft” global constraints in the style of [18]. In such constraints there is
a violation measure, which measures the degree to which an assignment to the variables
violates the associated “hard” constraint, and solutions are assignments that satisfy an

upper bound on the violation measure. Thus such soft constraints have the form m(~X) ≤ Z,

where m is the violation measure1. We refer to the hard constraint as C(~X) and the

corresponding soft constraint as Cs(~X,Z).
We say that a function f is an accumulation function if it maps sequences of values to

a single value. We say f is non-decreasing if for every sequence of values ~X and value Y ,

f(~X) ≤ f(~XY). Addressing the contractability of such constraints is made easier by the
following characterization [13].

Proposition 3.1. A soft constraint m(~X) ≤ Z is contractible iff m is a non-decreasing
accumulation function.

Consequently, we will also call such functions m contractible. Thus, to evaluate whether
or not soft constraints are contractible we must consider the form of the violation measure,
and whether it forms a contractible function.

1Also called violation cost [18].

CONTRACTIBLE APPROXIMATIONS 117

Definition 3.2. A violation measure for a sublanguage L of a language L′ is a function
m which maps L′ to the non-negative real numbers, such that if w ∈ L then m(w) = 0.
m is proper for L if for all words w ∈ L′, m(w) = 0 iff w ∈ L. A violation measure for a

constraint C(~X) is a violation measure for LC as a sublanguage of the static type T (~X).

For example, a use of AllDifferent might give the set Z of integers as the static
type of each variable. A violation measure might then be the number of disequalities

Xi 6= Xj , i 6= j violated by a valuation for ~X, or the number of variables equal to another
variable, or the minimum absolute value of the sum over i of values ci such that ∀j j 6= i→
Xi + ci 6= Xj . It is easy to see that each of these defines a violation measure. The third is
not a proper violation measure because, for example, the word 11233 gives rise to values of
ci of −1,−1, 0, 1, 1. Thus m(11233) = 0 but 11233 6∈ LC .

Proper violation measures for a language L are a refinement of the characteristic func-
tion of L, and can be considered more intuitive than non-proper measures. Most violation
measures in the literature are proper for their intended language. Although any function
from words to non-negative reals can be considered a proper violation measure by appro-
priate choice of language L, in practice the hard constraint determines L and the violation
measure is then designed to be proper. A non-proper measure can be considered misleading
because a word w that violates the language L can have a violation measure of 0. We admit
non-proper violation measures mainly because contractible approximations considered in
Section 4 can be non-proper.

There are three broad classes of violation measures [15]: those based on constraint
decomposition, edit distance, and graph properties. We address the first two classes in the
following subsections. The richness of the graph property framework [3] makes it difficult
to obtain general results on contractibility.

3.1. Decomposition-based Violation Measures

Many hard constraints can be decomposed into elementary constraints, whether natu-
rally (such as the decomposition of AllDifferent into disequalities) or by design, as in [5].
Violation measures can be constructed by combining the violations of each elementary con-
straint. We define a general class of decomposition-based violation measures that includes
as special cases: primal graph based violation costs [18], decomposition-based violation
measures of [10], the value-based violation measure for GCC [18, 10], the measures used
for the soft Sequence constraint [16] and the soft Cumulative constraint [17], and the
class of decomposition-based measures discussed in [15]. We begin with several definitions.

A weighted set is a pair (S,w) where S is a set and w is a function mapping each
element of S to a non-negative real number or ∞. Values not in S have weight 0. If
these are the only values of weight 0 we say (S,w) is proper. A weighted set is a minor
generalization of a multiset. A weighted set (S1, w1) is a sub-weighted set of weighted set
(S2, w2) if, for every element s ∈ S1, w1(s) ≤ w2(s). Union of weighted sets is defined by
(S1, w1) ∪ (S2, w2) = (S1 ∪ S2, w1 + w2). When a weighted set contains expressions with
variables that are subject to substitution, the application of a substitution might unify
elements of the set. Hence, (S,w)θ denotes (Sθ,w′) where w′(s) is the sum of w1(s

′) over
all s′ ∈ S such that s′θ ≡ s.

We need to carefully formalize the notion of decomposition. Decomposition is a function

that maps a constraint C with a given type T and a sequence of variables ~X to a tuple

118 M.J. MAHER

(~X, ~U, T ′, S, w) where T ′ is an extension of T , ~U is a collection of new variables, T (~U) is
their corresponding types, and (S,w) is a proper weighted set of elementary constraints

over ~X ~U such that C(~X) ↔ ∃~U T ′(~U) ∧
∧

s∈S s. The weights are used only to emphasize
some constraints in a decomposition over others; in particular, the infinite weight allows us
to specify elementary constraints that must not be violated. An unweighted decomposition
is one where all constraints in S have the same, non-zero weight. In that case, we may

omit w. We write decomp(C(~X)) to express the weighted set (S,w), or simply S when the
decomposition is unweighted. This definition of decomposition is very broad, perhaps too

broad, since it allows the set of elementary constraints to vary radically as the length of ~X
changes.

An error function e maps an elementary constraint and a valuation to a non-negative
real number, representing the amount of error (or violation) of the constraint by the val-
uation. We require that e(v, c) = 0 iff c is satisfied by v. We extend e to weighted
sets of constraints by defining e(v, (S,w)) = (S′, w′) where S′ = {e(v, s) | s ∈ S} and
w′(x) =

∑
v(s)=xw(s).

A combining function maps a set of numbers and a weighting function to a single num-
ber. A combining function comb is monotonic if, whenever (S1, w1) is a sub-weighted set of
(S2, w2), comb(S1, w1) ≤ comb(S2, w2). The function comb is disjunctive if for all weighted
sets of reals (S,w), comb(S,w) = 0 iff S = {0}. Counting non-zero values, summation, sum
of squares, and maximization are examples of monotonic, disjunctive combining functions;
product and minimization are neither monotonic nor disjunctive.

Definition 3.3. A decomposition-based violation measure m for a constraint C(~X) with

type T is based on a decomposition (~X, ~U, T ′, S, w) of C(~X), an error function e, and a

combining function comb and is defined by, for each valuation v of ~X,

m(C(v(~X))) = min
v′

comb(e(v′,decomp(C(~X))))

where we minimize over all extensions v′ of v to ~U that satisfy T ′.

This definition was inspired by the formulation of hierarchical constraints in [6, 7]. The
decomposition measures of [18, 10] can be obtained when the error function e(v, c) returns 0
if v satisfies c and 1 otherwise, and the combining function is summation. The value-based
measures of [18, 10, 16, 17] also use summation as the combining function, but use an error
function that returns the amount by which the constraint c is violated by the valuation v.
If we use maximization or the sum of squares in place of summation we have new violation
measures similar to the worst-case-better and least-squares-better comparators of [6, 7].
Clearly many violation measures are available for a constraint by making different choices
for the decomposition and the error and combining functions.

There is a powerful sufficient condition for a decomposition-based violation measure to
be proper.

Proposition 3.4. Let m be a decomposition-based violation measure for a constraint C. If
comb is disjunctive then m is proper for LC .

We say that one formula (~X, ~U, T1, S1, w1) is covered by another formula (~W, ~V , T2, S2, w2)

if there is a substitution θ that maps ~X into ~W and ~U into ~V ∪ ~W ∪ Σ, where Σ is a set

of constants, such that T1(~X) = T2(~Xθ), (S1, w1)θ is a sub-weighted set of (S2, w2) and

T2(~Uθ) ⊆ T1(~U).

CONTRACTIBLE APPROXIMATIONS 119

Example 3.5. The decomposition of AllDifferent(~X) into a set of disequalities is for-

malized as (~X, ∅, T, S, w) where S is the set of disequalities and w gives every disequality a

weight of 1. It is clear that the decomposition of AllDifferent(~X) is covered by that of

AllDifferent(~XY) where the substitution is the identity.
Contiguity is implemented in [12] essentially by the decomposition

Contiguity(~X)↔ ∃~L, ~R,X0, Xn+1

n∧
i=1

C ′(Xi−1, Ri−1, Li, Xi, Ri, Li+1, Xi+1)

for a constraint C ′. This decomposition is formalized as (~X, ~L~RX0Xn+1, T, S, w) where T
gives all variables a type of {0, 1}, S is the set of C ′ constraints, and w gives every constraint
a weight of 1. Alternatively, if contiguity is more important for variables nearer the right

end of the sequence ~X, we might weight each C ′ constraint by the largest index of a variable

appearing in it. The decomposition of Contiguity(~XY) covers that of Contiguity(~X)

where the substitution is the identity on ~X, ~L, and ~R.

We can now provide a sufficient condition for a soft constraint with a decomposition-
based violation measure to be contractible.

Proposition 3.6. Let Cs be a soft constraint with a decomposition-based violation measure

defined using a monotonic combining function. Let (~X, ~U, T1, S1, w1) be the decomposition

of C(~X) and (~XY, ~V , T2, S2, w2) be the decomposition of C(~XY). If (~X, ~U, T1, S1, w1) is

covered by (~XY, ~V , T2, S2, w2) via a substitution that is the identity on ~X then Cs is con-
tractible.

It follows that the constraints in Example 3.5 are contractible. Covering is only a
sufficient condition for contractibility, as the following example demonstrates.

Example 3.7. Consider the definition of a rising sawtooth relation rs on variables ~X. In
such a relation, the subsequence of values in even numbered positions forms a non-decreasing
sequence, and every value in odd numbered positions is greater than its immediately adja-
cent neighbours. This relation can be decomposed into elementary constraints as follows.
The decomposition is defined recursively, but notably requires two recursive cases, corre-
sponding to the distinction between odd and even length sequences.

decomp(rs([])) = true
decomp(rs([X1])) = true
decomp(rs([X1, X2])) = X1 ≥ X2

decomp(rs([X1, . . . , X2n, X2n+1])) =
decomp(rs([X1, . . . , X2n])) ∧X2n+1 ≥ X2n

decomp(rs([X1, . . . , X2n, X2n+1, X2n+2])) =
decomp(rs([X1, . . . , X2n])) ∧X2n+1 ≥ X2n+2 ∧X2n+2 ≥ X2n

Consider the soft constraint derived from this decomposition by counting the number of
violations. It is clear that the sufficient condition of Proposition 3.6 does not apply be-
cause there is no covering. Nevertheless, we can verify that a decomposition-based soft

rs constraint is contractible. Note first that when ~X has even length decomp(rs(~X)) ⊆
decomp(rs(~XY)) and consequently the violation measure is non-decreasing in this case.

When ~X has odd length the relationship is less obvious. However, we know that

¬(X2n+1 ≥ X2n)→ ¬(X2n+1 ≥ X2n+2) ∨ ¬(X2n+2 ≥ X2n)

120 M.J. MAHER

Hence, any valuation for the variables that gives rise to a violation of X2n+1 ≥ X2n will also
give rise to a violation of X2n+1 ≥ X2n+2, or X2n+2 ≥ X2n, or both. Thus the violation
measure is non-decreasing in this case also. Since the violation measure is non-decreasing,
the decomposition-based soft rs constraint is contractible.

Similarly, the violation measures derived from summing the amount of violation or
taking the maximum amount of violation of any elementary constraint lead to contractible
soft rs constraints.

This example demonstrates a major limitation of the sufficient condition in Proposition
3.6: it addresses only the syntactic structure of the decomposition. However some con-
straints, such as rs, require reasoning about the semantics of the elementary constraints in
order to recognise that the decomposition-based soft constraint is contractible. (For rs we
exploited the knowledge that ≥ forms a total order.)

3.2. Edit-based Violation Measures

The edit-based violation measures use a notion of edit distance, which is the minimum
number of edit operations required to transform a word into a word of LC . There are many
possible edit operations but the common ones are: to substitute one letter for another,
to insert a letter, to delete a letter, and to transpose two adjacent letters2. This class
includes the variable-based violation measures [18, 10], the object-based measures of [3], and
edit-based measures from [10].

Let α, β, γ, δ be non-negative weights for the edit operations substitution, insertion,
deletion and transposition, respectively, and let ns, ni, nd, nt be the number of the respective
operations used in an edit. Then, for any language L, we define mL(w) = minedits αns +
βni + γnd + δnt to be the minimum, over all edits that transform the word w to an element
of L, of the weighted sum of the edit operations.

Definition 3.8. An open edit-based violation measure for a sublanguage L of L′ is a
weighted edit distance mP (L) for P (L). An open edit-based violation measure m for L
is proper if m(w) = 0 iff w ∈ P (L) for every w ∈ L′.

We can characterize when an open edit-based violation measure is proper. Roughly, m
is improper iff some edits have zero cost and these are able to edit some w ∈ L′\P (L) to
w′ ∈ P (L).

Proposition 3.9. Let m be an open edit-based violation measure for L where P (L) is a
sublanguage of L′, with weights α, β, γ and δ.

m is proper iff one of the following conditions holds:

• min{α, β, γ, δ} > 0
• α = 0, min{β, γ} > 0 and L′ ∩ SameLength(P (L)) ⊆ P (L)
• β = 0, min{α, γ, δ} > 0 and L′ ∩ SubSeq(P (L)) ⊆ P (L)
• γ = 0 and L′ ⊆ P (L)
• δ = 0, min{α, β, γ} > 0 and L′ ∩ Perm(P (L)) ⊆ P (L)
• α = β = 0, γ > 0 and L′ ⊆ Shorter(P (L))
• β = δ = 0, min{α, γ} > 0 and L′ ∩ Subset(P (L)) ⊆ P (L)

2Edit distance based on these operations is known as Damerau-Levenshtein distance.

CONTRACTIBLE APPROXIMATIONS 121

where, for any language L,
SameLength(L) is the set of all words of the same length as a word of L,
Shorter(L) is the set of all words the same length or shorter than a word of L,
Perm(L) is the set of all permutations of words of L,
SubSeq(L) is the set of all subsequences of a word of L, and
Subset(L) is set of all words whose letters form a submultiset of the letters of a word of L.

In many cases, edit-based violation measures are contractible. This is a slight strength-
ening of a theorem of [15].

Theorem 3.10. Let Cs be a soft constraint with an open edit-based violation measure.
Suppose min{α, β, γ} ≤ δ.

Then Cs is contractible.

An example from [15] shows that if δ < min{α, β, γ} then an edit-based soft constraint
might be uncontractible. Thus Theorem 3.10 cannot be strengthened further without im-
posing extra conditions on Cs.

4. Contractible Approximations of Soft Constraints

As with hard constraints, when a soft constraint is uncontractible we can use a con-
tractible approximation while the constraint is open.

We reformulate the notion of tight approximation for soft constraints of the form

m(~X) ≤ Z as follows. A violation measure m1 is an approximation of the violation mea-
sure m if, for all words ~a, m1(~a) ≤ m(~a). We order violation measures with the pointwise
extension of the ordering on the reals: m1 ≤ m2 iff ∀~a m1(~a) ≤ m2(~a). A contractible
approximation m1 to a violation measure m is tight if, for all contractible functions m2,
if m1 ≤ m2 ≤ m then m2 = m1. Given two contractible approximations m1 and m2 to a
violation measure m, we say m2 is tighter than m1 if m1 ≤ m2. We write m∗ to denote the
tightest contractible approximation of m.

We can characterize the tightest contractible approximation of a violation measure,
independent of how the violation measure is formulated.

Proposition 4.1. Let m be a violation measure. The tightest contractible approximation

to m is characterized by m∗(~a) = inf~bm(~a~b), where the infimum is taken over all finite

sequences ~b.

4.1. Decomposition-based Violation Measures

One way to obtain a contractible approximation is to ignore parts of a decomposition

that cause incontractibility. A weakening of a decomposition of a constraint C(~X) is a func-

tion that, for every sequence ~X, maps the decomposition (~X, ~U, T ′, S, w) to (~X, ~U, T ′, S′, w′)
where (S′, w′) is a sub-weighted set of (S,w). For this weakened decomposition we can apply
the sufficient condition of Proposition 3.6.

Proposition 4.2. Consider a decomposition-based violation measure m for a constraint

C(~X) and a weakening W of the decomposition. Suppose m is defined via a monotonic

combining function. If, for every sequence ~X, the weakening of the decomposition of C(~X)

is covered by the weakening of the decomposition of C(~XY) via a substitution that is the

122 M.J. MAHER

identity on ~X then the measure m′ defined by using the weakened decompositions is a con-
tractible approximation of m.

This result shows an approach to finding a contractible approximation to C(~X), but it
provides no guarantee of finding a useful approximation. Like Proposition 3.6, it follows a
syntactic approach and has the same inherent weakness.

4.2. Edit-based Violation Measures

Recall that an edit-based violation measure m is contractible if δ ≥ min{α, β, γ} (The-
orem 3.10). If δ < min{α, β, γ} then m might be uncontractible and we must consider
contractible approximations. We can provide generic contractible approximations for edit-
based soft constraints by modifying the weights to accord with the sufficient condition of
Theorem 3.10.

Proposition 4.3. Let m be an open edit-based violation measure for a constraint C with
weights α, β, γ, δ where δ < min{α, β, γ}. Then the following violation measures are con-
tractible approximations of m for C.

(1) m1 based on weights δ, β, γ, δ
(2) m2 based on weights α, δ, γ, δ
(3) m3 based on weights α, β, δ, δ
(4) m4 defined by m4(w) = max{m1(w),m2(w),m3(w)}

Clearly m4 is the tightest of these approximations, and might be sufficient in practice.
However, in general, this approximation is not tight, as the following example shows.

Example 4.4. Let L = (abc)∗, so that P (L) = L∪La∪Lab. Let α = β = γ = 4 and δ = 1.
Consider w = bbb(abc)3ca. Two kinds of edits are needed, addressing the initial b’s and the
trailing ca. Then m(w) = 12 from substituting for the first and third b, and deleting the
last c. m(wb) = 10 using the same substitutions and two transpositions on c. Thus m is
not contractible.

The tightest approximation to m has m∗(w) = 10. Now consider the approximations
in Proposition 4.3. If we reduce α to 1 then m1(w) = 4 by applying four substitutions. If
we reduce β to 1 then m2(w) = 8 by inserting a and c around each initial b and inserting
ab before the last c. If we reduce γ to 1 then m3(w) = 4 by deleting the three b’s and the
last c. Thus m4(w) = 8.

This shows that m4 is not the tightest contractible approximation to m, since m4(w) 6=
m∗(w).

The question now arises: how to express m∗ in edit-based terms so that a closed prop-

agator for m(~X) ≤ Z might be adapted to implement m∗(~X) ≤ Z. Disappointingly, this
turns out to be impossible, in general.

Theorem 4.5. There is an open edit-based violation measure m for a language L such
that its tightest contractible approximation cannot be expressed as a proper (not necessarily
open) edit-based violation measure on any language.

The language and violation measure demonstrating this claim are those from Example
4.4. Given that the language is so simple, we can expect that many uncontractible edit-based
violation measures cannot be tightly approximated by a contractible edit-based violation
measure. This contrasts markedly with work on hard constraints, where tight contractible

CONTRACTIBLE APPROXIMATIONS 123

approximations of several uncontractible hard constraints can be formulated in terms of
the original hard constraint [14, 15]. It suggests that the edit-based implementation of the
closed constraint is not a suitable basis for implementing the tight approximation.

5. Conclusions

We have investigated violation measures for soft constraints based on decomposition
and edit-distance. We defined a class of decomposition-based violation measures that gen-
eralizes several previous works. For both forms of violation measures we identified sufficient
conditions for constraints to be proper and strengthened results of [15] on when they are
contractible. Finally, we found that the edit-based framework is not expressive enough to
represent tight contractible approximations, in general.

Acknowledgements

Thanks to the referees for their comments, which helped improve this paper.

References

[1] R. Barták, Dynamic Global Constraints in Backtracking Based Environments, Annals of Operations
Research 118, 101–119, 2003.

[2] N. Beldiceanu, M. Carlsson and J.-X. Rampon, Global Constraint Catalog, SICS Technical Report
T2005:08. Current version available at http://www.emn.fr/x-info/sdemasse/gccat/

[3] N. Beldiceanu and T. Petit, Cost Evaluation of Soft Global Constraints, CPAIOR, 80–95, 2004.
[4] C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan and T. Walsh, SLIDE: a useful special case of the

CardPath constraint, ECAI 2008, 475–479, 2008.
[5] C. Bessière, G. Katsirelos, N. Narodytska, C.-G. Quimper and T. Walsh, Decompositions of All Differ-

ent, Global Cardinality and Related Constraints, IJCAI 2009: 419–424.
[6] A. Borning, B. Freeman-Benson and M. Wilson, Constraint Hierarchies, Lisp and Symbolic Computation

5, 3, 223–270, 1992.
[7] A. Borning, M.J. Maher, A. Martindale and M. Wilson, Constraint Hierarchies and Logic Programming,

ICLP, 149–164, 1989.
[8] S. Brand, N. Narodytska, C.-G. Quimper, P.J. Stuckey and T. Walsh, Encodings of the Sequence

Constraint, CP 2007, LNCS 4741, Springer, 210–224.
[9] R. Dechter, Constraint Processing, Morgan Kaufmann, 2003.

[10] W-J. van Hoeve, G. Pesant and L-M. Rousseau, On Global Warming: Flow-Based Soft Global Con-
straints, Journal of Heuristics, 12(4-5), 347–373, 2006.

[11] W-J. van Hoeve and J-C. Régin, Open Constraints in a Closed World, CPAIOR’06, LNCS 3990,
Springer, 244–257, 2006.

[12] M.J. Maher, Analysis of a Global Contiguity Constraint, Proc. Workshop on Rule-Based Constraint
Reasoning and Programming, 2002.

[13] M.J. Maher, Open Contractible Global Constraints, IJCAI 2009, 578–583.
[14] M.J. Maher, Open Constraints in a Boundable World, CPAIOR 2009, LNCS 5547, 163–177.
[15] M.J. Maher, SOGgy Constraints: Soft Open Global Constraints, CP 2009, LNCS 5732, 584–591, 2009.
[16] M. Maher, N. Narodytska, C.-G. Quimper and T. Walsh, Flow-based propagators for the SEQUENCE

and related global constraints, CP 2008, LNCS 5202, 159–174.
[17] T. Petit and E. Poder, The Soft Cumulative Constraint, Research Report TR09/06/info, Ecole des

Mines de Nantes, 2009.
[18] T. Petit, J-C. Régin and C. Bessière, Specific Filtering Algorithms for Over-constrained Problems, CP

2001, LNCS 2239, Springer, 451–463.
[19] F. Rossi, P. van Beek and T. Walsh (Eds), Handbook of Constraint Programming, Elsevier, 2006.
[20] C. Schulte and G. Tack, Weakly Monotonic Propagators, CP 2009, LNCS 5732, 723–730, 2009.

