
Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 34–43
http://www.floc-conference.org/ICLP-home.html

COMMUNICATING ANSWER SET PROGRAMS

KIM BAUTERS 1 AND JEROEN JANSSEN 2 AND STEVEN SCHOCKAERT 1 AND DIRK VERMEIR 2

AND MARTINE DE COCK 3,1

1 Department of Applied Mathematics and Computer Science, Universiteit Gent
Krijgslaan 281, 9000 Gent, Belgium
E-mail address: {kim.bauters,steven.schockaert}@ugent.be

2 Department of Computer Science, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium
E-mail address: {jeroen.janssen,dvermeir}@vub.ac.be

3 Institute of Technology, University of Washington
1900 Commerce Street, WA-98402 Tacoma, USA
E-mail address: mdecock@u.washington.edu

Abstract. Answer set programming is a form of declarative programming that has proven
very successful in succinctly formulating and solving complex problems. Although mecha-
nisms for representing and reasoning with the combined answer set programs of multiple
agents have already been proposed, the actual gain in expressivity when adding commu-
nication has not been thoroughly studied. We show that allowing simple programs to talk
to each other results in the same expressivity as adding negation-as-failure. Furthermore,
we show that the ability to focus on one program in a network of simple programs results
in the same expressivity as adding disjunction in the head of the rules.

1. Introduction

The idea of answer set programming (ASP) is to represent the requirements of a com-
putational problem by a logic program P such that particular minimal models of P , called
answer sets and usually defined using some form of the stable model semantics [Gel88],
correspond to the solutions of the original problem [Lif02]. The research on multi-context
systems has, among other things, been concerned with studying how a group of simple
agents can cooperate to find the solutions of global problems [Roe05, Bre07]. We start with
an introductory example to illustrate how the ideas of multi-context systems can be used
to solve problems in the ASP setting.

Kim Bauters and Jeroen Janssen are funded by a joint Research Foundation-Flanders (FWO) project.
Steven Schockaert is a postdoctoral fellow of the Research Foundation-Flanders (FWO).

c© K. Bauters, J. Janssen, S. Schockaert, D. Vermeir, and M. De Cock
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.34

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

COMMUNICATING ANSWER SET PROGRAMS 35

Example 1.1. A hotspot network consists of two hotspots H1 and H2. The hotspots are
wired to each other to share an internet connection and provide wireless access to users in
the area. A user U tries to connect to the closest detectable hotspot e.g. H1. Now assume
that H1 is no longer accessible. H1 cannot find this out by itself, nor can it rely on users
telling this since they cannot connect. The rules below illustrate how we can model this
knowledge using the communicating programs we describe in Section 2.2. For compactness,
we abbreviate accessible as a, access as c, problem as p and optimal as o. Consider the
program Pintro with the rules:

H1 :¬a← H2 :p [r1] U :o← H1 :a [r5]

H2 :a← [r2] U :¬o← H2 :a, not H1 :a [r6]

H2 :¬a← H1 :p [r3] U :c← H1 :a [r7]

H2 :p← U :¬o [r4] U :c← H2 :a [r8]

Let H1 = {r1}, H2 = {r2, r3, r4} and U = {r5, r6, r7, r8}. Note how the rules of the
first hotspot H1 differ from those of the second hotspot H2, i.e. they are in different states.
Indeed, the first hotspot H1 cannot rely on the user to tell that there is a problem and
it is not accessible. The second hotspot does not have these restrictions. It is easy to see
that user U can deduce that she has access (r2, r8), though this access is not optimal (r6).
The second hotspot detects this (r4) and concludes that there is a problem, allowing H1 to
derive that it is not accessible (r1).

In this paper we systematically study the effect of adding such kind of communication
to ASP in terms of expressiveness. The communication between ASP programs that we
propose is similar in spirit to the work in [Roe05, Bre07, Buc08]. Studying the expres-
siveness with a focus on simple ASP programs, however, is in contrast to approaches such
as [De05, Van07] that start from expressive ASP variants, which obscures the analysis of
the effect of communication on the expressiveness. A first contribution of this paper is
that communicating simple programs can solve problems at the first level of the polyno-
mial hierarchy and that communicating normal ASP programs do not offer any additional
expressiveness. The second contribution is the introduction of a new, intuitive form of com-
munication that allows for communicating simple ASP programs to solve problems at the
second level of the polynomial hierarchy. The hardness results that we present in this paper
in a sense complement the membership results from [Bre07]. However, our definitions of
communicating ASP and minimality differ slightly, complicating a direct comparison of the
results.

The remainder of this paper is organized as follows. Section 2 recalls the basic concepts
and results from ASP which we use in this paper, and explores the syntax and semantics of
communicating programs. In Section 3 we show that these communicating simple programs
are capable of simulating normal programs that have negation-as-failure. In Section 4 we
introduce focused communicating programs and show how networks of simple agents can
simulate disjunctive ASP programs. Related work is discussed in Section 5 and Section 6
provides some final remarks.

36 K. BAUTERS, J. JANSSEN, S. SCHOCKAERT, D. VERMEIR, AND M. DE COCK

2. Preliminaries

2.1. Answer set programming

We first recall the basic concepts and results from ASP that are used in this paper.
To define ASP programs, we start from a countable set of atoms and we define a literal
l as an atom a or its classical negation ¬a. If L is a set of literals, we use ¬L to denote
the set {¬l | l ∈ L} where, by definition, ¬¬a = a. A set of literals L is consistent if
L ∩ ¬L = ∅. An extended literal is either a literal or a literal preceded by not which we
call the negation-as-failure operator. For a set of literals L, we use not(L) to denote the set
{not l | l ∈ L}.

A disjunctive rule is an expression of the form γ ← (α ∪ not(β)) where γ is a set
of literals (interpreted as a disjunction, denoted as l1; . . . ; ln) called the head of the rule
and (α ∪ not(β)) (interpreted as a conjunction) is the body of the rule with α and β sets
of literals. A positive disjunctive rule is a disjunctive rule without negation-as-failure in
the body, i.e. with β = ∅. A disjunctive program P is a finite set of disjunctive rules. The
Herbrand base BP of P is the set of atoms appearing in program P . A (partial) interpretation
I of P is any consistent set of literals I ⊆ (BP ∪ ¬BP). I is total iff I ∪ ¬I = BP ∪ ¬BP .

A normal rule is a disjunctive rule with at most one literal l in the head. A normal
program P is a finite set of normal rules. A simple rule is a normal rule without negation-
as-failure in the body. A simple program P is a finite set of simple rules. The immediate
consequence operator TP of a simple program P w.r.t. an interpretation I is defined as

TP (I) = I ∪ {l | ((l← α) ∈ P) ∧ (α ⊆ I)} . (2.1)

We use P ? to denote the fixpoint which is obtained by repeatedly applying TP starting from
the empty interpretation, i.e. the least fixpoint of TP w.r.t. set inclusion. An interpretation
I is an answer set of a simple program P iff I = P ?.

The reduct P I of a disjunctive program P w.r.t. the interpretation I is defined as P I =
{γ ← α | (γ ← α ∪ not(β)) ∈ P, β ∩ I = ∅} . I is an answer set of the disjunctive program
P when I is the minimal model w.r.t. set inclusion of P I . In the specific case of normal
programs, answer sets can also be characterized in terms of fixpoints. Specifically, it is easy
to see that the reduct P I is a simple program. I is an answer set of the normal program P
iff
(
P I
)?

= I, i.e. if I is the answer set of the reduct P I .

2.2. Communicating programs

The underlying intuition of communication between ASP programs is that of a function
call or, in terms of agents, asking questions to other agents. This communication is based
on a new kind of literal ‘Q : l’, as in [Roe05, Bre07]. If the literal l is not in the answer set of
Q then Q : l is false; otherwise Q : l is true. The semantics are closely related to the minimal
semantics in [Bre07] and especially the semantics in [Buc08].

Let P be a finite set of program names. A P-situated literal is an expression of the
form Q : l with Q ∈ P and l a literal. For R ∈ P, a P-situated literal Q : l is called R-local
if Q = R. For a set of literals L, we use Q :L as a shorthand for {Q : l | l ∈ L}. For a set of
P-situated literals X and Q ∈ P, we use X↓Q to denote {l | Q : l ∈ X}, i.e. the projection
of X on Q. A set of P-situated literals X is consistent iff X↓Q is consistent for all Q ∈ P.
By ¬X we denote the set {Q :¬l | Q : l ∈ X} where we define Q :¬¬l = Q : l. An extended
P-situated literal is either a P-situated literal or a P-situated literal preceded by not. For

COMMUNICATING ANSWER SET PROGRAMS 37

a set of P-situated literals X, we use not(X) to denote the set {not Q : l | Q : l ∈ X}. For a
set of extended P-situated literals X we denote by Xpos the set of P-situated literals in X,
i.e. those extended P-situated literals in X that are not preceded by negation-as-failure,
while Xneg = {Q : l | not Q : l ∈ X}.

A P-situated normal rule is an expression of the form Q : l ← (α ∪ not(β)) where
Q : l is a single P-situated literal, called the head of the rule, and (α ∪ not(β)) is called
the body of the rule with α and β sets of P-situated literals. A P-situated normal rule
Q : l← (α∪ not (β)) is called R-local whenever Q = R. A P-component normal program Q
is a finite set of Q-local P-situated normal rules. Henceforth we shall use P to both denote
the set of program names and to denote the set of actual P-component normal programs.
A communicating normal program P is then a finite set of P-component normal programs.

A P-situated simple rule is an expression of the form Q : l← α, i.e. a P-situated normal
rule without negation-as-failure in the body. A P-component simple program Q is a finite
set of Q-local P-situated simple rules. A communicating simple program P is then a finite
set of P-component simple programs.

In the remainder of this paper we drop the P-prefix whenever the set P is clear from
the context. Whenever the name of the component normal program Q is clear, we write l
instead of Q : l for Q-local situated literals. For notational convenience, we write commu-
nicating program for communicating normal program. Finally note that a communicating
normal (simple) program with only one component program trivially corresponds to a nor-
mal (simple) program.

Similar as for a normal program, we can define the Herbrand base for a component
program Q as the set of atoms occurring in Q, which we denote as BQ. The Herbrand base
of a communicating program P is defined as BP =

{
Q :a | Q ∈ P and a ∈

⋃
R∈P BR

}
. We

say that a (partial) interpretation I of a communicating program P is any consistent subset
I ⊆ (BP ∪ ¬BP). Given an interpretation I of a communicating program P, the reduct QI

for Q ∈ P is the component simple program obtained by deleting

• each rule with an extended situated literal not R : l in the body such that R : l ∈ I;
• each remaining extended situated literal of the form not R : l;
• each rule with a situated literal R : l in the body that is not Q-local with R : l /∈ I;
• each situated literal R : l that is not Q-local and such that R : l ∈ I.

The underlying intuition of the reduct is clear. Analogous to the definition of a reduct
of a normal programs [Gel88], the reduct of a communicating program defines a way to
reduce this program relative to some guess I. The reduct of a communicating program is a
communicating simple program that only contains component simple programs Q with Q-
local situated literals. That is, each component simple program Q corresponds to a classical
simple program. We tackle the problem of self-references in [Buc08] by treating Q-local
situated literals in a different way. Since the communication is based on belief and internal
reasoning is based on knowledge, this allows for “mutual influence” as in [Bre07, Buc08]
where the belief of an agent can be supported by the agent itself, via belief in other agents.
Also note that the belief between agents is the belief as identified in [Lif99], i.e. Q : l is
true whenever “¬not Q : l” is true under the syntax and semantics introduced in [Lif99] for
nested logic programs and when treating Q : l as a fresh atom.

Definition 2.1. We say that an interpretation I of a communicating program P is an
answer set of P if and only if we have that ∀Q ∈ P · (Q :I↓Q) =

(
QI
)?

.

38 K. BAUTERS, J. JANSSEN, S. SCHOCKAERT, D. VERMEIR, AND M. DE COCK

Example 2.2. Consider the communicating program Pintro from Example 1.1. It is easy to
see that M = {H1 :¬a,H2 :a,H2 :p, U :¬o, U :c} is the unique answer set of Pintro. Indeed,

we obtain the reducts (H1)
M = {¬a←}, (H2)

M = {a←, p←} and (U)M = {¬o←, c←}
which have the answer sets {¬a} , {a, p} and {¬o, c}, respectively.

3. Simulating Negation-as-Failure with Communication

The addition of communication to ASP programs provides added expressiveness and
an increase in computational complexity, which we illustrate in this section. We show that
a communicating simple program can simulate normal programs, where simple programs
are P-complete and normal programs are NP-complete [Bar03]. Furthermore, we illustrate
that, surprisingly, there is no difference in terms of computational complexity between
communicating simple programs and communicating normal programs.

We start by giving an example of the transformation that allows to simulate (commu-
nicating) normal programs using communicating simple programs. Afterwards, we give a
formal definition of this transformation.

Example 3.1. Consider the communicating normal program E with the rules

Q1 :a← not Q2 :b

Q2 :b← not Q1 :a.

When Q1 = Q2 this example corresponds to a normal program. The transformation we
propose below results in the communicating simple program P = {Q′1, Q′2, N1, N2}:

Q′1 :a← N2 :¬(b)† N1 : (a)† ← Q′1 :a

Q′2 :b← N1 :¬(a)† N2 : (b)† ← Q′2 :b

Q′1 :¬(a)† ← N1 :¬(a)† N1 :¬(a)† ← Q′1 :¬(a)†

Q′2 :¬(b)† ← N2 :¬(b)† N2 :¬(b)† ← Q′2 :¬(b)†.

The transformation creates two types of ‘worlds’, Q′i and Ni with 1 ≤ i ≤ 2, which are
all component programs. Q′i is similar to Qi, although occurrences of extended situated

literals of the form not Qi : l are replaced by Ni : ¬(l)†, with (l)† a fresh literal. The
non-monotonicity associated with negation-as-failure is simulated by introducing the rules

¬(l)† ← Ni :¬(l)† and ¬(l)† ← Q′i :¬(l)† in Q′i and Ni, respectively. Finally, we add rules

of the form (l)† ← Q′i : l to Ni, creating an inconsistency when Ni believes ¬(l)† when Q′i
believes l.

The resulting communicating simple program P is an equivalent program in that its
answer sets correspond to those of the original communicating program, yet without using
negation-as-failure. Indeed, the answer sets of E are {Q1 :a} and {Q2 :b} and the answer sets

of P are
{
Q′1 :a,Q′2 :¬(b)†, N2 :¬(b)†, N1 : (a)†

}
and

{
Q′2 :b,Q′1 :¬(a)†, N1 :¬(a)†, N2 : (b)†

}
.

Note furthermore how this is a polynomial transformation with at most 3 · |Eneg | additional
rules with Eneg as defined in Definition 3.2.

Definition 3.2. Let E = {Q1, . . . , Qn} be a communicating program. The communicating
simple program P = {Q′1, . . . , Q′n, N1, . . . , Nn} with 1 ≤ i, j ≤ n that simulates E is defined

COMMUNICATING ANSWER SET PROGRAMS 39

by

Q′i =
{
l← α′pos ∪

{
Nj :¬(k)† | Qj :k ∈ αneg

}
| (l← α) ∈ Qi

}
(3.1)

∪
{
¬(b)† ← Ni :¬(b)† | Qi :b ∈ Eneg

}
(3.2)

Ni =
{
¬(b)† ← Q′i :¬(b)† | Qi :b ∈ Eneg

}
(3.3)

∪
{

(b)† ← Q′i :b | Qi :b ∈ Eneg
}

(3.4)

with α′pos =
{
Q′j : l | Qj : l ∈ αpos

}
and Eneg =

⋃n
i=1

(⋃
(a←α)∈Qi

αneg

)
.

Recall that both ¬(b)† and (b)† are fresh literals that intuitively correspond to ¬b and
b. We use Q′i+ to denote the rules in Q′i defined by (3.1) and Q′i− to denote the rules in
Q′i defined by (3.2).

Intuitively, the transformation employs the non-monotonic property of the belief under-
lying the situated literals to simulate negation-as-failure. This is obtained from the interplay

between the rules (3.2) and (3.3). As such, we can use the new literal ‘¬(b)†’ instead of the
original extended (situated) literal ‘not b’, allowing us to rewrite the rules as we do in (3.1).
In order to ensure that the simulation works, even when the program we want to simulate
contains true negation, we need to specify some additional bookkeeping (3.4).

As becomes clear from Proposition 3.3 and Proposition 3.4, the above transformation
preserves the semantics of the original program. Since we can easily rewrite any normal
program as a communicating normal program, the importance of this is thus twofold. On
one hand, we reveal that communicating normal programs do not have any additional ex-
pressive power over communicating simple programs. On the other hand, it follows that the
expressiveness of communicating simple programs allows us to solve NP-complete problems,
since finding the answer set of normal programs is an NP-complete problem [Bar03].

Proposition 3.3. Let P = {Q1, . . . , Qn} and let P ′ = {Q′1, . . . , Q′n, N1, . . . , Nn} with P
a communicating program and P ′ the communicating simple program that simulates P as
defined in Definition 3.2. If M is an answer set of P, then M ′ is an answer set of P ′ with
M ′ defined as:

M ′ =
{
Q′i :a | a ∈M↓Qi

, Qi ∈ P
}

∪
{
Q′i :¬(b)† | b /∈M↓Qi

, Qi ∈ P
}

∪
{
Ni :¬(b)† | b /∈M↓Qi

, Qi ∈ P
}

∪
{
Ni : (a)† | a ∈M↓Qi

, Qi ∈ P
}
.

(3.5)

Proposition 3.4. Let P = {Q1, . . . , Qn} and let P ′ = {Q′1, . . . , Q′n, N1, . . . , Nn} with P
a communicating program and P ′ the communicating simple program that simulates P.
Assume that M ′ is an answer set of P ′ and that (M ′)↓Ni

is total w.r.t. BNi for all i ∈
{1, . . . , n}. Then the interpretation M defined as

M =
{
Qi :b | b ∈

((
Q′i+

)M ′)?}
(3.6)

is an answer set of P.

40 K. BAUTERS, J. JANSSEN, S. SCHOCKAERT, D. VERMEIR, AND M. DE COCK

Note that the requirement for M ′ to be a total answer set of P in Ni is necessary in
this last proposition, as demonstrated by the following example.

Example 3.5. Consider the normal program R = {a← not a} which has no answer sets.
The corresponding communicating simple program P = {Q,N} has the following rules:

Q :a← N :¬(a)† N :¬(a)† ← Q :¬(a)†

Q :¬(a)† ← N :¬(a)† N : (a)† ← Q :a.

It is easy to see that I = ∅ is an answer set of P since we have QI = N I = ∅.

4. Focused Communicating Programs

In this section, we extend the semantics of communicating programs in such a way that
it is possible to focus on a single component program. That is, we indicate that we are
not interested in the answer sets of the entire network of component programs, but only in
answer sets of a single component program. The underlying intuition is that of auxiliary
functions or, in terms of agents, a team governed by a leader who forwards (and possibly
amends) the conclusions. We are thus varying the communication mechanism, without
altering the expressiveness of the agents in the network.

Definition 4.1. Let P be a communicating program and Q ∈ P a component program. A
Q-focused answer set of P is any subset-minimal element of

{M↓Q |M an answer set of P} .
If we are only interested in Q-focused answer sets, then P is called a Q-focused commu-
nicating program, denoted as P↓Q. As before, we drop the Q-prefix when the component
program Q is clear from the context.

Example 4.2. Consider the communicating program Pfocus = {Q,R} with the rules

Q = {a←, b←, c← not R :c}
R = {a← not c, c← not a, d← c} .

The communicating program Pfocus has two answer sets, namely M1 = Q :{a, b, c}∪{R :a}
and M2 = Q : {a, b} ∪ R : {c, d}. The only Q-focused answer set of Pfocus is {a, b} since
M1↓Q = {a, b, c} and M2↓Q = {a, b}.

This simple extension is all that is needed to take another step in the complexity hierar-
chy. That is, the complexity of finding the answer sets of a focused communicating program
is ΣP

2 -hard.1 Before we state this result, we first explain that any positive disjunctive pro-
gram can be simulated using focused communicating programs. The underlying intuition
is straightforward. We delegate the disjunction in the head to a new component program
where we simulate the corresponding choice using negation-as-failure. The results of these
component programs are then grouped in an aggregate component program on which we
focus to ensure that we only retain the minimal models that correspond with the answer
sets of the original positive disjunctive program. We start with an example to illustrate the
simulation.

1Recall that ΣP
2 is the class of problems that can be solved in polynomial time on a non-deterministic

machine with an NP oracle, i.e. ΣP
2 = NPNP.

COMMUNICATING ANSWER SET PROGRAMS 41

Example 4.3. Consider the positive disjunctive program D = {a; b←, a← b, b← a}. The
corresponding focused program (Psimulate)↓Q = {Q,R1} has the following rules:

R1 :a← not R1 :b Q :a← R1 :a

R1 :b← not R1 :a Q :b← R1 :b

Q :a← Q :b

Q :b← Q :a

The answer sets of Psimulate are {R1 :a} ∪ Q : {a, b} and {R1 :b} ∪ Q : {a, b}. The unique
answer set of (Psimulate)↓Q is therefore {a, b}, which is also the unique answer set of D.

Definition 4.4. Let D = {r1, . . . , rn, rn+1, . . . , rs} be a positive disjunctive program where
ri = γi ← αi such that |γi | > 1 for i ∈ {1, . . . , n} and |γi | ∈ {0, 1} for i ∈ {n+ 1, . . . , s}.
The focused program that simulates D, P↓Q = {Q,R1, . . . , Rn}, is defined by

Q = {ri | i ∈ {n+ 1, . . . , s}}
∪ {l← {Ri : l} ∪ αi | i ∈ {1, . . . , n} , l ∈ γi} (4.1)

where for i ∈ {1, . . . , n} we have

Ri = {l← not(γi \ {l}) | l ∈ γi} . (4.2)

Proposition 4.5. Let D be a positive disjunctive program and P↓Q the focused communi-
cating program that simulates D. M is an answer set of D iff M is an answer set of P↓Q.

We can thus use focused communicating programs to solve existential-universal quantifi-
able boolean formulae (e.g. by simulating the disjunctive ASP program proposed in [Bar03]).
This can be used as the basis of a proof to show that finding the answer sets of focused
communicating programs is in ΣP

2 .

Corollary 4.6. Deciding whether a Q-focused communicating (simple) program P↓Q with

two or more component programs has an answer set containing a specific literal l is ΣP
2 -hard.

Membership in ΣP
2 can also be shown, thus this problem is ΣP

2 -complete.

5. Related Work

A large body of research has been devoted to combining logic programming with multi-
agent or multi-context ideas for various reasons. Among others, the logic can be used to
describe the (rational) behaviour of the agents in a multi-agent network, as in [Del99]. It
can be used to combine different flavours of logic programming languages [Luo05, Eit08].
It can be used to externally solve tasks for which ASP is not suited, yet remaining in a
declarative framework [Eit06]. It can also be used as a form of cooperation, where multiple
agents or contexts collaborate to solve a difficult problem [De05, Van07].

The approach described in this paper falls into this last category and studies the ex-
pressiveness of the communication component in communicating ASP. In contrast to [De05,
Van07] our approach is based on simple programs and on asking for information instead of
pushing (partial) answer sets to the next ASP program in the network. Like in [De05], but
in contrast with [Van07], we allow circular communication between programs and do not
force a linear network of ASP programs that in turn refine the results of previous steps.

42 K. BAUTERS, J. JANSSEN, S. SCHOCKAERT, D. VERMEIR, AND M. DE COCK

Table 1: Complexity of Communicating Answer Set Programming

no communication with communication focused communication

simple program P-hard NP-hard ΣP
2 -hard

normal program NP-hard NP-hard ΣP
2 -hard

Complexity studies in this setting have been performed but with some notable differ-
ences. For example, [Bre07] generalises towards heterogenous non-monotonic multi-context
systems in which different flavours of logic programming languages work together to solve
a problem.

It is shown that the complexity of verifying whether some literal is contained in some
(resp. all) solutions is in ΣP

k (resp. ΠP
k), where the value of k depends on the underlying

logic that is used.
In [DT09], recursive modular nonmonotonic logic programs (MLP) under the ASP se-

mantics are considered. The main difference between MLP and our simple communication is
that our communication is parameter-less, i.e. the truth of a situated literal is not dependent
on parameters passed by the situated literal to the target component program.

The work in this paper is different from all of the above in that it studies the expressive-
ness of communicating answer set programs with simple rules while varying the mechanisms
for parameter-less communication between the agents.

6. Conclusion

In this paper we have systematically studied the effect of adding communication to
ASP in terms of expressiveness and computational complexity. One of the most interesting
results is that communicating simple programs (without negation-as-failure) are expressive
enough to simulate communicating normal programs (with negation-as-failure). To show
this, we have provided an actual translation of a communication normal ASP program into
an equivalent communicating ASP program with only simple rules. Since normal programs
are a special case of communicating normal programs, and solving normal programs is
known to be NP-complete, this entails that solving communicating simple programs is an
NP-hard problem.

Additionally, we introduce focused communicating programs where we “focus” on the
results of a single component program. The other component programs can still contribute
to solving the problem at hand, but they no longer have a direct influence over the resulting
answer set. Indeed, the component program on which we focus can override any and all
conclusions. Such focused communicating programs can easily be obtained by varying the
parameter-less communication mechanism found in the communicating programs introduced
in the first part of this paper. Focused communicating programs can be used to simulate
programs with disjunctive rules without negation-as-failure and are able to solve problems
in ΣP

2 . Table 1 summarises our main results.

Acknowledgment

The authors wish to thank the anonymous reviewers for their references to related work,
as well as for their comments and suggestions that helped to improve the quality of this

COMMUNICATING ANSWER SET PROGRAMS 43

paper. Special thanks go out to Pascal Nicolas, Claire Lefèvre and Laurent Garcia for their
fruitful discussions that led to new insights.

References

[Bar03] Chitta Baral. Knowledge, Representation, Reasoning and Declarative Problem Solving. Cambridge
University Press, 2003.

[Bre07] Gerhard Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic multi-context sys-
tems. In Proc. of AAAI07, pp. 385–390. 2007.

[Buc08] Francesco Buccafurri, Gianluca Caminiti, and Rosario Laurendi. A logic language with stable model
semantics for social reasoning. In Proc. of ICLP08, pp. 718–723. 2008.

[De05] Marina De Vos, Tom Crick, Julian Padget, Martin Brain, Owen Cliffe, and Jonathan Needham.
LAIMA: A multi-agent platform using ordered choice logic programming. In Declarative Agent
Languages and Technologies III, pp. 72–88. 2005.

[Del99] Pierangelo Dell’Acqua, Fariba Sadri, and Francesca Toni. Communicating agents. In Proceedings of
the International Workshop on Multi-Agent Systems in Logic Programming. 1999.

[DT09] Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Modular nonmonotonic
logic programming revisited. In Proc. of ICLP, pp. 145–159. 2009.

[Eit06] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. dlvhex: A tool for
semantic-web reasoning under the answer-set semantics. In Proceedings of International Workshop
on Applications of Logic Programming in the Semantic Web and Semantic Web Services, pp. 33–39.
2006.

[Eit08] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits.
Combining answer set programming with description logics for the semantic web. Artifial Intelli-
gence, 172(12–13):1495–1539, 2008.

[Gel88] Michael Gelfond and Vladimir Lifzchitz. The stable model semantics for logic programming. In
Proceedings of the Fifth International Conference and Symposium on Logic Programming, pp. 1081–
1086. 1988.

[Lif99] Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions in logic programs.
Ann. Math. Artif. Intell., 25(3-4):369–389, 1999.

[Lif02] Vladimir Lifschitz. Answer set programming and plan generation. Artificial Intelligence, 138:39–54,
2002.

[Luo05] Jiewen Luo, Zhongzhi Shi, Maoguang Wang, and He Huang. Multi-agent cooperation: A description
logic view. In Proc. of PRIMA05, pp. 365–379. 2005.

[Roe05] Floris Roelofsen and Luciano Serafini. Minimal and absent information in contexts. In Proc. of
IJCAI05, pp. 558–563. 2005.

[Van07] Davy Van Nieuwenborgh, Marina De Vos, Stijn Heymans, and Dirk Vermeir. Hierarchical decision
making in multi-agent systems using answer set programming. In Proc. of CLIMA07. 2007.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

