
Formal Verification of Abstract SystemC Models

Daniel Große, Hoang M. Le and Rolf Drechsler

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
{grosse,hle,drechsle}@informatik.uni-bremen.de

1 Introduction

System-on-Chips (SoCs) combine hardware and embedded software on a sin-
gle chip. To successfully develop such complex systems, an abstract model of
the system is required to focus only on the relevant aspects at the beginning
of the design process. This procedure has been systematized and the so-called
Electronic System Level (ESL) design emerged. SystemC [1] has become the
de facto standard for ESL design. Especially, the concept of Transaction Level
Modeling (TLM), which enables the description of communication in terms of
abstract operations (transactions), improved the success of SystemC SystemC
is a C++ class library and provides modules, ports, interfaces and channels as
the fundamental modeling components whereas the functionality is described by
processes.

The verification of SystemC designs, i.e. ensuring the correct functional be-
havior is a crucial task since otherwise the follow-up costs in the subsequent
design steps will explode. Hence, intensive research has been started to im-
prove the inherent simulation-based verification methodology of SystemC. Sev-
eral approaches have been introduced which allow assertion-based verification
for SystemC designs. For this task properties describing the intended behavior
are specified and checked during the execution of the design.

In contrast, formal verification – here we focus on property checking – either
proves mathematically that a property holds or returns a counter-example which
shows the violation of the property. However, only very few formal approaches
which target SystemC TLM have been proposed. As pointed out in [2] the object-
oriented nature of SystemC in combination with the event-driven simulation
semantics makes the development of formal approaches a formidable task.

2 SystemC TLM Property Checking

Here we describe our formal property checking approach for SystemC TLM de-
signs [3]. The properties are specified using an extension of PSL following [4]. In
the properties the user can specify non-trivial behavior like for example ordering
of events or relations between transactions and events. Thereby, the temporal
resolution can be changed, for example to sample only at certain events. The

Dagstuhl Seminar Proceedings 09461
Algorithms and Applications for Next Generation SAT Solvers
http://drops.dagstuhl.de/opus/volltexte/2010/2510

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 D. Große, H. M. Le, R. Drechsler

expressiveness of the properties distinguishes our approach clearly from exist-
ing methods. As an example consider the following properties which have been
specified for a TLM FIFO:

– After a write transaction, the FIFO is not empty:
always (write:exit −>num elements > 0)

– If the FIFO is full, the next event notified is read event :
default clock = read event.notified || write event .notified;

always (num elements == max −>next read event.notified)
– After a notification of read event, the next 10 (the FIFO size) notifications

includes at least one notification of write event :
default clock = read event.notified || write event .notified;

always (read event.notified −>next e[1:10] write event.notified)

The basis of the proposed technique is provided by our fully automatic trans-
formation from SystemC TLM to C and the generation of monitoring logic for
TLM properties by means of assertions. The resulting C model including the
monitoring logic can then be interpreted as a state transition system, where the
transition relation is determined by the outermost loop of the scheduler. This
interpretation enables a Bounded Model Checking (BMC) [5] formulation at the
level of C models. The BMC-based verification, i.e. search for a violation of the
property, is performed by running CBMC [6] on the transformed model. How-
ever, the method is not complete in our case since CBMC cannot check whether
the complete state space of the SystemC design has been traversed.

In addition, for efficiency and completeness we propose an induction-based
proof technique for the transformed model. The basic idea is to verify in the base
case, that the property holds after the first k transitions. Then, the inductive step
proves that, if after any k transitions the property is not violated, the property
also holds after the (k+1)-th transition. In traditional induction-based methods
for BMC (see e.g. [7]) both steps are performed by checking Boolean formulas.
Our method, in contrast, operates on a higher level of abstraction, i.e. verifying C
models. The approach was implemented and evaluated on several SystemC TLM
designs. SAT/SMT-based proof techniques – available as backends for CBMC –
allow proving important non-trivial behaviors of the designs efficiently.

References

1. IEEE Std. 1666: IEEE Standard SystemC Language Reference Manual. (2005)
2. Vardi, M.Y.: Formal techniques for SystemC verification. In: DAC. (2007) 188–192
3. Große, D., Le, H.M., Drechsler, R.: Induction-based formal verification of SystemC

TLM designs. In: MTV. (2009)
4. Tabakov, D., Vardi, M., Kamhi, G., Singerman, E.: A temporal language for Sys-

temC. In: FMCAD. (2008) 1–9
5. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without

BDDs. In: TACAS. (1999) 193–207
6. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:

TACAS. (2004) 168–176
7. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction

and a SAT-solver. In: FMCAD. (2000) 108–125

	Formal Verification of Abstract SystemC Models
	Daniel Große, Hoang M. Le and Rolf Drechsler

