
Power-Aware Real-Time Scheduling:
Models, Open Problems, and Practical Considerations

Nathan Fisher∗

1 Introduction

Power-related issues have received considerable research attention from the real-time community in
the past decade. In this abstract, we introduce a recent model and set of assumptions made in the recent
real-time literature on energy and thermal issues; suggest two high-level open problems for power-aware
real-time scheduling; and discuss practical considerations and constraints for proposed solutions.

2 Models

2.1 Workload Model

Throughout this abstract, we will assume that the real-time workload is specified by the widely-used
sporadic task model [2]. A sporadic task τi = (Ci, Ti, Di) is characterized by a worst-case execution
requirement Ci, a (relative) deadline Di, and a minimum inter-arrival separation Ti, which is, for his-
torical reasons, also referred to as the period of the task. Such a sporadic task generates a potentially
infinite sequence of jobs, with successive job-arrivals separated by at least Ti time units. Each job has
a worst-case execution requirement equal to Ci and a deadline that occurs Di time units after its arrival
time. A job-arrival sequence is said to be legal if each task’s minimum inter-arrival constraint on suc-
cessive job arrivals is satisfied and no job executes for more than its worst-case execution requirement.
Furthermore, we will assume that jobs are arbitrarily preemptible without penalty. A sporadic task sys-
tem τ

def= {τ1, . . . , τn} is a collection of n such sporadic tasks. For a given scheduling algorithm A, we
say that τ is A-schedulable, if τ always meets it deadline when scheduled according to algorithm A
(under any legal job arrival sequence).

2.2 Power Model

A large number of real-time papers on power-aware scheduling focus almost exclusively on the CPU. A
common assumption is that the CPU has dynamic-voltage scaling (DVS) capabilities. A DVS processor
may dynamically increase or decrease the voltage to change the power-consumption or heat-generation
of the system. In this section, we briefly review a common power model assumed in many real-time
systems research papers; the notation and model formulation used in this section very closely matches
the model used in a recent paper by Wang et al. [5].

∗fishern@cs.wayne.edu. Department of Computer Science, Wayne State University, Detroit, MI USA.

1
Dagstuhl Seminar Proceedings 10071
Scheduling
http://drops.dagstuhl.de/opus/volltexte/2010/2539

§CPU Power-Consumption. A recent power model (e.g., see [3, 5]) divides power consumption of a
DVS processor into two parts: speed-dependent and speed-independent portions. The speed-dependent
power consumption (as a function of time) arises from the charging and discharging of gates and can be
quantified on a CMOS circuit by

Pdep(s, t) def= CefV
2
dd(t)s(t) (1)

where s(t) and Vdd(t) are the speed and supplied voltage (respectively) for the processor at time t. The
term Cef is a positive constant describing the effective switch capacitance of the circuit. Furthermore,
it is typically assumed that s(t) = κv

(Vdd(t)−Vthresh)2

Vdd(t) where κv is a (positive) hardware-design-specific
constant and Vthresh is the voltage threshold. The above equation can be simplified to

Pdep(s, t) = hsγ(t), (2)

where h and γ are positive constants with γ ≤ 3.
The speed-independent power consumption is due to leakage current which can be dependent upon

the temperature of the CPU [1]. If Θ(t) is the absolute temperature of the CPU at time t, one proposed
model of speed-independent power consumption is

Pind(Θ, t) = δΘ(t) + ρ (3)

where δ and ρ are both processor-specific constants. Thus, the total power consumption of the CPU may
be modeled by

P (s,Θ, t) = Pdep(s, t) + Pind(Θ, t) = hsγ(t) + δΘ(t) + ρ. (4)

The energy consumed over an interval [t1, t2] is thus equal to
∫ t2
t1
P (s,Θ, t)dt.

§CPU Cooling. A majority of research on real-time thermal-aware systems assumes that the cooling
process can be approximately modeled by Fourier’s Law. Given a fixed ambient temperature Θa, the
rate of change may be characterized by

Θ′(t) = α̂P (s,Θ, t)− β̂(Θ(t)−Θa) (5)

where α̂ and β̂ are the coefficients for heating and cooling, respectively. The above equation can be
reformulated to

Θ′(t) = αsγ(t)− βΘ(t) + σ (6)

where α, β, and σ are positive constants dependent upon α̂, β̂, ρ, and Θa.
Instead of directly considering the absolute temperature Θ(t), it is often easier to work with the

adjusted temperature θ(t):

θ(t) def=
Θ(t)
α
− σ

αβ
. (7)

Thus, the power function can be reformulated,

P (s, θ, t) = hsγ(t) + δαθ(t) + (ρ+
δσ

β
). (8)

and the (adjusted) temperature at time t may be determined by, given an initial temperature θ(t0) at t0,

θ(t) =
∫ t

t0

sγ(x)e−β(t−x)dx+ θ(t0)e−β(t−t0). (9)

2

3 Open Problems

In this section we present two (high-level) open theoretic questions for power-aware scheduling under
the sporadic task model. In the next section, we add further complexity to the problems by discussing
some practical constraints and considerations of power-aware systems.

Problem 1 (Peak Temperature Minimization) Given a sporadic task system τ and scheduling algo-
rithm A, determine function s which minimizes peak system temperature subject to the the constraints
that τ is A-schedulable.

Problem 2 (Energy Minimization with Temperature as a Constraint) Given a sporadic task system
τ , scheduling algorithm A, and a temperature threshold Tthresh, determine function s which minimizes
energy consumption subject to the constraints that τ is A-schedulable and the CPU temperature never
exceeds Tthresh.

4 Practical Considerations

There are numerous practical considerations that must be considered for a proposed power-aware
scheme to be applicable. In fact, it has been observed (e.g., see [4]) that many previously suggested
power-aware schemes that purport to be energy-efficient may actually increase energy consumption
over non-power-aware approaches! In the following subsections, we briefly outline some practical com-
plexities which may constrain solutions obtained for Problems 1 and 2.

4.1 Speed Function Considerations

In a system, the speed function may be constrained by the following factors:

• Piecewise, Finite Speed Schedule: In order for the speed function to be realizable in an actual
system, the s function should either be efficiently computable online or storable in a table residing
in main memory. If is stored in a table in main memory, the s function would likely have to be a
piecewise, periodic function with a finite number of discontinuities. Furthermore, due to system
clock granularity, the time interval length between speed changes may be restricted to be larger
than some ∆ > 0.

• Finite Set of Achievable Speeds: Some results on power-aware scheduling assume that the
speeds of the processor are drawn from the range [0,∞). Realistically, most systems have both an
upper bound smax and a lower bound smin on speed from which s ∈ [smax, smin]. Furthermore,
in many systems there are only a finite number of achievable speed modes S = {s1, s2, . . . , sr}.
Speeds not in the set S might not be supported by the processor.

• Non-Linear Program Runtimes: Schmidt et al. [4] have observed program runtimes do not
necessarily decrease linearly with respect to increased CPU frequency. Thus, the function s used
in the power function P (s, θ, t) may not be the same function which determines the execution time
of each job generated by the task system; furthermore, different segments of the program may
exhibit different execution behavior for the same speed. For example, consider a job consisting of
a sequential code segmentA followed by a code segmentB. At speed s1, assume that the segment

3

A takes x time units and B takes y time units. It is entirely possible (due to program I/O or cache
misses) that when the CPU executes at s2 = 5s1 that segment A takes x/5 time and segment B
takes y/2 time; in this case, even though the processor is executing five times faster, the realizable
speed-up is strictly less than five.

• Speed Transition Overheads: During a transition from one speed mode si to another sj , the
CPU may be unavailable for execution of jobs for a δ(si, sj)-length transitory interval.

4.2 Non-CPU Power Considerations

The CPU is not the only consumer of power in the system or source of heat. For instance, many modern
memory controllers also offer power management features. However, power management in memory
systems may be complicated due to the fact that some types of memory (e.g., DRAM) requires periodic
refreshes to avoid corruption; furthermore, putting some memory controllers in a low-power state may
lead (counter-intuitively) to higher energy consumption, as an entire memory refresh is required when
the controller becomes active.

References

[1] W. LIAO, L. HE, AND K. M. LEPAK. Temperature and supply-voltage aware performance and
power modeling at microarchitecture level, IEEE Transactions on CAD of Integrated Circuits and
Systems, vol. 24, no. 7, pp. 1042–1053, 2005.

[2] A. K. MOK. Fundamental Design Problems of Distributed Systems for The Hard-Real-Time En-
vironment. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Technology,
1983. Available as Technical Report No. MIT/LCS/TR-297.

[3] J. M. RABAEY, A. CHANDRAKASAN, AND B. NIKOLIC. Digital Integrated Circuits. Prentice
Hall, 2002, 2nd Edition.

[4] D. SCHMIDT AND N. WEHN A Review of Common Belief on Power Management and Power
Consumption. White paper, Technische Universität Kaiserslautern. April, 2009. Available at
http://ems.eit.uni-kl.de/uploads/tx_uniklwehn/myths.pdf.

[5] S. WANG, J.J. CHEN, Z. SHI, AND L. THIELE. Energy-Efficient Speed Scheduling for Real-Time
Tasks under Thermal Constraints. In Proceedings of the 15th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pages 201–209, Beijing, China,
August 2009. IEEE Computer Society Press.

4

