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We address the problem of automatically analysing systems that vary dynam-
ically in size and topology. Typical examples of such systems include adhoc
networking [1] where a routing infrastructure over a changing set of participants
is created and maintained. Similar structures occur in dynamic traffic manage-
ment systems like the car platooning scenario [2] where physically adjacent cars
establish interlinked groups. We treat the inherent unboundedness of the state
space by applying a finitary abstraction called spotlight abstraction [3,4], which
is based on the data-type reduction approach [5]. The abstraction principle is
heterogeneous in the sense that the behaviour of a finite number of agents is
preserved while the others are only abstractly represented. Other abstraction
techniques which address a similar class of systems include counter abstrac-
tion [6,7], shape abstraction [8,9], partner abstraction [10,11], indexed predicate
abstraction [12] and environment abstraction [13].

Let Id be a set of process identities and P a set of predicates. A system state
is given by an interpretation of the predicates on the set of identities, i.e.

ι : P × IdK → B (1)

assigns a boolean value to each K-ary predicate and K-tuple of identities. For
example, unary predicates can be used to determine the current local states
of processes, and binary predicates characterise the actual connection topology
among processes. The behaviour of a system is then given in terms of a transition
system over interpretations, that is, each state in the transition system corre-
sponds to one interpretation, and the transition relation determines the possible
changes in the interpretations over time.

A spotlight is a (typically finite) set of process identities S ⊆ Id. The spot-
light abstraction of a system state preserves the predicate interpretation of the
spotlight processes S and abstracts from the rest. Formally, the abstraction
transforms two-values interpretations into three-valued interpretations

αS(ι)(p, a1, . . . , an) :=

{

ι(p, a1, . . . , an) if {a1, . . . , an} ⊆ S
1/2 else

(2)

Dagstuhl Seminar Proceedings 10051 
Quantitative and Qualitative Analysis of Network Protocols 
http://drops.dagstuhl.de/opus/volltexte/2010/2517

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 T. Toben, B. Westphal, J. Rakow

where 1/2 represents the indefinite value from three-valued boolean logic [14]. For
spotlight abstraction, the abstract transition system can typically be obtained
by a simple syntactical transformation of the system description [15].

The content of the spotlight is first of all derived from the property spec-
ification to be verified. We use first-order variants of temporal logic [16] and
employ query reduction [17,15] to obtain a finite set of representative1 valua-
tions of the quantified variables in the specification. This yields a finite set of
finite verification tasks with the spotlight comprising the range of the actual
valuation function. Abstraction refinement is done by adding new processes to
the spotlight and restricting the behaviour of the non-spotlight part of the ab-
straction [18,4,19]. Using this methodology, a number case studies have been
conducted, for example car platooning [20,4,18], railway systems [19,21], and
client/server systems [19].
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Fig. 1. Spotlight Abstraction of the area R on space C. Only the information
for identities 1 and 2 are preserved, the other processes are collapsed into one
summary process ⊥. Still, process ⊥ may communication with the spotlight
processes and new processes may appear in the spotlight area.

As a new way to determine spotlight candidates, we propose to investigate
systems where the physical position of agents is relevant. Let C be a charac-
terisation of some metric space (e.g. a subset of R

2), we now assume that an
interpretation ι in particular determines the actual position of an agent a, de-
noted by posι(a) ∈ C. We propose to analyse the behaviour of physically adjacent
agents by letting the spotlight comprise agents within a certain area R ⊆ C. So
instead of a fixed set of spotlight processes, we obtain a spotlight

SR,ι = {a ∈ Id | posι(a) ∈ R} (3)

that depends on the area and varies with the interpretation. Note that the ab-
straction principle as given in equation (2) can be reused without modifications.

1 Given that the transition system is symmetric in identities [15]
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The basic principle of area spotlight abstraction is visualised in Fig. 1. For choos-
ing the area R we observe different possibilities:

1. Use a fixed area that focusses on critical zones of the underlying motion
space, e.g. junctions or highway exits. This establishes properties of the kind
“for all agents a ∈ Id there is no collision in the considered area R”.

2. For a symmetric space one may be able to determine a representative area
R. Then, if both the behaviour of the agents is independent of its identity,
and the focussed area R is representative for the overall space C, one may
establish properties like “for all agents a ∈ Id there is no collision on C”.

3. Use a varying area depending on the positions of some ego agents Ego ⊂ Id

REgo,ι,r = {x ∈ C | ∃ a ∈ Ego : d(posι(a), x) ≤ r} (4)

where d is the metric on C and r is a suitable characterisation of a radius.
Intuitively, each ego agent determines a certain spotlight area with the agent
being at the center. Whenever an ego agent moves, the spotlight area moves
accordingly. Note that while the set of ego agents is fixed, other agents may
enter the spotlight part and become spotlight processes.

With equation (3), the usage of a moving area according to (4) immediately
yields

Ego ⊆ SREgo,ι,r ,ι (5)

for any ego agents Ego, interpretation ι and radius r. That is, the ego agents
are always in the spotlight.

Future work will transfer the notion of spotlight abstraction refinement to
area abstraction as described above. We observe two basic possibilities of spuri-
ous interactions, namely (i) communication interference and (ii) materialisation.
The first issue relates to spurious messages from the abstracted part of the sys-
tem to the concrete part. This problem has already been addressed in [22,20],
however the information concerning the physical position of agents may improve
the existing solutions. Materialisation corresponds to the fact that new spotlight
processes may appear dynamically when they enter the focussed area R. It will
be necessary to derive suitable constraints from the underlying dynamics of the
agents in order to obtain a meaningful and sound notion of materialisation.
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