
Program Composition and Optimization:
An Introduction

Christoph W. Kessler1, Welf Löwe2, David Padua3, and Markus Püschel4

1 Linköping University, Linköping, Sweden, chrke@ida.liu.se
2 Linnaeus University, Växjö, Sweden, welf.lowe@lnu.se

3 University of Illinois at Urbana Champaign, USA, padua@uiuc.edu
4 Carnegie Mellon University, USA, pueschel@ece.cmu.edu

1 Topic Overview

Software composition connects separately defined software artifacts. Such con-
nection may be in program structure (such as inheritance), data flow (such as
message passing) and/or control flow (such as function calls or loop control).

In the classical sense of connecting black-box software components, compo-
sition denotes just the process of binding a call to a callee or of a message
producer to a message consumer in another component. In a broader interpre-
tation, it also includes the binding of certain design decisions connected with
calls, such as the choice of appropriate data structures for operands, the choice
among several applicable implementations for the task to be computed, the al-
location of resources (e.g., remote computers on a grid, additional processor
cores, or special hardware accelerators) for the task to be performed by the
call, and scheduling of multiple calls. Finally, composition may abstract com-
pletely from call site and mechanism and combine arbitrary software artifacts
such as type or code fragments at arbitrary locations anticipated for composi-
tion. This general view includes meta-programming, program generation, aspect
composition, and invasive software composition, but also traditional compiler
optimizations and program transformations. For instance, it allows to connect
sequential problem-specific code fragments with generic code templates for the
platform-specific coordination of independent loop iterations to enable parallel
execution, as adopted in the skeleton programming approach.

Beyond the narrow sense of classical call binding, all these composition deci-
sions may involve choices between different alternatives, which generally affect
the cost (e.g., execution time, memory requirements, energy consumption) of
the resulting program, and may also involve trade-offs between, e.g., execution
time and energy consumption. Such optimizing composition decisions should
preferably be delayed until enough information is available to provide reasonable
predictions to compare the alternatives, which may be at compile time, deploy-
ment time, load time, or run time. The decisions may also be subject to global
constraints such as program length, memory capacity or energy budgets. Some
decisions may be local, but in general, choices for one composition/optimization
issue may influence choices for others. In other words, we are dealing with com-
plex global integrated program optimization problems.

Dagstuhl Seminar Proceedings 10191 
Program Composition and Optimization : Autotuning, Scheduling, Metaprogramming and Beyond 
http://drops.dagstuhl.de/opus/volltexte/2010/2573

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


However, straightforward late binding for optimization also incurs additional
overheads, for instance, when predicting performance and choosing between dif-
ferent implementations or schedules at run-time. It is possible to keep such over-
heads relatively low by anticipating much of the prediction and evaluation effort
at deployment time, for instance in the form of auto-tuning of libraries, where,
for instance, the fastest algorithm or implementation for a specific computation
instance or the best blocking factor for a loop is determined as a function of a few
characteristic problem parameters. This selection function may be constructed
at deployment time by, for instance, a machine learning algorithm that uses
training data obtained by profiling on the target platform. Today, auto-tuning
approaches are successfully used for the generation of optimized, domain-specific
libraries, e.g., for signal processing or linear algebra computations. We believe
that auto-tuning has, beyond these special cases, a considerable potential of gen-
eralization, namely towards software composition in general, including schedul-
ing and resource allocation issues.

The design optimization space of possible implementation variants for a sin-
gle specific computation can already be very large, as it also includes the appli-
cation of various compiler transformations, various representations for operand
data types, or the use of hardware accelerators. Combining the implementation
selection problem with scheduling, resource allocation and other optimization
problems additionally increases the optimization potential, but also the com-
plexity. The space of alternatives may be generated and evaluated systematically
at deployment time, for instance by using meta-programming techniques.

2 Questions and Challenges

In the following, we list some of the challenges and open questions that we raised
as part of the preparation material for the seminar 10191 Program Composition
and Optimization: Autotuning, Scheduling, Metaprogramming and Beyond :

– What structures and artifacts in programs or program components are suit-
able variation points for optimizations? How should they be exposed, explic-
itly or implicitly? How can the programmer of a (third-party) component
influence the optimization spectrum or the predictions during the compo-
sition process? What are necessary extensions to component interfaces and
contracts to enable more aggressively optimized compositions? How should
software architectures be organized to support optimized composition? Are
there different appropriate solutions for different target platforms, e.g. for
many-core processors vs. computational grids?

– What is the limit for the application of auto-tuning methods? Are they
confined to a few “benign” application domains, or can they be generalized
to a much wider area? How can they support optimizing composition in the
general sense?

– Which program optimizations and optimizing composition issues should be
considered together (solved globally) for what type of target platform? Which
problems can be solved locally under what conditions?

2



– How can we reduce the complexity of the optimization space exploration es-
pecially for combined problems? What methods have been useful in previous
approaches, and how can they be adapted or improved?

– Is performance compositional?
– What are the appropriate prediction methods for time, energy or space on

various platforms to be used when deciding about optimizing composition?
What are the trade-offs between analysis cost and accuracy? How much
can or should be precomputed earlier in the composition process, e.g. at
deployment time? How can such precomputed information be stored and
retrieved efficiently?

– What is the complexity of the variant malleable task scheduling problem that
appears when optimizing several calls to functions with multiple parallel and
sequential implementation variants? What are suitable solution methods for
it?

– How can adaptivity to changes in the available resources (e.g., handling grid
nodes joining or leaving dynamically, discovering new system components,
or handling failure) or software components (dynamic update or addition)
be properly taken into account in optimizing composition?

– How can this technology be transferred to sensor-grid and ubiquitous com-
puting applications?

References

1. G. Almasi, L. DeRose, B. Fraguela, J. Moreira, and D. Padua: Programming for
Locality and Parallelism with Hierarchically Tiled Arrays. Proceedings of the Six-
teenth International Workshop on Languages and Compilers for Parallel Comput-
ing (LCPC 2003), pp. 162-176, College Station, Texas, October 2-4, 2003. Springer
Lecture Notes in Computer Science vol. 2958, 2004.

2. Jesper Andersson, Morgan Ericsson, Welf Löwe: Reconfigurable Scientific Applica-
tions on GRID Services. European Grid Conference 2005. Amsterdam. Published
in LNCS Vol. 3470, Advances in Grid Computing: EGC 2005, Springer, P.M.A.
Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld and M. Bubak (eds.), 2005.

3. Jesper Andersson, Morgan Ericsson, Christoph Kessler, Welf Löwe: Profile-Guided
Composition. Proc. 7th Int. Symposium on Software Composition (SC 2008) at
ETAPS, Budapest, Hungary, March 2008. Springer LNCS 4954: 157-164.

4. Uwe Aßmann: Invasive Software Composition. Springer, 2003.
5. Srinivas Chellappa, Franz Franchetti and Markus Püschel: How To Write Fast

Numerical Code: A Small Introduction Proc. Summer School on Generative and
Transformational Techniques in Software Engineering (GTTSE), Lecture Notes in
Computer Science, Springer, Vol. 5235, pp. 196-259, 2008

6. Morgan Ericsson, Welf Löwe, Christoph Kessler, Jesper Andersson: Composition
and Optimization. Proc. Int. Workshop on Component-Based High Performance
Computing (CBHPC-2008), Karlsruhe, Oct. 2008.

7. Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves, Devika
Subramanian, Linda Torczon, and Todd Waterman: ACME: adaptive compilation
made efficient. Proc. ACM SIGPLAN/SIGBED conference on languages, compil-
ers, and tools for embedded systems (LCTES ’05), Chicago, Illinois, USA, pp.
69–77, 2005.

3



8. Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, Grigori Fursin, and
Michael F. P. O’Boyle: Portable compiler optimisation across embedded programs
and microarchitectures using machine learning. Proc. 42nd Annual IEEE/ACM
Int. Symposium on Microarchitecture (MICRO-42), pp. 78–88, ACM, 2009.

9. Franz Franchetti, Yevgen Voronenko and Markus Püschel: A Rewriting System
for the Vectorization of Signal Transforms Proc. High Performance Computing for
Computational Science (VECPAR), Lecture Notes in Computer Science, Springer,
Vol. 4395, pp. 363-377, 2006

10. Franz Franchetti, Yevgen Voronenko and Markus Püschel: FFT Program Genera-
tion for Shared Memory: SMP and Multicore Proc. Supercomputing (SC), 2006

11. Matteo Frigo and Steven G. Johnson: FFTW: An adaptive software architecture
for the FFT. Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal Processing
(ICASSP), vol. 3, pages = 1381–1384, 1998.

12. Matteo Frigo and Steven G. Johnson: The Design and Implementation of FFTW3.
Proc. of the IEEE 93(2):216–231, special issue on “Program Generation, Opti-
mization, and Adaptation”, 2005.

13. E.-J. Im, K. Yelick, and R. Vuduc: Sparsity: Optimization Framework for Sparse
Matrix Kernels. Int’l J. High Performance Computing Applications 18(1), 2004.

14. Christoph Kessler and Welf Löwe. A Framework for Performance-Aware
Composition of Explicitly Parallel Components. Proc. ParCo-2007 conference,
Jülich/Aachen, Germany, Sept. 2007.

15. Christoph Kessler and Welf Löwe. Optimized Composition of Performance-Aware
Parallel Components. Proc. 15th Int. Workshop on Compilers for Parallel Com-
puters (CPC-2010), Vienna, Austria, July 2010 (to appear).

16. T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle: Combined Selection of
Tile Sizes and Unroll Factors Using Iterative Compilation. Proc. International Con-
ference on Parallel Architectures and Compilation Techniques (PACT’00), Wash-
ington, DC, USA, p. 237, IEEE Computer Society, 2000.

17. P. M. W. Knijnenburg and T. Kisuki and M. F. P. O’Boyle: Iterative compilation.
In: Embedded processor design challenges: systems, architectures, modeling, and
simulation (SAMOS), pp. 171–187, Springer, 2002.

18. Xiaoming Li, Maŕıa J. Garzarán, and David Padua: A Dynamically Tuned Sorting
Library. Proc. Int. Symposium on Code Generation and Optimization (CGO’04),
San Jose, California, March 20-24, 2004, pp. 111–124.

19. Xiaoming Li, Maŕıa J. Garzarán, and David Padua: Optimizing Sorting with Ge-
netic Algorithm. Proc. 3rd Int. Symposium on Code Generation and Optimization
(CGO-2005), pp. 99-110, San Jose, CA, USA, 2005.

20. Peter A. Milder, Franz Franchetti, James C. Hoe and Markus Püschel: Formal
Datapath Representation and Manipulation for Implementing DSP Transforms
Proc. Design Automation Conference (DAC), pp. 385-390, 2008

21. Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela
Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voro-
nenko, Kang Chen, Robert W. Johnson and Nicholas Rizzolo: SPIRAL: Code Gen-
eration for DSP Transforms. Proceedings of the IEEE 93(2):232–275, special issue
on “Program Generation, Optimization, and Adaptation”, 2005.

22. Yevgen Voronenko, Frédéric de Mesmay and Markus Püschel: Computer generation
of general size linear transform libraries. Proc. International Symposium on Code
Generation and Optimization (CGO), pp. 102–113, 2009.

23. Richard Vuduc, James W. Demmel, and Katherine A. Yelick: OSKI: A library of
automatically tuned sparse matrix kernels. Journal of Physics: Conference Series
16:521–530, Institute of Physics Publishing, 2005.

4



24. R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra: Automated Empirical
Optimization of Software and the ATLAS Project. Parallel Computing 27(1–2):
3–35, 2001.

25. Jianxin Xiong, Jeremy Johnson, Robert W. Johnson and David Padua: SPL: A
Language and Compiler for DSP Algorithms. Proceedings of the 2001 ACM Con-
ference on Programming Language Design and Implementation (PLDI 2001), pp.
298-308, Snowbird, Utah, June 20-22, 2001.

26. Kamen Yotov, Xiaoming Li, Gang Ren, Maria Garzaran, David Padua, Keshav Pin-
gali, and Paul Stodghill: Is Search Really Necessary to Generate High-Performance
BLAS?, Proceedings of the IEEE 93(2), special issue on “Program Generation, Op-
timization, and Adaptation”, 2005

27. Wolf Zimmermann and Welf Löwe: Foundations for the integration of scheduling
techniques into compilers for parallel languages. International Journal of Compu-
tational Science and Engineering 1(3/4), 2005.

5




