
Polynomial Time Algorithms for Minimum Energy Scheduling

Philippe Baptiste1, Marek Chrobak2, and Christoph Dürr1

1 CNRS, LIX UMR 7161, Ecole Polytechnique 91128 Palaiseau, France. Supported by CNRS/NSF grant 17171 and

ANR Alpage.
2 Department of Computer Science, University of California, Riverside, CA 92521, USA. Supported by NSF grants

OISE-0340752 and CCR-0208856.

Abstract. The aim of power management policies is to reduce the amount of energy consumed by

computer systems while maintaining satisfactory level of performance. One common method for saving

energy is to simply suspend the system during the idle times. No energy is consumed in the suspend

mode. However, the process of waking up the system itself requires a certain fixed amount of energy,

and thus suspending the system is beneficial only if the idle time is long enough to compensate for this

additional energy expenditure. In the specific problem studied in the paper, we have a set of jobs with

release times and deadlines that need to be executed on a single processor. Preemptions are allowed. The

processor requires energy L to be woken up and, when it is on, it uses the energy at a rate of R units per

unit of time. It has been an open problem whether a schedule minimizing the overall energy consumption

can be computed in polynomial time. We solve this problem in positive, by providing an O(n5)-time

algorithm. In addition we provide an O(n4)-time algorithm for computing the minimum energy schedule

when all jobs have unit length.

1 Introduction

Power management strategies. The aim of power management policies is to reduce the amount of energy
consumed by computer systems while maintaining satisfactory level of performance. One common method for
saving energy is a power-down mechanism, which is to simply suspend the system during the idle times. The
amount of energy used in the suspend mode is negligible. However, during the wake-up process the system
requires a certain fixed amount of start-up energy, and thus suspending the system is beneficial only if the idle
time is long enough to compensate for this extra energy expenditure. The intuition is that we can reduce energy
consumption if we schedule the work to performed so that we reduce the weighted sum of two quantities: the
total number of busy periods and the total length of “short” idle periods, when the system is left on.

Scheduling to minimize energy consumption. The scheduling problem we study in this paper is quite
fundamental. We are given a set of jobs with release times and deadlines that need to be executed on a single
processor. Preemptions are allowed. The processor requires energy L to be woken up and, when it is on, it
uses the energy at a rate of R units per unit of time. The objective is to compute a feasible schedule that
minimizes the overall energy consumption. Denoting by E the energy consumption function, this problem can
be classified using Graham’s notation as 1|rj ; pmtn|E.

The question whether this problem can be solved in polynomial time was posed by Irani and Pruhs [8],
who write that “. . . Many seemingly more complicated problems in this area can be essentially reduced to
this problem, so a polynomial time algorithm for this problem would have wide application.” Some progress
towards resolving this question has already been reported. Chretienne [3] proved that it is possible to decide

Dagstuhl Seminar Proceedings 10071 
Scheduling   
http://drops.dagstuhl.de/opus/volltexte/2010/2535 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


in polynomial time whether there is a schedule with no idle time. More recently, Baptiste [2] showed that the
problem can be solved in time O(n7) for unit-length jobs.

Our results. We solve the open problem posed by Irani and Pruhs [8], by providing a polynomial-time
algorithm for 1|rj ; pmtn|E. Our algorithm is based on dynamic programming and it runs in time O(n5). Thus
not only our algorithm solves a more general version of the problem, but is also faster than the algorithm for
unit jobs in [2]. For the case of unit jobs (that is, 1|rj ; pj = 1|E), we improve the running time to O(n4).

The paper is organized as follows. First, in Section 2, we introduce the necessary terminology and establish
some basic properties. Our algorithms are developed gradually in the sections that follow. We start with the
special case of minimizing the number of gaps for unit jobs, that is 1|rj ; pj = 1;L = 1|E, for which we describe
an O(n4)-time algorithm in Section 3. Next, in Section 4, we extend this algorithm to jobs of arbitrary length
(1|rj ; pmtn;L = 1|E), increasing the running time to O(n5). Finally, in Section 5, we show how to extend
these algorithms to arbitrary L without increasing their running times.

We remark that our algorithms are sensitive to the structure of the input instance and on typical instances
they are likely to run significantly faster than their worst-case bounds.

Other relevant work. The non-preemptive version of our problem, that is 1|rj |E, can be easily shown to be
NP-hard in the strong sense, even for L = 1 (when the objective is to only minimize the number of gaps), by
reduction from 3-Partition [4, problem SS1].

More sophisticated power management systems may involve several sleep states with decreasing rates of
energy consumption and increasing wake-up overheads. In addition, they may also employ a method called
speed scaling that relies on the fact that the speed (or frequency) of processors can be changed on-line. As the
energy required to perform the job increases quickly with the speed of the processor, speed scaling policies tend
to slow down the processor while ensuring that all jobs meet their deadlines (see [8], for example). This problem
is a generalization of 1|rj |E and its status remains open. A polynomial-time 2-approximation algorithm for
this problem (with two power states) appeared in [6].

As jobs to be executed are often not known in advance, the on-line version of energy minimization is of
significant interest. Online algorithms for power-down strategies with multiple power states were considered in
[5, 7, 1]. In these works, however, jobs are critical, that is, they must be executed as soon as they are released,
and the online algorithm only needs to determine the appropriate power-down state when the machine is idle.
The work of Gupta, Irani and Shukla [6] on power-down with speed scaling is more relevant to ours, as it
involves aspects of job scheduling. For the specific problem studied in our paper, 1|rj |E, it is easy to show that
no online algorithm can have a constant competitive ratio (independent of L), even for unit jobs. We refer the
reader to [8] for a detailed survey on algorithmic problems in power management.

2 Preliminaries

Minimum-energy scheduling. Formally, an instance of the scheduling problem 1|rj ; pmtn|E consists of n

jobs, where each job j is specified by its processing time pj , release time rj and deadline dj . We have one
processor that, at each step, can be on or off. When it is on, it consumes energy at the rate of R units per time
step. When it is off, it does not consume any energy. Changing the state from off to on (waking up) requires
additional L units of energy. Without loss of generality, we assume that R = 1.

2



The time is discrete, and is divided into unit-length intervals [t, t + 1), where t is an integer, called time
slots or steps. For brevity, we often refer to time step [t, t+1) as time step t. A preemptive schedule S specifies,
for each time slot, whether some job is executed at this time slot and if so, which one. Each job j must be
executed for pj time slots, and all its time slots must be within the time interval [rj , dj).

A block of a schedule S is a maximal interval where S is busy that is, executes a job. The union of all
blocks of S is called its support. A gap of S is a maximal interval where S is idle (does not execute a job). By
Cj(S) (or simply Cj , if S is understood from context) we denote the completion time of a job j in a schedule
S. By Cmax(S) = maxj Cj(S) we denote the maximum completion time of any job in S. We refer to Cmax(S)
as the completion time of schedule S.

Since the energy used on the support of all schedules is the same, it can be subtracted from the energy
function for the purpose of minimization. The resulting function E(S) is the “wasted energy” (when the
processor is on but idle) plus L times the number of wake-ups. Formally, this can be calculated as follows. Let
[u1, t1], . . . , [uq, tq] be the set of all blocks of S, where u1 < t1 < u2 < . . . < tq. Then

E(S) =
q∑

i=2

min {ui − ti−1, L}.

(We do not charge for the first wake-up at time u1, since this term is independent of the schedule.) Intuitively,
this formula reflects the fact that once the support of a schedule is given, the optimal suspension and wake-up
times are easy to determine: we suspend the machine during a gap if and only if its length is more than L, for
otherwise it would be cheaper to keep the processor on during the gap.

Our objective is to find a schedule S that meets all job deadlines and minimizes E(S). (If there is no
feasible schedule, we assume that the energy value is +∞.) Note that the special case L = 1 corresponds to
simply minimizing the number of gaps.

Simplifying assumptions. Throughout the paper we assume that jobs are ordered according to deadlines,
that is d1 ≤ . . . ≤ dn. Without loss of generality, we also assume that all release times are distinct and that
all deadlines are distinct. Indeed, if ri = rj for some jobs i < j, since the jobs cannot start both at the same
time ri, we might as well increase by 1 the release time of j. A similar argument applies to deadlines.

To simplify the presentation, we assume that the job indexed 1 is a special job with p1 = 1 and d1 = r1 +1,
that is job 1 has unit length and must be scheduled at its release time. (Otherwise we can always add such an
extra job, released L + 1 time slots before r1. This increases each schedule’s energy by exactly L and does not
affect the asymptotic running time of our algorithms.)

Without loss of generality, we can also assume that the input instance is feasible. A feasible schedule
corresponds to a matching between units of jobs and time slots, so Hall’s theorem gives us the following
necessary and sufficient condition for feasibility: for all times u < v,∑

u≤rj ,dj≤v

pj ≤ v − u. (1)

We can also restrict our attention to schedules S that satisfy the following earliest-deadline property : at
any time t, either S is idle at t or it schedules a pending job with the earliest deadline. In other words, once
the support of S is fixed, the jobs in the support are scheduled according to the earliest deadline policy. Using
the standard exchange argument, any schedule can be converted into one that satisfies the earliest-deadline
property and has the same support.

3



(k, s)-Schedules. We will consider certain partial schedules, that is schedules that execute only some jobs
from the instance. For jobs k and s, a partial schedule S is called a (k, s)-schedule if it schedules all jobs j ≤ k

with rs ≤ rj < Cmax(S) (recall that Cmax(S) denotes the completion time of schedule S). From now on, unless
ambiguity arises, we will omit the term “partial” and refer to partial schedules simply as schedules. When we
say that that a (k, s)-schedule S has g gaps, in addition to the gaps between the blocks we also count the
gap (if any) between rs and the first block of S. For any k, s, the empty schedule is also considered to be a
(k, s)-schedule. The completion time of an empty (k, s)-schedule is artificially set to rs. (Note that, in this
convention, empty (k, s)-schedules, for difference choices of k, s, are considered to be different schedules.)

The following “compression lemma” will be useful in some proofs.

Lemma 1. Let Q be a (k, s)-schedule with Cmax(Q) = u, and let R be a (k, s) schedule with Cmax(R) = v > u

and at most g gaps. Suppose that there is a time t, u < t ≤ v, such that there are no jobs i ≤ k with u ≤ ri < t,
and that R executes some job m < k with rm ≤ u at or after time t. Then there is a (k, s)-schedule R′ with
completion time t and at most g gaps.

Proof. We can assume that R has the earliest-deadline property. We convert R into R′ by gradually reducing
the completion time, without increasing the number of gaps.

Call a time slot z of R fixed if R executes some job j at time z and either z = rj or all times rj , rj+1, ..., z−1
are fixed as well. Let [w, v] be the last block of R and let j be the job executed at time v − 1. If v = t, we are
done. For v > t we show that we can reduce Cmax(R) while preserving the assumptions of the lemma.

Suppose first that the slot v − 1 is not fixed. In this case, execute the following operation Shift: for each
non-fixed slot in [w, v] move the job unit in this slot to the previous non-fixed slot in R. Shift reduces Cmax(R)
by 1 without increasing the number of gaps. We still need to justify that R is a feasible (k, s)-schedule. To
this end, it is sufficient only to show that no job will be scheduled before its release time. Indeed, if a job i is
executed at a non-fixed time z, where w ≤ z < v, then, by definition, z > ri and there is a non-fixed slot in
[ri, z − 1], and therefore after Shift z will be schedule at or after ri.

The other case is when the slot v−1 is fixed. In this case, we claim that there is a job l such that w ≤ rl < v

and each job i executed in [rl, v] satisfies ri ≥ rl. This l can be found as follows. If v − 1 = rj , let l = j.
Otherwise, from all jobs executed in [rj , v − 1] pick the job j′ with minimum rj′ . Suppose that j′ executes at
v′, rj ≤ v′ ≤ v− 1. Since, by definition, the slot v′ is fixed, we can apply this argument recursively, eventually
obtaining the desired job l. We then perform the following operaiton Truncate: replace R by the segment of R

in [rs, rl]. This decreases Cmax(R) to rl, and the new R is a feasible (k, s)-schedule, by the choice of l.

We repeat the process described above as long as v > t. Since the schedule at each step is a (k, s)-schedule,
we end up with a (k, s)-schedule R′. Let Cmax(R′) = t′ ≤ t. It is thus sufficient to prove that t′ = t. Indeed,
consider the last step, when Cmax(R) decreases to t′. Operation Truncate reduces Cmax(R) to a completion time
of a job released after t, so it cannot reduce it to t′. Therefore the last operation applied must have been Shift

that reduces Cmax(R) by 1. Consequently, t′ = t, as claimed.

The Uk,s,g function. For any k = 0, ..., n, s = 1, ..., n, and g = 0, ..., n, define Uk,s,g as the maximum
completion time of a (k, s)-schedule with at most g gaps. Our algorithms will compute the function Uk,s,g and
use it to determine a minimum energy schedule.

Clearly, Uk,s,g ≤ dk and, for any fixed s and g, the function k 7→ Uk,s,g is increasing (not necessarily
strictly). For all k and s, the function g 7→ Uk,s,g increases as well. We claim that in fact it increases strictly

4



as long as Uk,s,g < dk. Indeed, suppose that Uk,s,g = u < dk and that Uk,s,g is realized by a (k, s)-schedule S

with at most g gaps. We show that we can extend S to a schedule S′ with g +1 gaps and Cmax(S′) > Cmax(S).
If there is a job j ≤ k with rj ≥ u, take j to be such a job with minimum rj . We must have rj > u, since
otherwise we could add j to S scheduling it at u without increasing the number of gaps, and thus contradicting
the maximality of Cmax(S). We thus obtain S′ by scheduling j at rj . The second case is when rj ≤ u for all
jobs j ≤ k. In particular, rk < u. We obtain S′ by rescheduling k at u. (This creates an additional gap at the
time slot where k was scheduled, for otherwise we would get a contradiction with the maximality of Cmax(S).)

An outline of the algorithms. Our algorithms are based on dynamic programming, and they can be thought
of as consisting of two stages. First, we compute the table Uk,s,g, using dynamic programming. From this table
we can determine the minimum number of gaps in the (complete) schedule (it is equal to the smallest g for
which Un,1,g > maxj rj .) The algorithm computing Uk,s,g for unit jobs is called AlgA and the one for arbitrary
length jobs is called AlgB.

In the second stage, described in Section 5 and called AlgC, we use the table Uk,s,g to compute the
minimum energy schedule. In other words, we show that the problem of computing the minimum energy reduces
to computing the minimum number of gaps. This reduction, itself, involves again dynamic programming.

When presenting our algorithms, we will only show how to compute the minimum energy value. The algo-
rithms can be modified in a straightforward way to compute the actual optimum schedule, without increasing
the running time. (In fact, we explain how to construct such schedules in the correctness proofs.)

3 Minimizing the Number of Gaps for Unit Jobs

In this section we give an O(n4)-time algorithm for minimizing the number of gaps for unit jobs, that is for
1|rj ; pj = 1;L = 1|E. Recall that we assumed all release times to be different and all deadlines to be different,
which implies that there is always a feasible schedule (providing that dj > rj for all j).

As explained in the previous section, the algorithm computes the table Uk,s,g. The crucial idea here is this:
Let S be a (k, s)-schedule that realizes Uk,s,g, that is S has g gaps and Cmax(S) = u is maximized. Suppose
that in S job k is scheduled at some time t < u − 1. We show that then, without loss of generality, there is
a job l released and scheduled at time t + 1. Further, the segment of S in [rs, t] is a (k − 1, s)-schedule with
completion time t, the segment of S in [t + 1, u] is a (k − 1, l)-schedule with completion time u, and the total
number of gaps in these two schedules equals g. This naturally leads to a recurrence relation for Uk,s,g.

Algorithm AlgA. The algorithm computes all values Uk,s,g, for k = 0, ..., n, s = 1, ..., n and g = 0, ..., n,
using dynamic programming. The minimum number of gaps for the input instance is equal to the smallest g

for which Un,1,g > maxj rj .

To explain how to compute all values Uk,s,g, we give the recurrence relation. For the base case k = 0 we
let U0,s,g← rs for all s and g. For k ≥ 1, Uk,s,g is defined recursively as follows:

Uk,s,g ← max
l<k,h≤g


Uk−1,s,g

Uk−1,s,g + 1 if rs ≤ rk ≤ Uk−1,s,g & ∀j < k rj 6= Uk−1,s,g

dk if g > 0 & ∀j < k rj < Uk−1,s,g−1

Uk−1,l,g−h if rk < rl = Uk−1,s,h + 1

(2)

5



Note that only the last choice in the maximum depends on h and l. Also, as a careful reader might have
noticed, the condition “∀j < k rj 6= Uk−1,s,g” in the second option is not necessary (the optimal solution will
satisfy it automatically), but we include it to simplify the correctness proof.

In the remainder of this section we justify the correctness of the algorithm and analyze its running time. The
first two lemmas establish the feasibility and the optimality of the values Uk,s,g computed by Algorithm AlgA.

Lemma 2. For any choice of indices k, s, g, there is a (k, s)-schedule Sk,s,g with Cmax(Sk,s,g) = Uk,s,g and at
most g gaps.

Proof. The proof is by induction on k. For k = 0, we take S0,s,g to be the empty (k, s)-schedule, which is
trivially feasible and (by our convention) has completion time rs = U0,s,g.

Now fix some k ≥ 1 and assume that the lemma holds for k − 1 and any s′ and g′, that is, for any s′ and
g′ we have a schedule Sk−1,s′,g′ with completion time Uk−1,s′,g′ . The construction of Sk,s,g depends on which
expression realizes the maximum (2).

If Uk,s,g = Uk−1,s,g, we simply take Sk,s,g = Sk−1,s,g. Since we did not choose the second option in the
maximum, either rk < rs or rk > Uk−1,s,g. Therefore, directly from the inductive assumption, we get that
Sk,s,g is a (k, s)-schedule with completion time Uk,s,g.

If Uk,s,g = Uk−1,s,g + 1, rs ≤ rk ≤ Uk−1,s,g, and there is no job j < k with rj = Uk−1,s,g, let Sk,s,g be
the schedule obtained from Sk−1,s,g by adding to it job k scheduled at time u = Uk−1,s,g. (Note that we must
have u < dk.) Then Sk,s,g is a (k, s)-schedule with completion time u + 1 = Uk,s,g.

Next, suppose that Uk,s,g = dk, g > 0, and maxj<k rj < Uk−1,s,g−1. Let Sk,s,g be the schedule obtained
from Sk−1,s,g−1 by adding to it job k scheduled at dk − 1. The condition maxj<k rj < Uk−1,s,g−1 implies that
no jobs j < k are released between Uk−1,s,g−1 and dk− 1. Therefore Sk,s,g is a (k, s)-schedule with completion
time dk = Uk,s,g and it has at most g gaps, since adding k can only add one gap to Sk−1,s,g−1.

Finally, suppose that Uk,s,g = Uk−1,l,g−h, for some 1 ≤ l < k, 0 ≤ h ≤ g, that satisfy rk < rl = Uk−1,s,h +1.
The schedule Sk,s,g is obtained by scheduling all jobs j < k released between rs and rl − 1 using Sk−1,s,h,
scheduling all jobs j < k released between rl and Uk−1,l,g−h − 1 using Sk−1,l,g−h, and scheduling job k at
rl − 1. By induction, Sk,s,g is a (k, s)-schedule with completion time Uk,s,g and at most g gaps.

Lemma 3. For any choice of indices k, s, g, if Q is a (k, s)-schedule with at most g gaps then Cmax(Q) ≤ Uk,s,g.

Proof. The proof is by induction on k. For k = 0, any (0, s)-schedule is empty and thus has completion time rs.
For a given k ≥ 1 assume that the lemma holds for k− 1 and any s′ and g′, that is the values of Uk−1,s′,g′ are
indeed optimal. Let Q be a (k, s)-schedule with at most g gaps and maximum completion time u. Withouth
loss of generality, we can assume that Q has the earliest-deadline property. The maximality of u implies that
no job j ≤ k is released at time u, for otherwise we could add j to Q by scheduling it at u and thus increasing
the completion time. (This property will be useful in the proof below.) We prove that u ≤ Uk,s,g by analyzing
several cases.

Case 1: Q does not schedule job k. In this case Q is a (k − 1, s)-schedule with completion time u, so, by
induction, we have u ≤ Uk−1,s,g ≤ Uk,s,g. In all the remaining cases, we assume that Q schedules k. Obviously,
this implies that rs ≤ rk < u.

Case 2: Q schedules k as the last job and k is not the only job in its block. Let u′ = u − 1, and define Q′ to
be Q restricted to the interval [rs, u

′]. Then Q′ is a (k− 1, s)-schedule with completion time u′ and at most g

6



gaps, so u′ ≤ Uk−1,s,g, by induction. If u′ < Uk−1,s,g then, trivially, u ≤ Uk−1,s,g ≤ Uk,s,g. Otherwise, assume
u′ = Uk−1,s,g. Then, by the earliest deadline property, there is no job j < k with rk = u′. Thus the second
condition in the maximum (2) is satisfied, so we have u = u′ + 1 = Uk−1,s,g + 1 ≤ Uk,s,g.

Case 3: Q schedules k as the last job and k is the only job in its block. If u = rs + 1 then k = s and the
condition in the second option of (2) is satisfied, so we have u = rs + 1 = Us−1,s,g + 1 = Us,s,g. Therefore we
can assume now that u > rs + 1, which, together with the case condition, implies that g > 0.

If u < dk, we can modify Q by rescheduling k at time u, obtaining a (k, s, u+1) schedule (by the assumption
about Q, no job j < k is released at u) with at most g gaps – contradicting the maximality of u.

By the above paragraph, we can assume that u = dk. Let u′ be the smallest time u′ ≥ rs such that Q

is idle in [u′, dk − 1]. Then maxj<k rj < u′ and the segment of Q in [rs, u
′] is a (k − 1, s)-schedule with at

most g − 1 gaps, so, by induction, we get u′ ≤ Uk−1,s,g−1. Thus the third option in (2) applies and we get
u = dk = Uk,s,g.

Uk,s,g = Uk−1,l,g−h

h gaps

k

Uk−1,s,h

rs rl

l

Fig. 1. Case 4 in the proof of Lemma 3.

Case 4: Q schedules k and k is not the last job. Suppose that k is scheduled at time t. Note that Q is not idle
at times t − 1 and t + 1, since otherwise we would have u < dk and we could reschedule k at u, obtaining a
(k, s)-schedule with at most g gaps and completion time u + 1, which contradicts the maximality of u. Since
Q satisfies the earliest-deadline property, no job j < k is pending at time t, and thus Q schedules at time t+1
the job l < k with release time rl = t + 1.

Let Q1 be the segment of Q in the interval [rs, t]. Clearly, Q1 is a (k− 1, s)-schedule with completion time
t. Denote by h the number of gaps in Q1. We claim that Q1 is in fact optimal, that is:

Claim 1: t = Uk−1,s,g.

Suppose for now that Claim 1 is true (see the proof below). Then the conditions of the last option in (2)
are met: l < k, h ≤ g, and rk < rl = Uk−1,s,h + 1. Let Q2 be the segment of Q in [rl, u]. Then Q2 is a
(k − 1, l)-schedule with completion time u and at most g − h gaps, so by induction we get u ≤ Uk−1,l,g−h,
completing the argument for Case 4.

To complete the proof it only remains now to prove Claim 1. Denote v = Uk−1,s,g. By induction, v is the
maximum completion time of a (k − 1, s)-schedule with at most g gaps. Clearly, as Q1 is a (k − 1, s)-schedule
with g gaps, we have v ≥ t, and thus it suffices to show that v ≤ t. Towards contradiction, suppose that v > t

and let R be a (k − 1, s)-schedule with completion time v and at most h gaps. We consider two cases.

Case (a): R schedules all jobs j < k with rs ≤ rj ≤ t in the interval [rs, t]. The earliest deadline property of
Q implies that there is no job j < k released at time t. So R must be idle at t. We can modify Q as follows:
Reschedule k at time u and replace the segment [rs, t + 1] of Q by the same segment of R. Let Q′ be the
resulting schedule. Q′ is a (k, s)-schedule. Since R has at most h gaps, there are at most h gaps in Q′ in the

7



segment [rs, t + 1], so Q′ has the total of at most g gaps. We thus obtain a contradiction with the choice of Q,
because Cmax(Q′) = u + 1 > Cmax(Q).

Case (b): R schedules some job j < k with rs ≤ rj ≤ t at or after t. In this case, Lemma 1 implies that there
is a (k− 1, s)-schedule R′ with at most h gaps and completion time t + 1. Replace the segment [rs, t + 1] of Q

by the same segment of R′ and reschedule k at u. The resulting schedule Q′ is a (k, s)-schedule and, since Q

executes job l at time t + 1 = rl, Q′ has at most g gaps. We thus again obtain a contradiction with the choice
of Q, because Cmax(Q′) = u + 1 > Cmax(Q).

Theorem 1. Algorithm AlgA correctly computes the optimum solution for 1|rj ; pj = 1;L = 1|E, and it can
be implemented in time O(n4).

Proof. The correctness of Algorithm AlgA follows from Lemma 2 and Lemma 3, so it is sufficient to give the
running time analysis. There are O(n3) values Uk,s,g to be computed. For fixed k, s, g, the first two choices
in the maximum (2) can be computed in time O(1) and the third choice in time O(n). In the last choice we
maximize over pairs (l, h) that satisfy the condition rl = Uk−1,s,h + 1, and thus we only have O(n) such pairs.
Since the values of Uk−1,s,h increase with h, we can determine all these pairs in time O(n) by searching for
common elements in two sorted lists: the list of release times, and the list of times Uk−1,s,h+1, for h = 0, 1, ..., n.
Thus each value Uk,s,g can be computed in time O(n), and the overall running time is O(n4).

4 Minimizing the Number of Gaps for Arbitrary Jobs

In this section we give an O(n5)-time algorithm for minimizing the number of gaps for instances with jobs of
arbitrary lengths, that is for the scheduling problem 1|rj ; pmtn;L = 1|E.

We first extend the definition of Uk,s,g as follows. Let 0 ≤ k ≤ n, 1 ≤ s ≤ n, and 0 ≤ g ≤ n − 1. For any
p = 0, . . . , pk, define Uk,s,g(p) as the value of Uk,s,g — the maximum completion time of a (k, s)-schedule with
at most g gaps — for the modified instance where pk← p.

The following “expansion lemma” will be useful in the correctness proof. The proof of the lemma will
appear in the final version.

Lemma 4. Fix any k, s, g and p. Then

(a) If Uk,s,g(p) < dk, then in the schedule realizing Uk,s,g(p) the last block has at least one job other than k.

(b) If p < pk and Uk,s,g(p) < dk, then Uk,s,g(p + 1) > Uk,s,g(p).

(c) If p < pk and Uk,s,g(p) = dk then Uk,s,g(p + 1) = dk as well.

We now define another table Pk,s,l,g. For any k, s, l = 1, . . . , n, g = 0, . . . , n− 1, if l = s, then Pk,s,l,g = 0,
otherwise

Pk,s,l,g = min
p
{p + rl − Uk,s,g(p)},

where the minimum is taken over 0 ≤ p ≤ pk such that l is the next job to be released after Uk,s,g(p), that
is rl = minj<k {rj : rj > Uk,s,g(p)}. If there is no such p, we let Pk,s,l,g = +∞. The intuition is that Pk,s,l,g

is the minimum amount of job k such that there is a (k, s)-schedule S with completion time rl and at most

8



g gaps. To be more precise, we also require that (for Pk,s,l,g > 0) S executes k at time rl − 1 and that has
maximal completion time among all schedules over the same set of jobs than S.

Our algorithm computes both tables Uk,s,g and Pk,s,l,g. The intuition is this. Let S be a (k, s)-schedule
with g gaps and maximum possible completion time u for the given values of k, s, g. Assume that S schedules
job k and u < dk. Moreover assume that k is scheduled in more than one interval, and let t be the end of the
second last interval of k. Then S schedules at t some job l < k, for otherwise we could move some portion of
k to the end, contradicting maximality of u. Furthermore, rl = t by the earliest deadline policy. Now the part
of S up to rl has some number of gaps, say h. The key idea is that the amount of job k in this part is minimal
among all (k, s)-schedules with completion time rk and at most h gaps, so this amount is equal to Pk,s,l,h.

Algorithm AlgB. For any k = 0, ..., n, s = 1, ..., n and g = 0, ..., n − 1, the algorithm computes Uk,s,g,
and Pk,s,l,g for all l = 1, ..., n. These values are computed in order of increasing values of k, with all Pk,s,l,g

computed before all Uk,s,g, using the following recurrence relations.

Computing Uk,s,g. For the base case k = 0 we let U0,s,g← rs for all s and g. For k ≥ 1, Uk,s,g is defined
recursively as follows:

Uk,s,g← max
l<k,h≤g



Uk−1,s,g if rk < rs or rk ≥ Uk−1,s,g

dk if Pk,s,l,h < pk, maxj<k rj < Uk−1,l,g−h−1

and dk − Uk−1,l,g−h−1 > pk − Pk,s,l,h

dk if Pk,s,l,h < pk, maxj<k rj < Uk−1,l,g−h

and dk − Uk−1,l,g−h ≤ pk − Pk,s,l,h

Uk−1,l,g−h + pk − Pk,s,l,h if Pk,s,l,h ≤ pk and
6 ∃j < k : 0 ≤ rj − Uk−1,l,g−h < pk − Pk,s,l,g−h

(3)

Computing Pk,s,l,g. If rs = rl, let Pk,s,s,g← 0 for rk ≤ rs < dk and Pk,s,s,g = +∞ otherwise. Suppose now that
rs < rl. If rk < rs or rk ≥ rl, let Pk,s,l,g = +∞. For rs ≤ rk < rl, we compute Pk,s,l,g recursively as follows:

Pk,s,l,g ← min
0≤h≤k,j<k

{
rj − Uk−1,s,h + Pk,j,l,g−h if rk ≤ Uk−1,s,h, Uk−1,s,h < rj ≤ rl, and

6 ∃i < k : Uk−1,s,h ≤ ri < rj

(4)

As usual, if the conditions in the minimum are not satisfied by any h, j, then Pk,s,l,g is assumed to be +∞.
The cases considered in the algorithm are illustrated in Figure 2.

Theorem 2. Algorithm AlgB correctly computes the optimum solution for 1|rj ; pmtn;L = 1|E, and it can
be implemented in time O(n5).

The proof of this theorem will appear in the full version of the paper.

5 Minimizing the Energy

We now show how minimize the energy for an arbitrary L. This new algorithm consists of computing the table
Uk,s,g (using either Algorithm AlgA or AlgB) and an O(n2)-time post-processing. Thus we can solve the
problem for unit jobs in time O(n4) and for arbitrary-length jobs in time O(n5).

Recall that for this general cost model, the cost (energy) is defined as the sum over all gaps, of the minimum
between L and the gap length. Call a gap small if its length is at most L. The idea of the algorithm is this: We

9



k k

k k k

rj

h gaps

h gaps

Uk−1,s,h

k k k

dk

h gaps

k

k k k

dk

h gaps
Computing Uk,s,g :

rs

rs

rs

rl

rl

rl

rlrs

Uk−1,l,g−h

Uk−1,l,g−h

Uk−1,l,g−h−1

Computing Pk,s,l,g :

pk − Pk,s,l,g−h

≤ pk − Pk,s,l,g−h

pk − Pk,s,l,g−h−1

Fig. 2. Illustration of the cases in Algorithm AlgB.

show first that there is an optimal schedule where the short gaps divide the instance into disjoint sub-instances.
For those sub-instances, the cost is simply the number of gaps times L. To compute the overall cost, we add
to this quantity the total size of short gaps.

Given two schedules S, S′ of the input instance, we say that S dominates S′ if there is a time point t

such that the supports of S and S′ in the interval (−∞, t] are identical and at time t S schedules a job while
S′ is idle. This relation defines a total order on all schedules. The correctness of the algorithm relies on the
following separation lemma.

Lemma 5. There is an optimal schedule S with the following property: For any small gap [u, v] of S, if a job
j is scheduled at or after v then rj ≥ v.

Proof. Among all optimal schedules, choose S to be the one not dominated by another optimal schedule, and
let [u, v] be a small gap in S. If there is a job j with rj < v and scheduled at some time unit t ≥ v, then we
can move this execution unit to the time unit v−1. This will not increase the overall cost, since the cost in the
small gap decreases by one, and the idle time unit created at t increases the cost at most by 1. The resulting
schedule, however, dominates S – contradiction.

For any job s, define an s-schedule to be a (partial) schedule that schedules all jobs j with rj ≥ rs. We use
notation Es to represent the minimum cost (energy) of an s-schedule, including the cost of the possible gap
between rs and its first block.

10



Algorithm AlgC. The algorithm first computes the table Uk,s,g, for all k = 0, ..., n, s = 1, ..., n, and
g = 0, 1, ..., n, using either Algorithm AlgA or AlgB, whichever applies. Then we use dynamic programming
to compute all values Es, in order of decreasing release times rs:

Es ← min
0≤g≤n

{
Lg if Un,s,g > maxj rj

Lg + rl − u + El otherwise, where u = Un,s,g, rl = min {rj : rj > u}
(5)

The minimum energy of the whole instance is then E1, where r1 is the first release time. (Recall that the job
1 is assumed to be tight, so the schedule realizing E1 will not have a gap at the beginning.)

We now prove the correctness of Algorithm AlgC and analyze its running time.

Lemma 6. For each job s = 1, 2, ..., n there is an s-schedule Ss of cost at most Es.

Proof. The proof is by backward induction on rs. In the base case, when s is the job with maximum release
time, then we take Ss to be the schedule Ss that executes s at rs. The cost of Ss is 0. Also, since Un,s,0 > rs

we have Es = 0, so the lemma holds.

Suppose now that for any s′ > s we have already constructed an s′-schedule Ss′ of cost at most Es′ . Let g

be the value that realizes the minimum in (5).

If Un,s,g > maxj rj then, by Theorem 2, there is a schedule of all jobs released at or after rs with at most
g gaps. Let Ss be this schedule. Since each gap’s cost is at most L, the total cost of Ss is at most Lg.

So now we can assume that Un,s,g ≤ maxj rj . By the maximality of Un,s,g, this inequality is strict. As in the
algorithm, let l be the first job released after Un,s,g. Choose a schedule S′ realizing Un,s,g. By induction, there
exists an l-schedule Sl of cost at most El. We then define Ss as the disjoint union of S′ and Sl. The cost of S′ is at
most Lg. Denote u = Un,s,g. If v ≥ rl is the first start time of a job in Sl, write El as El = max {v − rl, L}+E′.
In other words, E′ is the cost of the gaps in El excluding the gap before v (if any). Then the cost of Ss is at
most Lg + max {v − u, L}+ E′ ≤ Lg + (rl − u) + max {v − rl, L}+ E′ = Lg + rl − u + El = Es.

Lemma 7. For each job s = 1, 2, ..., n there is an s-schedule Ss of cost at most Es.

Proof. For any job s, we now prove that any s-schedule Q has cost at least Es. The proof is by backward
induction on rs. In the base case, when s is the job that is released last then Es = 0, so the claim is true.

Suppose now that s is not the last job and let Q be an optimal s-schedule. By Lemma 5, we can assume
that Q is not dominated by any other s-schedule with optimal cost. If Q does not have any small gaps then,
denoting by g the number of gaps in Q, the cost of Q is Lg ≥ Es.

Otherwise, let [u, v] be the first small gap in Q. Denote by Q′ the segment of Q in [rs, u] and by Q′′ the
segment of Q in [v, Cmax(S)]. By Lemma 5, Q′′ contains only jobs j with rj ≥ v. In particular the job l to be
scheduled at v is released at rl = v. By induction, the cost of Q′′ is at least El.

Let g be the number of gaps in Q′ and let R be the schedule realizing Un,s,g. By the optimality of Un,s,g,
we have Cmax(R) ≥ u. If Cmax(R) = u, then, by (5), the cost of Q is Lg + rl − u + El ≥ Es, and we are done.

The remaining case is when Cmax(R) > u. By Lemma 1, this implies that there is a (n, s)-schedule R′ with
at most g gaps and Cmax(R′) ≤ v. But then we could replace Q′ in Q by R′, getting a schedule of cost strictly
smaller than that of Q, contradicting the optimality of Q.

11



Theorem 3. Algorithm AlgC correctly computes the optimum solution for 1|rj |E, and it can be implemented
in time O(n5). Further, in the special case 1|rj ; pj = 1|E, it can be implemented in time O(n4).

Proof. The correctness of Algorithm AlgC follows from Lemma 6 and Lemma 7, so it is sufficient to justify
the time bound. By Theorem 1 and Theorem 2, we can compute the table Uk,s,g in time O(n4) and O(n5) for
unit jobs and arbitrary jobs, respectively. The post-processing, that is computing all values Es, can be easily
done in time O(n2 log n), since we have n values Es to compute, for each s we minimize over n values of g,
and for fixed s and g we can find the index l in time O(log n) with binary search. (Finding this l can be in
fact reduced to amortized time O(1) if we process g in increasing order, for then the values of Un,s,g, and thus
also of l, increase monotonically as well.)

6 Final Comments

We presented an O(n5)-time algorithm for the minimum energy scheduling problem 1|rj ; pmtn|E, and an
O(n4) algorithm for 1|rj ; pj = 1|E.

Many open problems remain. Can the running times be improved further? In fact, fast — say, O(n log n)-
time — algorithms with low approximation ratios may be of interest as well.

To our knowledge, no work has been done on the multiprocessor case. Can our results be extended to more
processors? Another generalization is to allow multiple power-down states [8, 7]. Can this problem be solved
in polynomial-time? In fact, the SS-PD problem discussed by Irani and Pruhs [8] is even more general as it
involves speed scaling in addition to multiple power states, and its status remains open as well.

References

1. J. Augustine, S. Irani, and C. Swamy. Optimal power-down strategies. In Proc. 45th Symp. Foundations of Computer

Science (FOCS’04), pages 530–539, 2004.

2. Philippe Baptiste. Scheduling unit tasks to minimize the number of idle periods: a polynomial time algorithm

for offline dynamic power management. In Proc. 17th Annual ACM-SIAM symposium on Discrete Algorithms

(SODA’06), pages 364–367, 2006.

3. P. Chretienne. On the no-wait single-machine scheduling problem. In Proc. 7th Workshop on Models and Algorithms

for Planning and Scheduling Problems, 2005.

4. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.

W.H.Freeman and Co., 1979.

5. S. Irani, R. Gupta, and S. Shukla. Competitive analysis of dynamic power management strategies for systems with

multiple power savings states. In Proc. Conf. on Design, Automation and Test in Europe (DATE’02), page 117,

2002.

6. S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In Proc. 14th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA’03), pages 37–46, 2003.

7. S. Irani, S. Shukla, and R. Gupta. Online strategies for dynamic power management in systems with multiple

power-saving states. Trans. on Embedded Computing Sys., 2(3):325–346, 2003.

8. Sandy Irani and Kirk R. Pruhs. Algorithmic problems in power management. SIGACT News, 36(2):63–76, 2005.

12




