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Abstract. Answer set programs with time predicates are useful to model systems whose
properties depend on time, like for example gene regulatory networks. A state of such a
system at time point t then corresponds to the literals of an answer set that are grounded
with time constant t. An important task when modelling time-dependent systems is to find
steady states from which the system’s behaviour does not change anymore. This task is
complicated by the fact that it is typically not known in advance at what time steps these
steady states occur. A brute force approach of estimating a time upper bound tmax and
grounding and solving the program w.r.t. that upper bound leads to a suboptimal solving
time when the estimate is too low or too high. In this paper we propose a more efficient
algorithm for solving Markovian programs, which are time-dependent programs for which
the next state depends only on the previous state. Instead of solving these Markovian
programs for a long time interval {0, . . . , tmax}, we successively find answer sets of parts
of the grounded program. Our approach guarantees the discovery of all steady states and
cycles while avoiding unnecessary extra work.

1. Introduction

Answer Set Programming (ASP) is a form of non-monotonic reasoning based on the
stable-model semantics [Gel88]. The number of ASP application domains is growing fast
(see e.g. [Dwo08, Tra06, Sch09]). Some of these require an adaptation of the general-purpose
solving process to their specific needs to allow for faster answer set computation. One broad
domain of ASP applications uses programs that depend on a parameter that bounds the size
of a solution. Consider e.g. the following time-dependent answer set program, for which the
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grounding size depends on the parameter tmax. This program uses a non-standard notation
of the form p@T which is equivalent to p(T ). The purpose of this notation is described in
Section 3.

Example 1.1. Program P
consists of the following rules:

time(0 . . . tmax).
q@T ← p@(T − 1), time(T ), time(T − 1).
v@T ← q@(T − 1), not w@T, time(T ), time(T − 1).
w@T ← q@(T − 1), not v@T, r(X), time(T ), time(T − 1).
p@T ← time(T ).
r(str).

where time(0 . . . tmax) is a shorthand for the facts time@0, time@1, . . . , time@tmax and T is
a time-bound variable. This program describes the behaviour of a system whose properties
depend on time. The answer sets for this program change as the time boundary tmax
increases. When tmax = 0 there is only one answer set1, namely A = {r(str), time(0), p(0)}.
The unique answer set for tmax = 1 is B = A∪{time(1), p(1), q(1)}, which is twice the size of
the previous one. For tmax = 2, negation as failure comes into play, resulting in two different
answer sets C = B∪{time(2), p(2), q(2), v(2)} and D = B∪{time(2), p(2), q(2), w(2)}. For
tmax = 3 there are already four different answer sets:

E = C ∪ {time(3), p(3), q(3), v(3)} G = D ∪ {time(3), p(3), q(3), w(3)}
F = C ∪ {time(3), p(3), q(3), w(3)} H = D ∪ {time(3), p(3), q(3), v(3)}

As this example illustrates, the number of answer sets as well as the size of the answer
sets of a time-dependent program can increase exponentially in the time boundary.

An important task when modelling and simulating a time-dependent system is to find
its steady states. Answer set E in Example 1.1 contains one steady state of the system
described by program P , as time, p, q, and v (and no other time-dependent predicates)
belong to E both for time step 2 and 3.

The main problem in finding these steady states is that it is typically not known in
advance at what time steps they occur. Furthermore a system may converge to several
steady states (e.g. E and F in Example 1.1) or may even oscillate among several states
repeatedly (e.g a cycle between v and w in Example 1.1 that manifests itself in some of the
answer sets of P for tmax = 4), and we may want to find them all. A brute force approach
of estimating a time upper bound and grounding and solving the program w.r.t. that upper
bound may lead to a suboptimal solving time: if the upper bound is estimated too high,
the grounded program is larger than necessary to find the steady states, hence requiring
unnecessary work, and if it is estimated too low, not all steady states are found, meaning
the process needs to be redone for a larger estimate.

In this paper we propose a technique that allows to find all steady states and cycles
efficiently. To this end, we define the notion of Markovian programs, which can be grounded
for one time step at a time. We introduce a way of solving these programs by solving one-
step grounded versions. These programs can be used to model protein interaction networks
as described e.g. in [Fay09]. We proceed by recalling ASP notions in Section 2, formally
defining time-dependent programs and Markovian programs in Section 3, and proposing
a method to solve these programs efficiently in Section 4. We explain the difference with
other approaches in Section 5 and finally conclude in Section 6.

1See Section 2 for preliminaries w.r.t. answer set programming.
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2. Preliminaries

Answer set programs are built from a signature σ = 〈 γ, υ, π 〉, where γ is a set of
constant symbols, υ is a set of variable symbols, and π =

⋃m
i=1 πi(m ∈ N) is the union

of sets πi of i-ary predicate symbols. We define a set of variable expressions ε containing
expressions of the form t′ ± t′′ where t′ ∈ υ and t′′ ∈ γ. An atom over σ is an object of the
form p(t1, . . . , tn), where p ∈ πn and ti ∈ γ ∪ υ ∪ ε for each i ∈ 1 . . . n. We implicitly assume
that if ti is a symbol starting with a capital, it denotes a variable; otherwise it is a constant.
A literal over σ is either an atom, or an atom preceded by ¬, which denotes classical
negation. Naf-literals over σ, denoting negation-as-failure, are of the form not l, where l is
a literal over σ. For a set of literals X we introduce the notation notX = {not l|l ∈ X}.
For a literal or a naf-literal l, we use vars(l) to denote the set of variables contained in l.
If vars(l) = ∅ then l is called ground.

A rule r over σ is an object of the form l0 ← l1, . . . , lm,not lm+1, . . . ,not ln, where li,
for i ∈ 0 . . . n, are literals over σ. If each li is ground, it is called a ground rule. We refer to
l0 as the head of r, denoted as head(r), to the set {l1, . . . , lm,not lm+1, . . . ,not ln} as the
body of r, denoted as body(r), to {l1, . . . , lm} as the positive part of the body, denoted as
pos(r), and to the set {lm+1, . . . , ln} as the negative part of the body, denoted as neg(r).
We denote Lit(r) = pos(r) ∪ neg(r). If the head of the rule is empty, the rule is called a
constraint2; if the body of the rule is empty, the rule is called a fact.

An answer set program P over a signature σ is a finite set of rules over σ. If all rules in
P are ground, it is called a ground program. The process of grounding constructs a ground
program Gnd(P ) from an answer set program P over a signature σ by replacing each rule r
by the set of rules obtained from r by all possible substitutions of the constants of σ for the
variables in r. If any of the predicate arguments takes on a composite form t′± t′′ with t′, t′′

grounded as numbers, they are substituted with the resulting value. A rule r that does not
contain negation-as-failure, i.e. neg(r) = ∅, is called a simple rule. A program that contains
only simple rules is called a simple program.

Turning to the semantics, a set of ground literals I over a signature σ is called an
interpretation if it is consistent, i.e. there is no literal l such that both l ∈ I and ¬l ∈ I. An
interpretation I is a model of a simple rule r iff pos(r) 6⊆ I ∨head(r) ∈ I. An interpretation
that is a model of all rules of a simple program P is called a model of P . The minimal
model of a simple program P is called an answer set of P . If P contains negation-as-failure,
then an interpretation I of P is called an answer set of P iff I is the answer set of the reduct
program P I , where P I = {head(r)← pos(r) | r ∈ P, I ∩ neg(r) = ∅}. The set of all answer
sets of a program P is denoted as AS(P ).

3. Theoretical underpinnings

3.1. Time-dependent programs

In the remainder of this paper, we designate certain predicates as time-dependent pred-
icates and denote atoms built with these predicates as p(t1, . . . , tn−1)@θ where θ is called
a time argument. This is a convenience notation that allows to separate the (semantic)

2We do not consider constraints in our formal language, since a constraint ← β can be simulated by a
rule l← not l, β, where l is a literal not occurring in the program.
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notion of time from the underlying syntactic representation. This notation is translated to
a conventional atom of the form p(t1, . . . , tn−1, θ) at grounding time.

Definition 3.1 (Time-dependent program). A time-dependent program P is a tuple 〈P, τ 〉
over a signature σ = 〈 γ, υ, π 〉, such that P is an answer set program over σ and τ ⊆ π is a
set of time-dependent predicates. We denote the set of n-ary time-dependent predicates as
τn. We define the set of free time-dependent literals

FP =
⋃{

{p(t1, . . . , tn−1)@θ,¬p(t1, . . . , tn−1)@θ}
∣∣∣∣ t1, . . . , tn−1 ∈ γ ∪ υ ∪ ε,θ ∈ υ ∪ ε, p ∈ τn, 1 ≤ n ≤ m

}
and the set of bound time-dependent literals

BP =
⋃{

{p(t1, . . . , tn−1)@θ,¬p(t1, . . . , tn−1)@θ}
∣∣∣∣ t1, . . . , tn−1 ∈ γ ∪ υ ∪ ε,θ ∈ γ, p ∈ τn, 1 ≤ n ≤ m

}
.

The literals from FP contain a variable or a variable expression as the time argument, while
the literals from BP contain a constant as the time argument. The set of time-dependent
literals of a time-dependent program P is defined as Lit(P)τ = FP ∪ BP. It is a subset
of the set of all literals of P, which is defined as Lit(P) =

⋃
r∈P Lit(r). Furthermore, for

l ∈ Lit(P)τ , we use targ(l) to refer to the time argument θ of l. A time-dependent program
P is called well-typed iff

∀r ∈ P · (Lit(P)τ ∩ (pos(r) ∪ neg(r)) 6= ∅)⇒ (head(r) ∈ Lit(P)τ )

Intuitively, if a rule in a well-typed time-dependent program contains a time-dependent
literal in its body, it should contain a time-dependent literal in its head. In the remainder
we will only consider well-typed time-dependent programs.

Definition 3.2 (t-grounding of a time-dependent literal). Let P = 〈P, τ 〉 be a time-
dependent program and t ∈ N. The t-grounding of a literal l ∈ Lit(P), denoted as Gnd(l)t,
is obtained as follows: 1) if l ∈ Lit(P) \ FP then Gnd(l)t = l; 2) if l ∈ FP then the
variable in targ(l) is replaced by t, and in case of a variable expression the resulting value
is calculated. In all cases, the obtained literal Gnd(l)t is subsequently translated to the
conventional ASP notation. For a set of literals L, we define the t-grounding of this set as
Gnd(L)t =

⋃
l∈LGnd(l)t, i.e. we take the pointwise t-grounding of its elements.

Example 3.3. The 2-grounding of literal l = p(X, a)@(T + 1) is Gnd(l)2 = p(X, a, 3).

Definition 3.4 (t-grounding of a rule). Let P = 〈P, τ 〉 be a time-dependent program and
t ∈ N. The t-grounding of a rule r ∈ P is defined as

Gnd(r)t = Gnd(head(r))t ← Gnd(pos(r))t,notGnd(neg(r))t

Definition 3.5 (t-grounding of a time-dependent program). Let P = 〈P, τ 〉 be a time-
dependent program and tmax ∈ N. The tmax-grounding of P is defined as

Gnd(P)tmax = Gnd({Gnd(r)t′ | r ∈ P, t′ ∈ N, t′ ≤ tmax})

Intuitively, to obtain Gnd(P)tmax we instantiate all time-dependent literals with a set
of time points {t′|0 ≤ t′ ≤ tmax} and then ground the resulting program in the conventional
way.
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Example 3.6. Let P = 〈P, {v, w, q, p, time} 〉 where P is the program from Example 1.1.
Its 2-grounding Gnd(P)2 is obtained by setting tmax = 2 and is defined as

1 : time(0). 9 : v(2) ← q(1), not w(2), time(2), time(1).
2 : time(1). 10 : w(0) ← q(−1), not v(0), r(str), time(0), time(−1).
3 : time(2). 11 : w(1) ← q(0), not v(1), r(str), time(1), time(0).
4 : q(0) ← p(−1), time(0), time(−1). 12 : w(2) ← q(1), not v(2), r(str), time(2), time(1).
5 : q(1) ← p(0), time(1), time(0). 13 : p(0) ← time(0).
6 : q(2) ← p(1), time(2), time(1). 14 : p(1) ← time(1).
7 : v(0) ← q(−1), not w(0), time(0), time(−1). 15 : p(2) ← time(2).
8 : v(1) ← q(0), not w(1), time(1), time(0). 16 : r(str).

Definition 3.7 (State of an answer set). Let P = 〈P, τ 〉 be a time-dependent program
and I be an answer set of the tmax-grounding Gnd(P)tmax for tmax ∈ N. Furthermore let
t ∈ N with t ≤ tmax. The state of I at time point t is defined as

It = {l | l ∈ I, targ(l) = t}

Intuitively, the state of answer set I of Gnd(P)tmax at time point t is the set of ground
time-dependent literals in I that were grounded with t in the time argument. Two states
are called equivalent if the only difference between literals in these states is in the values of
the time points (see Example 3.12). We denote state equivalence as It

′
=time I

t′′ .

Example 3.8. Consider the program Gnd(P)2 from Example 3.6. The answer sets of
this program are C and D as defined in Example 1.1. The states of answer set C at
time points 0, 1 and 2 are C0 = {time(0), p(0)}, C1 = {time(1), p(1), q(1)} and C2 =
{time(2), p(2), q(2), v(2)}.

Definition 3.9 (Trajectory of an answer set). Let P = 〈P, τ 〉 be a time-dependent program
and I an answer set of the tmax-grounding Gnd(P)tmax for tmax ∈ N. The trajectory of I is
defined as

T I = 〈 I0 . . . Itmax 〉

Example 3.10. The trajectory of answer set C of program Gnd(P)2 from Example 3.6 is

TC = 〈 {time(0), p(0)}, {time(1), p(1), q(1)}, {time(2), p(2), q(2), v(2)} 〉

Definition 3.11 (Steady state, steady cycle). Let P = 〈P, τ 〉 be a time-dependent program
and I be an answer set of the tmax-grounding Gnd(P)tmax for tmax ∈ N. The state of I
at time point t, with t < tmax, is called a steady state iff It =time I

t+1. The sequence
〈 Ik 〉t1≤k≤t2 , with t1 ∈ N, t2 ∈ N and t1 < t2 ≤ tmax, is called a steady cycle iff It1 =time I

t2 .

Note that to define whether a state is a steady state it is enough to check the next
state, because if it does not change in the next step it will not change in the following steps
as well due to the deterministic nature of the model.

Example 3.12. The 3-grounding Gnd(P)3 of P = 〈P, {v, w, q, p, time} 〉 where P is the
program from Example 1.1, has answer sets E,F,G, and H as defined in Example 1.1.
The states of answer set E are E0 = {time(0), p(0)}, E1 = {time(1), p(1), q(1)}, E2 =
{time(2), p(2), q(2), v(2)}, and E3 = {time(3), p(3), q(3), v(3)}. E2 is a steady state, as
E2 =time E

3.

When solving time-dependent programs, one is usually interested in finding steady
states, steady cycles and trajectories leading to these states, as they can help to verify the
model’s correctness and/or provide new hypotheses about the behaviour of the underlying
system. An important problem is that it is in general impossible to accurately estimate an
upper time bound tmax that suffices to find all steady states. Thus, one should manually
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adjust the bound and recompute answer sets over and over, which is very inefficient. In
the following section we narrow down time-dependent programs to Markovian programs
and propose an approach that does not require a time bound estimation for trajectory
computation.

3.2. Markovian programs

In this section we define a subclass of time-dependent programs, called Markovian
programs. This type of time-dependent programs is defined in such a way that every next
state directly depends only on the previous state, and does not depend on any of the future
states (hence the name Markovian). This is a reasonable assumption as real-world models
are normally unaware of any future events and make their decisions based on the information
directly available.

Recall that steady states and steady cycles for a time-dependent program P can be
found by grounding the program for a manually chosen time upper bound tmax (see Defini-
tion 3.5), solving the resulting ground program Gnd(P)tmax to obtain its answer sets, and
verifying whether the answer sets reveal steady states or cycles (see Definition 3.11). The
Achilles’ heel in this procedure is in the manual choice of tmax. Iteratively incrementing it
and repeating the above process until reaching a time point tmax at which a steady state or
cycle is encountered is inefficient, because that would require solving Gnd(P)0, Gnd(P)1,
Gnd(P)2, . . . , Gnd(P)tmax , or, in other words, grounded versions of the original time-
dependent program for time intervals {0, 1},{0, 1, 2},. . .,{0, . . . , tmax}. Instead, we propose
to consecutively solve smaller programs for intervals {0, 1}, {1, 2},. . ., {tmax−1, tmax}. This
approach is more efficient because we ground only for one time step at a time and solve
smaller programs in every iteration. Further in this section we show that by doing so we
obtain the same answer sets as by solving the initial program for interval {0, . . . , tmax}.

Definition 3.13 (Markovian program). A time-dependent program P = 〈P, τ 〉 is called
Markovian iff it satisfies the following conditions for every r ∈ P with head(r) ∈ Lit(P)τ

and t ∈ N:

(1) targ(head(r)) ∈ γ ∪ υ
(2) targ(Gnd(head(r))t) = targ(Gnd(l)t) or targ(Gnd(head(r))t) = targ(Gnd(l)t) + 1

for all l ∈ Lit(r) ∩ Lit(P)τ

Rules in a Markovian program P can be divided into two subsets: a program that
describes temporal relationships P τ = {r|r ∈ P, (head(r) ∪ Lit(r)) ∩ Lit(P)τ 6= ∅} and a
program that describes the rest of the relationships P e = P \ P τ . Program P e can be
interpreted as environmental conditions that are invariant over time. By definition, P e is
independent from the program’s temporal part, thus it can be solved separately to obtain
its answer sets that represent the values of these conditions. Note that if P e does not have
an answer set, then for any tmax ∈ N, Gnd(P)tmax does not have an answer set either.

Example 3.14. Consider Markovian program P and its 2-grounding Gnd(P)2 as defined
in Example 3.6. Here the program P τ contains rules 1-15, while the program P e contains
rule 16. The program Gnd(P)2 has two answer sets, namely C and D as defined in Example
1.1. The unique answer set of P e is {r(str)}.
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Definition 3.15 (Partial temporal grounding). Let P = 〈P, τ 〉 be a Markovian program
and t ∈ N. The partial temporal grounding of P for time point t is defined as

Pt = {Gnd(r)t|r ∈ P, head(r) ∈ Lit(P)τ , targ(Gnd(head(r))t) = t}

In other words, a partial temporal grounding for a time point t is the set of t-grounded
rules whose head depends on time point t.

Example 3.16. The partial temporal grounding of P built in Example 3.6 for time point
2 is the program P2 that is defined as follows

3 : time(2).
6 : q(2) ← p(1), time(2), time(1).
9 : v(2) ← q(1), not w(2), time(2), time(1).

12 : w(2) ← q(1), not v(2), r(X), time(2), time(1).
15 : p(2) ← time(2).

Assume that the tmax-grounding Gnd(P)tmax of a Markovian program P has an answer
set A. Once A is known, using Definition 3.7, we can straightforwardly find its states at
time points 0, 1, . . . , tmax, i.e., A0, A1, . . . , Atmax . Below we show that it is also possible to
find states of an answer set without prior knowledge of an answer set itself. In particular,
the state At of an (unknown) answer set of Gnd(P)tmax at time point t can be computed
based on knowledge of the state At−1 at time point t− 1, as well as knowledge of an answer
set A−1 of P e. This means that from the answer sets of P e, the set of states at time
point 0 can be found, and from this the set of states at time point 1, etc. This is done by
building P ′t = Pt ∪ {l ← .|l ∈ At−1 ∪ A−1} and then grounding P ′t and transforming it by
replacing literals from At−1 ∪A−1 with true values, which is formally defined in Definition
3.17. Solving the resulting (small) program yields as answer sets the possible states at time
point t given the state At−1 and the environmental conditions A−1.

Definition 3.17 (Partial reduct). Let P be a ground program, I an interpretation of P
and PI = {l ← .|l ∈ I}, such that PI ⊆ P and head(P \ PI) ∩ I = ∅. The partial reduct of
P w.r.t. I is the program RI(P ) defined as

RI(P ) = {head(r)← (pos(r) \ I),notneg(r). |r ∈ P\PI , neg(r) ∩ I = ∅}

Example 3.18. Assume we known that {time(1), p(1), q(1)} is the state at time point 1
of a (possibly unknown) answer set of program Gnd(P)2 from Example 3.6. We also know
an answer set of P e, namely {r(str)}. Let P2 be the partial temporal grounding of P for
time point 2 as described in Example 3.16. We construct the set I = {time(1), p(1), q(1)}∪
{r(str)} and the program P ′2 = Gnd(P2 ∪ {l← .|l ∈ I}) as follows:

time(2). time(1).
q(2) ← p(1), time(2), time(1). p(1).
v(2) ← q(1), not w(2), time(2), time(1). q(1).
w(2) ← q(1), not v(2), r(str), time(2), time(1). r(str).
p(2) ← time(2).

The partial reduct RI(P ′2) is then defined as

time(2).
q(2) ← time(2). w(2) ← not v(2), time(2).
v(2) ← not w(2), time(2). p(2) ← time(2).

By applying the partial reduct we remove the literals from I that appear positively in rule
bodies as well as the facts that appear as literals in I. The answer sets of the resulting
program are {time(2), p(2), q(2), v(2)} and {time(2), p(2), q(2), w(2)} which correspond to
C2 and D2 with C and D as in Example 1.1.
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Figure 1: The gene regulatory network of Fission Yeast that can be modelled using Mar-
kovian programs (illustration from [Dav08]).

The theorem below states that instead of computing answer sets of a Markovian program
Gnd(P)tmax directly, we can compute answer sets of smaller programs for every time step
0 ≤ t′ ≤ tmax consecutively and obtain the same result. This fact has as an important
implication that we can arrive at answer sets of a Markovian program without considering
tmax at all, which allows to impose another stopping condition. This is the technique that
is used to implement an algorithm for computing steady states explained in the following
section.

Theorem 3.19. Let P = 〈P, τ 〉 be a Markovian program and Gnd(P)tmax be a tmax-
grounding of P for tmax ∈ N, then

AS(Gnd(P)tmax) =

{
B−1 ∪ . . . ∪Btmax

∣∣∣∣ B−1 ∈ AS(P e), , Bt ∈ AS(RB
t−1∪B−1

(P ′t)),
t ∈ 0 . . . tmax

}
with P ′t = Gnd(Pt ∪ {l← .|l ∈ Bt−1 ∪B−1}).

4. Practical application

The results from the previous section give rise to an algorithm for finding all steady
states and cycles of Markovian programs. It can be summarized as:

(1) Solve program P e with the environmental conditions and initialize t = 0.
(2) Obtain the partial temporal grounding for t and find the system’s states at time t.
(3) Update the list of trajectories with the new states found in step (2).
(4) Increment t.
(5) If any of the trajectories did not reach steady state or cycle, go to step (2).

This algorithm can be applied to model gene regulatory networks. An example regu-
latory network of Fission Yeast is presented in Figure 1, where nodes stand for genes and
proteins, pointed edges define the activation of one node by another and blunt edges define
the inhibition of one node by another. The semantics of the network can be expressed as
a program P , while the actual network structure can be defined independently in a sepa-
rate program P ′ as described in [Fay09]. The resulting program is a Markovian program
P = 〈P ∪P ′, τ 〉. A trajectory in the network is found w.r.t. an initial state of the network.
The state of the network is defined as a combination of states of its nodes, where the state
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of a node is defined as active(a, T ) or inhibited(a, T ) where a is a protein and T is a time
variable, i.e. active, inhibited ∈ τ . Looking at the network it is not possible to estimate
how many time steps it would take to find all network steady states, and setting the time
boundary too high would result in significant computation overheads, while the approach
we propose does not involve an explicit time boundary and thus avoids these overheads.
Solving the program with the algorithm outlined above allows to obtain trajectories and all
steady states and cycles of the network that are reported in [Dav08].

5. Related work

In Section 4 we proposed a method to find all steady states of a Markovian program
efficiently. However, our approach is not the only way to deal with the problem. Gebser
et al. have recently proposed an incremental program solving approach and a specially
constructed solver iclingo that allows for solving incremental programs [Geb08]. Even
though this solver, when used for Markovian programs, terminates as soon as the first
steady state is encountered, and hence unlike our approach does not find all steady states,
Gebser et al.’s proposal is relevant to our work. An incremental program includes a special
incremental parameter k and consists of three parts (base, cumulative and volatile) that
allow to reduce the efforts required for solving this type of programs. Due to the space
limitation we refer to [Geb08] for details. The advantage of this approach compared to the
usual solving process is that it reduces the effort of computing the answer set for unknown
k.

If we regard the incremental parameter k as time, we can simulate a Markovian program
P = 〈P, τ 〉 by putting P e in the base part and P τ in the cumulative part. However,
implementing the volatile part is not straightforward. Given the set τ of time-dependent
predicates we can write rules to capture steady states or cycles and define a constraint over
the occurrence of such a state or cycle in the volatile part, as illustrated below.

Example 5.1. Let P = 〈P, τ 〉 be a Markovian program over a signature σ = 〈 γ, υ, π 〉 and
τ = {u, v} where u, v ∈ π are unary time-dependent predicates. We define an incremental
program P ′ from P as explained above, i.e. by putting P e in the base part of P ′ and P τ in
the cumulative part of P ′. The exact contents of P e and P τ do not matter for the sake of
this example. Next, we add the following set of rules to the cumulative part of P ′:

int(0..k − 1).
h(k) ← not u(k), not u(k − T1), not v(k), not v(k − T1), int(T1).
h(k) ← u(k), u(k − T1), not v(k), not v(k − T1), int(T1).
h(k) ← v(k), v(k − T1), not u(k), not u(k − T1), int(T1).
h(k) ← v(k), v(k − T1), u(k), u(k − T1), int(T1).

Finally, we initialize the volatile part of P ′ with the rule ← noth(k). Intuitively, the
appearance of h(k) in an answer set of P ′ indicates that a steady state or cycle is found.
The constraint in the volatile part only allows answer sets that contain h(k).

However, there are two pitfalls associated with the above encoding. First, the number
of rules that needs to be added to the cumulative part grows exponentially with the number
and the arity of time-dependent predicates; recall that we do not only need all combinations
of time-dependent predicates, but also all their possible groundings. Secondly, the solver
terminates as soon as the first steady state is encountered, and hence does not generate
all steady states of the program. It is not obvious how to encode the program in order to
deal with these problems. For these reasons, the approach we propose in this paper is a
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more suitable candidate to tackle the steady state search problem in Markovian programs.
Applying a meta-procedure similar to the algorithm from Section 4 is not a solution as the
incremental program still cannot find all steady states that stem from the same initial state
without adjusting the termination condition h(k).

Action languages [Gel92], another set of formalisms applicable to solve time-dependent
programs, provide a high-level description language that can be adopted to model time-
dependent systems. However, they suffer from the same drawback as incremental programs:
it is not possible to define a set of constraints that allows to find all steady states and cycles.

6. Conclusions

In this paper, we introduced time-dependent answer set programs, which are useful to
model systems like gene regulatory networks whose behaviour depends on time. An impor-
tant task when modelling such systems is to find their steady states and cycles. Unfortu-
nately, it is typically not known in advance at what time steps these steady states manifest
themselves. A brute force approach of estimating a time upper bound and grounding and
solving the program w.r.t. that upper bound may lead to a bad solving time: if the upper
bound’s estimate is too high, the grounded program is larger than necessary to find the
steady states, hence requiring unnecessary work, and if it is too low, not all steady states
(if any) are found and the process needs to be redone for a larger estimate.

We proposed an efficient algorithm for solving Markovian programs, i.e. time-dependent
programs for which the next state of the program depends only on the previous state of the
program. This is a reasonable assumption as real-world models are normally unaware of any
future events and make their decisions based on the information directly available. Instead
of solving Markovian programs for some long time interval {0, . . . , tmax} we consecutively
solve smaller programs for intervals {0, 1}, {1, 2},. . ., {tmax − 1, tmax}, which can be done
more efficiently. We showed that by doing so we obtain the same answer sets as by solving
the initial program for interval {0, . . . , tmax}. We successfully applied our algorithm to find
the steady states of a gene regulatory network for fission yeast.
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