
Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 24–33
http://www.floc-conference.org/ICLP-home.html

HEX PROGRAMS WITH ACTION ATOMS

SELEN BASOL 1 AND OZAN ERDEM 1 AND MICHAEL FINK 2 AND GIOVAMBATTISTA IANNI 3

1 Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Turkey
E-mail address: {selenbasol,ozanerdem}@su.sabanciuniv.edu

2 Institut für Informationssysteme, TU-Wien, Favoritenstraße 9-11, 1040 Wien, Austria
E-mail address: fink@kr.tuwien.ac.at

3 Dipartimento di Matematica, Univ. della Calabria, P.te P. Bucci, Cubo 30B, 87036 Rende, Italy
E-mail address: ianni@mat.unical.it

Abstract. hex programs were originally introduced as a general framework for extending
declarative logic programming, under the stable model semantics, with the possibility of
bidirectionally accessing external sources of knowledge and/or computation. The original
framework, however, does not deal satisfactorily with stateful external environments: the
possibility of predictably influencing external environments has thus not yet been consid-
ered explicitly. This paper lifts hex programs to acthex programs: acthex programs
introduce the notion of action atoms, which are associated to corresponding functions
capable of actually changing the state of external environments. The execution of spe-
cific sequences of action atoms can be declaratively programmed. Furthermore, acthex
programs allow for selecting preferred actions, building on weights and corresponding cost
functions. We introduce syntax and semantics of acthex programs; acthex programs can
successfully be exploited as a general purpose language for the declarative implementation
of executable specifications, which we illustrate by encodings of knowledge bases updates,
action languages, and an agent programming language. A system capable of executing
acthex programs has been implemented and is publicly available.

1. Introduction

hex programs [Eit05], were originally introduced as a general framework for extending
declarative logic programming, under the stable model semantics, with the possibility of
bidirectionally accessing external sources of knowledge and/or computation. For instance,
a rule like

pointsTo(X,Y)← &hasHyperlink[X](Y), url(X).

1998 ACM Subject Classification: I.2.4 [Knowledge Representation Formalisms and Methods]:
Representation languages; I.2.3 [Deduction and Theorem Proving]: Inference engines, Logic program-
ming, Nonmonotonic reasoning and belief revision; F.4.1 [Mathematical Logic]: Computational logic.

Key words and phrases: Answer Set Programming, Logic programming interoperability, Action languages.
This work was partially supported by the Vienna Science and Technology Fund (WWTF) under grant

ICT08-020, by the Italian Research Ministry (MIUR) under project INTERLINK II04CG8AGG, and by the
Regione Calabria and the EU under POR Calabria FESR 2007-2013 (PIA project of DLVSYSTEM s.r.l.).

c© Basol, Erdem, Fink, and Ianni
C Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.24

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HEX PROGRAMS WITH ACTION ATOMS 25

might be devised for obtaining pairs of URLs (X,Y), where X actually links Y on the Web,
and &hasHyperlink is an external predicate construct.

The possibility of accessing multiple external sources of knowledge has no significant
constraint in hex programs: in particular, besides constant values, relational knowledge
(predicate extensions) can flow from external sources to the logic program at hand and
viceversa, and recursion involving external predicates is allowed under reasonable safety
assumptions.

It has been illustrated how hex-programs qualify themselves for actual implementation
of action and/or planning languages. As an example, in [Eit05] it is shown how the so called
code call construct of agent programs as defined in [Eit99] can be embedded in hex-programs
using the notion of external predicate.

As a further example, hex-programs constitute a generalization of description logic
programs as defined in [Eit08]: it is made possible to push additional, hypothetical asser-
tions to an external description logic knowledge base L, and then subsequently query the
augmented knowledge base L′. However, it is not possible to push persistent assertions to L:
in fact, hex-programs do not contemplate the possibility of changing the state of external
sources. For instance, it can be desirable having a program fragment like

new(X) ∨ old(X)← &addToFavorites[X], new(X).

where intuitively &addToFavorites[X] is a) true for all (and only) the values of X which do
not appear in a given external list L of favorite URLs, and b) has the side effect of adding
X to L if X is not already in L. However, one might wonder what the semantics of a
program including the above fragment should be, noticing that &addToFavorites changes
its outcome depending on its state (the list L). Hence, the sequence of state changes due to
&addFavorites would be predictable only if the rule evaluation order in the logic program
at hand is operationally specified and known by the programmers.

Updates on external environments changing their state are desired in a variety of con-
texts, mainly: 1), when the actual execution of a plan is expected: in this setting, a change
in the environment the agent at hand is acting in is implicitly prescribed; also, the order
of execution of plan actions and their effect must be predictable and, indeed, this is the
general setting which logic-based action languages are devised to reason about [Gel93]; 2)
when an answer set solver is interfaced with other (stateful) applications: the latter usually
elaborate on data depending on answer sets computed, which can be then subsequently
exploited for synthetis of new logic programs and evaluation thereof.

In the former case, the logic programming community (and particularly, the nonmono-
tonic reasoning community), has devoted extensive research towards reasoning about actions
and planning, but only a few works (see e.g. [Sub00]) considered the support for actual
execution of agent actions explicitly. In the latter case, applications have been developed
by the Answer Set Programming community usually resorting to handcrafted solutions, like
ad hoc post-parsing of answer sets1, or developing ad hoc libraries for invoking answer set
solvers from other development environments (see, e.g. [Ric03, Pir08]).

Although hex-programs interface well with external sources of knowledge, it turns out
that some structural limitations prevent addressing the issue of having impact on external
environments in a satisfactory way: first, external functions associated to external predicates
are inherently stateless; second, but more importantly, hex-programs are fully declarative:

1An extensive list of known applications of ASP can be found at
http://www.kr.tuwien.ac.at/research/projects/WASP/showcase.html

26 BASOL, ERDEM, FINK, AND IANNI

this implies that when writing an hex program, it is not predictable whether and in which
order an external function will be evaluated.

To this end, we lift hex programs to acthex programs. acthex programs introduce
the notion of action predicate and action atom. Differently from external predicates, action
predicates have impact on external environments and might trigger state changes and side
effects. Action predicates are associated to corresponding (executable) functions. The
framework allows a) to express and infer a predictable order of execution for action atoms,
b) to express soft (and hard) preferences among a set of possible action atoms, and c)
to actually execute a set of action atoms according to a predictable schedule. It is worth
remarking that acthex programs do not represent an action language in a strict sense. The
main goal of the language is 1) to provide a complementary extension to logic programming
over which existing action, planning and agent languages can be grounded, and 2) to provide
a tighter and semantically sound framework for interfacing logic programs with applications
of arbitrary nature.

2. Syntax and Semantics

Intuitively, acthex programs extend hex programs allowing rules like

#robot [move, D]{b, T}[2 : 1]← direction(D), time(T).

the above can be seen as a rule for scheduling a movement of a given robot in direction
D with execution order T . Action atoms are executed according to execution schedules.
The latter in turn depend on answer sets, which in their generalized form, can contain
action atoms. The order of execution within a schedule can be specified using a precedence
attribute (which in the above rule is set by the variable T); also actions can be associated
with weights and priority levels (the values 2 and 1 above, respectively). Action atoms
allow to specify whether they have to be executed bravely (the b switch above), cautiously
or preferred cautiously, respectively meaning that an action atom a can get executed if it
appears in at least one, all, or all best cost answer sets. We give next the formal syntax and
semantics of the language.

Syntax. Given a finite alphabet Σ, we denote as C, X , G, and A mutually disjoint subsets of
Σ∗ whose elements are respectively called constant names, variable names, external predi-
cate names, and action predicate names. Elements from X (resp., C) are denoted with first
letter in upper case (resp., lower case), while elements from G (resp., A) are prefixed with
“&” (resp. “#”). Note that names in C serve both as constant and predicate names.

Elements from C ∪X are called terms. A higher-order atom (or atom) is a tuple (Y0, Y1,
. . . Yn), where Y0, Y1, . . . Yn are terms; n ≥ 0 is the arity of the atom. Intuitively, Y0 is
the predicate name, and we thus also use the more familiar notation Y0(Y1 . . . Yn). The
atom is ordinary, if Y0 is a constant. For example, (x, type, c), node(X), and D(a, b),
are atoms; the first two are ordinary atoms. An external atom [Eit05] is of the form
&g[Y1, . . . , Yn](X1, . . . , Xm) where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called
input and output lists, respectively), and &g ∈ G is an external predicate name. We
assume that &g has fixed lengths in(&g) = n and out(&g) = m for input and output lists,
respectively. An action atom is of the form #g [Y1, . . . Yn] {o, r} [w : l] where Y1, . . . , Yn is
a list of terms (called input list), and #g is an action predicate name. We assume that
#g has fixed length in(#g) = n for its input list. o ∈ {b, c, cp} is called the action option.

HEX PROGRAMS WITH ACTION ATOMS 27

Depending on the value of o, the action atom is called brave, cautious, preferred cautious,
respectively.

Optional attributes r, w and l range over positive integers and variables2, and are called
action precedence, action weight and action level respectively. For an action atom a, we
denote by pr(a), w(a), and l(a) its precedence, weight, and level, respectively. Concerning
the latter two, we remark that they are reminiscent of the corresponding attributes of
so-called weak constraints, but refrain from further illustration for space reasons.

Example 2.1. The action atom #robot [move, left]{b, 1} may be devised for moving a robot
to the left. Here, we have that in(#robot) = 2. This atom features the option b executed
with precedence 1, while weight and level information are not given.

A rule r is of the form α1∨. . .∨αk ← β1, . . . , βn,not βn+1, . . . ,not βm, where m,n, k ≥ 0,
m ≥ n, α1, . . . αk are atoms or action atoms, and β1, . . . βm are either atoms or exter-
nal atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪ B−(r), where B+(r) =
{β1, . . . , βn} and B−(r) = {not βn+1, . . . ,not βm}. If H(r) = ∅ and B(r) 6= ∅, then r is
a constraint, and if B(r) = ∅, and H(r) 6= ∅, then r is a fact; r is ordinary, if it does
not contain external or action atoms. An acthex program is a finite set P of rules. It is
ordinary, if all rules are ordinary.

Example 2.2. The following is a valid ActHex program:

evening ∨ morning.
#robot[turnAlarm, on]{c, 2} ← evening.

#robot[turnAlarm, off]{c, 2} ← morning.
#robot[move, all]{b, 1} ← &getFuel[](high).

#robot[move, left]{b, 1} ← &getFuel[](low).

Semantics. The semantics of acthex programs generalizes that of hex-programs given in
[Eit05], which in turn generalizes traditional answer-set semantics [Gel91]. In the sequel, let
P be an acthex program. We will assume that P acts in a external environment E, over
which action atoms potentially triggered by P might have some effects. acthex programs
can in practice be exploited in a variety of different environments (e.g. a relational database,
a file system, or the entire Web): we focus here on the semantics of P , and thus we will
make no particular assumption on the nature of E besides assuming it as a finite collection
of data structures of unspecified nature and size (to take the most general view, assume
E as a finite, arbitrarily large, portion of a Turing machine tape surrounded by blanks on
both sides).

The Herbrand base of P , denoted HBP , is the set of all possible ground versions of
atoms, external atoms and action atoms occurring in P obtained by replacing variables
with constants from C. The grounding of a rule r, grnd(r), is defined accordingly, and the
grounding of program P is given by grnd(P) =

⋃
r∈P grnd(r). Unless specified otherwise,

C,X ,G, and A are implicitly given by P .

Example 2.3. Given C = {edge, arc, d, e, 1, 2}, some ground instances of E(X, c) are
edge(d, e), arc(arc, e); #robot [d,N]{b,X} has ground instances #robot [d, e]{b, 1}, #robot
[d, d]{b, 2}.

2We assume here that C contains a finite subset of consecutive integers S = {0, . . . , nmax}.

28 BASOL, ERDEM, FINK, AND IANNI

An interpretation relative to P is any subset I ⊆ HBP containing (ordinary) atoms
and action atoms. We say that I is a model of atom (or action atom) a ∈ HBP , denoted
I |= a, if a ∈ I. With every external predicate name &g ∈ G, we associate an (n+m+1)-
ary Boolean function f&g, assigning each tuple (I, y1, . . . , yn, x1, , . . . , xm) either 0 or 1,
where n= in(&g), m= out(&g), I ⊆ HBP , and xi, yj ∈ C. Similarly, with every action
predicate name #g ∈ A, we associate a (n+2)-ary function f#g with input (E, I, y1, . . . , yn)
and returning a new external environment E′ = f#g(E, I, y1, . . . , yn). Note that functions
that are associated with action atoms do not have output lists. We say that I ⊆ HBP
is a model of a ground external atom a = &g [y1, . . . , yn] (x1, . . . , xm), denoted I |= a, iff
f&g(I, y1 . . . , yn, x1, . . . , xm) = 1.

Intuitively, functions associated with external atoms model (stateless) calls to external
code and/or external sources of knowledge, as originally defined in [Eit05]. The newly
introduced notion here is that of action predicates: action atoms can appear in answer sets or
not depending on whether they are a consequence of the program at hand or not; functions
associated with action predicates serve the purpose of modelling the actual execution of
entailed action atoms, i.e., the respective changes on E.

Example 2.4. We associate with &reach a function f&reach , s.t. f&reach(I,G,A,B) =
1 iff node B is reachable from node A in the graph encoded by means of the binary
predicate G . Let I = {e(b, c), e(c, d)}. Then, I is a model of &reach[e, b](d), since
f&reach(I, e, b, d) = 1. Also, let us associate with #insert a function f#insert , and assume
that E contains an encoding of a knowledge base K expressed as a set of facts. When action
atom #insert [edge, arc] {b, 1} needs to be executed, then the function f#insert is called with
inputs (E, I, edge, arc), for an interpretation I. Intuitively, #insert might correspond to
the act of adding to the extension of the predicate edge in K the extension of the predicate
arc in I.

Let r be a ground rule. We define (i) I |= H(r) iff there is some a ∈ H(r) such that
I |= a, (ii) I |= B(r) iff I |= a for all a ∈ B+(r) and I 6|= a for all a ∈ B−(r), and (iii) I |= r
iff I |= H(r) or I 6|= B(r). We say that I is a model of an acthex program P , denoted
I |= P , iff I |= r for all r ∈ grnd(P). We call P satisfiable, if it has some model. Given
an acthex program P , the FLP-reduct of P with respect to I ⊆ HBP , denoted fP I , is
the set of all r ∈ grnd(P) such that I |= B(r). I ⊆ HBP is an answer set of P iff I is a
minimal model of fP I .

Note that we inherit from the framework of hex programs the adoption of the notion
of reduct as defined by [Fab04] (referred to as FLP-reduct henceforth). The FLP-reduct
is equivalent to the traditional Gelfond-Lifschitz reduct for ordinary programs, and in our
context ensures answer-set minimality, even in the presence of external atoms (see [Eit05]
for details). Let AS(P) be the collection of all the answer sets of program P ; the set of best
models BM(P) contains the answer sets of P minimizing an objective function HP . HP (A)
intuitively weighs an answer set A depending on the weights (and levels) of action atoms
which are contained in A3.

Let a be an action atom of the form #g [y1, . . . yn] {o, r}, and A ∈ AS(P); a is said to
be executable in A, if i) a is brave (i.e., o = b) and a ∈ A, or ii) a is cautious (i.e., o = c)
and a ∈ B for every B ∈ AS(P), or iii) a is preferred cautious (i.e., o = cp) and a ∈ B
for every B ∈ BM(P). Roughly speaking, once an answer set A is chosen as the one to be

3For space reasons, the reader can find the definition of HP at
http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin/preferences.html

HEX PROGRAMS WITH ACTION ATOMS 29

executed, action atoms to be executed are selected depending on their action option. Note
that, in this respect, the notion of brave executability depends on the answer set at hand
and thus slightly differs from the traditional notion of brave entailment.

Given an answer set A ∈ BM(P), an execution schedule EA,P = [a1, . . . , an] is an
ordered list containing all the action atoms executable in A, such that i < j if pr(ai) <
pr(aj), for each pair of atoms ai, aj appearing in EA,P .

Intuitively, an execution schedule for a program gives an order for the action execution
compatible with the precedences specified in the program. Note that for action atoms with
the same precedence the execution order is not specified.

Given an execution schedule EA,P = [a1, . . . , an], let E0 = E, and for i > 0, Ei =
fai(Ei−1, A, y1, . . . , ym). We define EX(EA,P) = En as the execution outcome of EA,P , and
EX (P) = {EA,P | A ∈ BM(P)}.

In general, given a program P , we consider AS(P), BM(P) and EX (P) as different
facets of the semantics of P . In particular, the execution outcome of P is EX(EA,P) for an
execution schedule EA,P ∈ EX (P) of choice. We simply assume that a deterministic rule
for choosing EA,P is given4.

Example 2.5. Let A1, A2, A3 be three answer sets of a given program Pex2.5, where
A1, A2 ∈ BM(Pex2.5). Let a1 = #insert [e, g1] {b, 1}, a2 = #insert [e, g2] {c, 5}, a3 =
#insert [e, g3] {c, 2}, a4 = #insert [e, g4] {cp, 2}, a5 = #insert [e, g5] {b, 1}, and let A1 =
{a1, a2, a3, a4, a5}, A2 = {a2, a4}, A3 = {a2, a5}.

Since A3 6∈ BM(Pex5), possible choices of answer sets are A1 and A2. If we choose A1,
brave atoms a1, a5, cautious atom a2 and preferred cautious atom a4 are executable since
a1, a5 ∈ A1, where a2 appears in all the answer sets and a4 appears in both A1 and A2 . A1

has two possible execution schedules which are [a1, a5, a4, a2], and [a5, a1, a4, a2].
For the case that A2 is selected, cautious atom a2 and preferred cautious atom a4 are

executable since a2 appears in all answer sets, and a4 appears in A1 and A2. Thus, the only
possible execution schedule for A2 is [a4, a2].

3. Applications of acthex programs

In this section, we provide evidence for the versatility of acthex by discussing several
application scenarios, including encodings of existing action-based KR formalisms.

Action languages. We use action language C [Giu98] as a representative for sketching how
action languages can be reduced to acthex programs. The relationship to logic program-
ming is well-known: we follow a transformation from [Lif99].

The semantics of C is defined in terms of transition diagrams which put in relationship
propositional action and fluent atoms. The possible state evolution specified in transition
diagrams can equivalently be characterized as a logic program expressed in terms of predi-
cates having a time attribute, which are used for encoding truth values of different action
and fluent variables at different times. Not surprisingly, the precedence attribute of action
atoms can intuitively capture the notion of time as in [Lif99].

Consider causal laws defined as either a static law of the form “caused F if L1 ∧ · · · ∧
Lm”, or a dynamic law of the form “caused F if L1∧· · ·∧Lm after Lm+1∧· · ·Ln∧Ln+1∧

4For the sake of efficiency, our implementation executes the first execution schedule obtained from the
first computed answer set: other selection criteria are of course possible.

30 BASOL, ERDEM, FINK, AND IANNI

· · · ∧Lk”, where F is a fluent literal, Li is a fluent literal for 1 ≤ i ≤ n, and respectively an
action name for n+ 1 ≤ i ≤ k. An action description is a set of causal laws.

Given an action description D and a maximum time t, following [Lif99], a dynamic law

l ∈ D of the form above can be translated to the ordinary rule F ′(T + 1) ← not L
′
1(T +

1), . . . , not L
′
m(T + 1), L′m+1(T), . . . , L′k(T), where F ′ is a unary predicate associated to

fluent F , while L′i, L
′
i are unary predicates associated to fluents Li, 1 ≤ i ≤ n, respectively to

actions Li, n+ 1 ≤ i ≤ k, and their complements5. We then put in connection action atoms
with actions by means of rules #Li{o, T} ← Li(T)., n + 1 ≤ i ≤ k, where #Li is a newly
introduced action atom which is responsible of executing the action Li, and o is an action
option. By adding other auxiliary rules (e.g. guessing rules b(T) ∨ b(T) ← T ≤ t for each
action b), and setting o = b, we obtain a program PD whose execution schedules EX (PD)
correspond to so-called histories (paths) of length t in D. An execution plan e ∈ EX (PD)
can then be materially executed. Similarly, preference orderings between actions as in
the language PP and variants thereof [Son06], can be attached to action atoms: for an
ordering L1 < · · · < Ln among actions one can introduce corresponding integer weights
w1 < · · · < wn and rules #Li{O, T}[wi : 1]← Li(T).

Knowledge Base Updates. As another potential usage of acthex programs, we mention
the possibility of updating knowledge bases, e.g., as achieved by the predicates assert and
retract in Prolog. We assume that external environments contain a collection C of knowl-
edge bases accessible by names, and consider abstract action constructs assert(kb, f) and
retract(kb, f), which respectively should add or remove a statement f from a given knowl-
edge base kb. The above can be grounded to acthex programs, introducing action pred-
icates #assertk and #retractk, for k > 06. An atom #assertk[kb, a1, . . . , ak]{o, p}, (resp.
#retractk[kb, a1, . . . , ak]{o, p}) adds to (resp. removes from) the knowledge base kb the
assertion a1| . . . |ak, for ai|aj , being the string concatenation of ai and aj .

For instance, the rule #assert3[kb, “n(”, X, “).”]{b, 1} ← node(X). encodes the possible
addition of facts n(c) for each c such that node(c) ∈ A, for an answer set A. The above
constructs can be fruitfully combined with reasoning over the given knowledge bases: to this
end, we introduce the action atom #execute[kb]{o, p}. Assuming the kb is a valid acthex
program, when such an atom belongs to the current execution schedule, it gets executed by
evaluating kb and the resulting execution schedule. Note that whether #assert, #retract
and #execute actions will be executed depend on reasoning on the program at hand: this
opens a variety of possibilities, e.g. belief revisions, and, in general, observe-think-act
cycles [Kow99]7. Note that the evaluation of programs with this kind of construct might
not terminate in general: this issue is subject of ongoing study.

Translation of Agent Programs. Agent programs can also be realized in the acthex frame-
work. We consider logic-based agent programs as developed in [Sub00], consisting of rules of

5We can assume a constraint← L′i(T), L
′
i(T) is added for each Li. Note that the current implementation

of acthex programs allows for strong negation, by which an atom L
′
(T) can be conveniently modelled as

¬L′(T).
6Our implementation of acthex programs conveniently allows to program and group families of action

atoms, like the above, using variable length parameter lists.
7An example acthex program containing update actions is given at

http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin/actionplugin example1.html

HEX PROGRAMS WITH ACTION ATOMS 31

the form Op0α0 ← χ, [¬]Op1α1, . . . , [¬]Opmαm, governing an agent’s behaviour. The Opi
are deontic modalities, the αi are action status atoms, and χ is a code-call condition.

For instance, Do dial(N) ← in(N, phone(P)), O call(P), intuitively states that the
agent should dial phone number N if she is obliged to call P . In [Sub00], a translation of
an agent program AG(P) to a logic program P is given, such that the answer sets of P
correspond to the so-called reasonable status sets of AG(P). We build on this transformation
and model code-call conditions (which, e.g., provide access to actual sensor readings) using
external atoms as already described in [Eit05]. Similarly, we model Do atoms as action
atoms in our framework using rules of the sort #actionα[. . .]{b} ← Do α. A framework
implementing this translation is available8, featuring a) the translation of agent programs
to acthex programs, b) incorporating the actual execution of Do-able actions and c) an
implementation of message box facilities for agents.

Other applications. acthex programs can be exploited in a variety of other contexts, rang-
ing from database access to interaction with actual web sources. We developed an example9

illustrating how to exploit reasoning in ASP for choosing meeting schedules of two teams.
Events are extracted from actual Google Calendars10 of two teams; meeting dates are se-
lected using ASP reasoning; eventually, the chosen events are posted to the calendars of the
teams using an action atom of the form

#createEvent[Team,Url, “ActHexMeeting”, Date, User, Password]{b, 1}.

4. Implementation Notes

An implementation of acthex programs has been realized and is available11 as an
extension to the dlvhex system12. With respect to the traditional workflow of an answer
set solver, the system computes execution schedules and executes one of it according to: i)
the semantics of acthex programs, ii) the selection policy of execution schedules described
in Section 2, and iii) the associated executable functions provided for action predicates.
The system is equipped with a toolkit enabling users to develop their own libraries of
action predicates: some example libraries are available. In particular, the KBModaddon

library constitutes a generalization of update action atoms as shown in Section 3 (it is, e.g.,
possible to execute arbitrary command line statements, and to assert and retract arbitrary
statements from knowledge bases). An example library allowing access and modification to
Google Calendars is also publicly available.

5. Related Work and Conclusions

Our work has points of contact with some lines of research which can be grouped as
follows. Action languages serve the purpose of providing a declarative language for specify-
ing causal theories [Giu98, McC97], allowing to assert not only the truth of a proposition,
but also that there is a cause for it to be true. In this respect, they provide a formalism
for the declarative representation of dynamic domains and gave rise to logic-based planning

8http://students.sabanciuniv.edu/∼ozanerdem/AgentToHex.html
9http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin/actionplugin example2.html
10http://www.google.com/calendar
11http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin.html
12http://www.kr.tuwien.ac.at/research/systems/dlvhex/

32 BASOL, ERDEM, FINK, AND IANNI

systems such as CCLAC [Giu04] and DLVK [Eit03]. The two systems mentioned are based
on transformations [Lif99, Gel93] to logic programming under the answer set semantics,
however other (nonmonotonic) reasoning engines can be exploited for causal reasoning in
action domains as well (cf, e.g., [Tur96, Kak01, Lin00]).

acthex programs generalize hex programs which in turn generalize ASP programs,
and thus can be similarly used to implement planning systems based on action languages
(as shown in Section 3). When resorting to acthex, however, action atoms also encode
their actual execution, enabling a variety of applications. For instance, this allows for in-
terweaving plan generation and action execution seamlessly within a coherent declarative
framework, which may, e.g., be utilized for an integrated approach to monitoring plan exe-
cution. For instance, [Nie07] extends the action language K towards conditional planning:
building on hex programs, they introduce external function calls in causal rules to im-
port fluent information from an external source. The introduction of action atoms makes it
possible to extend the framework coping with action execution and monitoring their success.

Logic-based agent programming constitutes a further natural application domain for ac-
thex programs: intelligent agents require reasoning and/or planning capabilities for acting
in dynamic environments, and using logic programming for the declarative specification of
a respective observe-think-act cycle [Kow99] is a reasonable choice. acthex may serve as
an implementation layer for agent systems built according to this paradigm. We exem-
plified its suitability providing a transformation of IMPACT agent programs [Sub00] into
corresponding acthex programs.

The evaluation of IMPACT agent programs is restricted to stratified negation in its
current implementation: the given acthex encoding does not require such a restriction
and can handle general agent programs as formally conceived. Similarly, compared to ac-
thex, agent-oriented logic programming languages based on Horn clause languages (e.g.,
DALI [Cos04], or ALP [Dre09]) lack a declarative concept of negation, which is important
from an expressive and practical modelling point of view, for instance to express excep-
tions. On the other hand, most nonmonotonic logic programming based approaches to
agent-oriented programming, (e.g.[Alf06, Alf08, Nie06, Vos05, Lei01]), detach the reasoning
process from the actual execution of an agent’s actions (which often are termed ‘external’)
and only their (expected) effects are taken into account for further deliberation. For such
agent frameworks, acthex can provide the platform for an integrated implementation. In
conclusion, acthex is a declarative logic programming framework including a representa-
tion for actions that are executed and have an impact on an external environment. Formal
properties of the language and further extensions (e.g. parallel execution schedules) are
subject to ongoing work. Corresponding results, as well as a more rigorous treatment of
the given encodings, will be subject of follow-up work and/or an extended version of this
paper.

References

[Alf06] J. J. Alferes, F. Banti, and A. Brogi. An event-condition-action logic programming language. In
JELIA, pp. 29–42. 2006.

[Alf08] J. J. Alferes, A. Gabaldon, and J. Leite. Evolving logic programming based agents with temporal
operators. In IAT, pp. 238–244. 2008.

[Cos04] S. Costantini and A. Tocchio. The DALI logic programming agent-oriented language. In JELIA,
pp. 685–688. 2004.

HEX PROGRAMS WITH ACTION ATOMS 33

[Dre09] C. Drescher, S. Schiffel, and M. Thielscher. A declarative agent programming language based on
action theories. In FroCos, pp. 230–245. 2009.

[Eit99] T. Eiter, V. S. Subrahmanian, and G. Pick. Heterogeneous active agents, I: semantics. Artif. Intell.,
108(1-2):179–255, 1999. doi:http://dx.doi.org/10.1016/S0004-3702(99)00005-3.

[Eit03] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach to
knowledge-state planning, II: The DLVK system. Artif. Intell., 144(1-2):157–211, 2003.

[Eit05] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of higher-order reasoning
and external evaluations in answer-set programming. In IJCAI, pp. 90–96. 2005.

[Eit08] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set pro-
gramming with description logics for the semantic web. Artif. Intell., 172(12-13):1495–1539, 2008.

[Fab04] W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic programs: Semantics
and complexity. In JELIA, pp. 200–212. 2004.

[Gel91] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New
Generation Comput., 9(3/4):365–386, 1991.

[Gel93] M. Gelfond and V. Lifschitz. Representing action and change by logic programs. JLP, 17:301–322,
1993.

[Giu98] E. Giunchiglia and V. Lifschitz. An action language based on causal explanation: Preliminary
report. In AAAI/IAAI, pp. 623–630. 1998.

[Giu04] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic causal theories. AI,
153(1-2):49–104, 2004. doi:http://dx.doi.org/10.1016/j.artint.2002.12.001.

[Kak01] A. C. Kakas, R. Miller, and F. Toni. E-RES: Reasoning about actions, events and observations. In
LPNMR, pp. 254–266. 2001.

[Kow99] R. A. Kowalski and F. Sadri. From logic programming towards multi-agent systems. Ann. Math.
Artif. Intell., 25(3-4):391–419, 1999.

[Lei01] J. A. Leite, J. J. Alferes, and L. M. Pereira. Minerva - a dynamic logic programming agent archi-
tecture. In ATAL, pp. 141–157. 2001.

[Lif99] V. Lifschitz and H. Turner. Representing transition systems by logic programs. In LPNMR, pp.
92–106. 1999.

[Lin00] F. Lin. From causal theories to successor state axioms and strips-like systems. In AAAI/IAAI, pp.
786–791. 2000.

[McC97] N. McCain and H. Turner. Causal theories of action and change. In AAAI/IAAI, pp. 460–465.
1997.

[Nie06] D. Van Nieuwenborgh, M. De Vos, S. Heymans, and D. Vermeir. Hierarchical decision making in
multi-agent systems using answer set programming. In CLIMA VII, pp. 20–40. 2006.

[Nie07] D. Van Nieuwenborgh, T. Eiter, and D. Vermeir. Conditional planning with external functions. In
LPNMR, pp. 214–227. 2007.

[Pir08] G. Pirrotta and A. Provetti. A Java wrapper for answer set programming inferential engines. In
CILC 2008.

[Ric03] F. Ricca. The DLV Java wrapper. In APPIA-GULP-PRODE, pp. 263–274. 2003.
[Son06] T. C. Son and E. Pontelli. Planning with preferences using logic programming. TPLP, 6(5):559–607,

2006.
[Sub00] V. S. Subrahmanian, P. A. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and R. B. Ross. Het-

erogenous Active Agents. MIT Press, 2000.
[Tur96] H. Turner. Representing actions in default logic: A situation calculus approach. In In Proceedings

of the Symposium in honor of Michael Gelfond’s 50th birthday (also in Common Sense 96). 1996.
[Vos05] M. De Vos, T. Crick, J. A. Padget, M. Brain, O. Cliffe, and J. Needham. LAIMA: A multi-agent

platform using ordered choice logic programming. In DALT, pp. 72–88. 2005.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

