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1 Topic Overview

Software composition connects separately defined software artifacts. Such con-
nection may be in program structure (such as inheritance), data flow (such as
message passing) and/or control flow (such as function calls or loop control).

In the classical sense of connecting black-box software components, compo-
sition denotes just the process of binding a call to a callee or of a message
producer to a message consumer in another component. In a broader interpre-
tation, it also includes the binding of certain design decisions connected with
calls, such as the choice of appropriate data structures for operands, the choice
among several applicable implementations for the task to be computed, the al-
location of resources (e.g., remote computers on a grid, additional processor
cores, or special hardware accelerators) for the task to be performed by the
call, and scheduling of multiple calls. Finally, composition may abstract com-
pletely from call site and mechanism and combine arbitrary software artifacts
such as type or code fragments at arbitrary locations anticipated for composi-
tion. This general view includes meta-programming, program generation, aspect
composition, and invasive software composition, but also traditional compiler
optimizations and program transformations. For instance, it allows to connect
sequential problem-specific code fragments with generic code templates for the
platform-specific coordination of independent loop iterations to enable parallel
execution, as adopted in the skeleton programming approach.

Beyond the narrow sense of classical call binding, all these composition deci-
sions may involve choices between different alternatives, which generally affect
the cost (e.g., execution time, memory requirements, energy consumption) of
the resulting program, and may also involve trade-offs between, e.g., execution
time and energy consumption. Such optimizing composition decisions should
preferably be delayed until enough information is available to provide reasonable
predictions to compare the alternatives, which may be at compile time, deploy-
ment time, load time, or run time. The decisions may also be subject to global
constraints such as program length, memory capacity or energy budgets. Some
decisions may be local, but in general, choices for one composition/optimization
issue may influence choices for others. In other words, we are dealing with com-
plex global integrated program optimization problems.
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However, straightforward late binding for optimization also incurs additional
overheads, for instance, when predicting performance and choosing between dif-
ferent implementations or schedules at run-time. It is possible to keep such over-
heads relatively low by anticipating much of the prediction and evaluation effort
at deployment time, for instance in the form of auto-tuning of libraries, where,
for instance, the fastest algorithm or implementation for a specific computation
instance or the best blocking factor for a loop is determined as a function of a few
characteristic problem parameters. This selection function may be constructed
at deployment time by, for instance, a machine learning algorithm that uses
training data obtained by profiling on the target platform. Today, auto-tuning
approaches are successfully used for the generation of optimized, domain-specific
libraries, e.g., for signal processing or linear algebra computations. We believe
that auto-tuning has, beyond these special cases, a considerable potential of gen-
eralization, namely towards software composition in general, including schedul-
ing and resource allocation issues.

The design optimization space of possible implementation variants for a sin-
gle specific computation can already be very large, as it also includes the appli-
cation of various compiler transformations, various representations for operand
data types, or the use of hardware accelerators. Combining the implementation
selection problem with scheduling, resource allocation and other optimization
problems additionally increases the optimization potential, but also the com-
plexity. The space of alternatives may be generated and evaluated systematically
at deployment time, for instance by using meta-programming techniques.

2 Questions and Challenges

In the following, we list some of the challenges and open questions that we raised
as part of the preparation material for the seminar 10191 Program Composition
and Optimization: Autotuning, Scheduling, Metaprogramming and Beyond :

– What structures and artifacts in programs or program components are suit-
able variation points for optimizations? How should they be exposed, explic-
itly or implicitly? How can the programmer of a (third-party) component
influence the optimization spectrum or the predictions during the compo-
sition process? What are necessary extensions to component interfaces and
contracts to enable more aggressively optimized compositions? How should
software architectures be organized to support optimized composition? Are
there different appropriate solutions for different target platforms, e.g. for
many-core processors vs. computational grids?

– What is the limit for the application of auto-tuning methods? Are they
confined to a few “benign” application domains, or can they be generalized
to a much wider area? How can they support optimizing composition in the
general sense?

– Which program optimizations and optimizing composition issues should be
considered together (solved globally) for what type of target platform? Which
problems can be solved locally under what conditions?
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– How can we reduce the complexity of the optimization space exploration es-
pecially for combined problems? What methods have been useful in previous
approaches, and how can they be adapted or improved?

– Is performance compositional?
– What are the appropriate prediction methods for time, energy or space on

various platforms to be used when deciding about optimizing composition?
What are the trade-offs between analysis cost and accuracy? How much
can or should be precomputed earlier in the composition process, e.g. at
deployment time? How can such precomputed information be stored and
retrieved efficiently?

– What is the complexity of the variant malleable task scheduling problem that
appears when optimizing several calls to functions with multiple parallel and
sequential implementation variants? What are suitable solution methods for
it?

– How can adaptivity to changes in the available resources (e.g., handling grid
nodes joining or leaving dynamically, discovering new system components,
or handling failure) or software components (dynamic update or addition)
be properly taken into account in optimizing composition?

– How can this technology be transferred to sensor-grid and ubiquitous com-
puting applications?
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6. Morgan Ericsson, Welf Löwe, Christoph Kessler, Jesper Andersson: Composition
and Optimization. Proc. Int. Workshop on Component-Based High Performance
Computing (CBHPC-2008), Karlsruhe, Oct. 2008.

7. Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves, Devika
Subramanian, Linda Torczon, and Todd Waterman: ACME: adaptive compilation
made efficient. Proc. ACM SIGPLAN/SIGBED conference on languages, compil-
ers, and tools for embedded systems (LCTES ’05), Chicago, Illinois, USA, pp.
69–77, 2005.

3



8. Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, Grigori Fursin, and
Michael F. P. O’Boyle: Portable compiler optimisation across embedded programs
and microarchitectures using machine learning. Proc. 42nd Annual IEEE/ACM
Int. Symposium on Microarchitecture (MICRO-42), pp. 78–88, ACM, 2009.

9. Franz Franchetti, Yevgen Voronenko and Markus Püschel: A Rewriting System
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