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Abstract. We provide new combinatorial theorems on the structure of
graphs that are contained as contractions in graphs of large treewidth. As
a consequence of our combinatorial results we unify and significantly sim-
plify contraction bidimensionality theory—the meta algorithmic frame-
work to design efficient parameterized and approximation algorithms for
contraction closed parameters.

1 Introduction

The proof of Wagner’s conjecture was the principal goal of the Graph Minors
project of Robertson and Seymour. On the way to this goal, Robertson and
Seymour have developed a powerful theory, which apparently became one of the
most influential achievements in the modern Combinatorics. There are several
very important consequences of Graph Minors theory for Algorithms Theory as
well. In particular, obstruction theorems from Graph Minors give rise to powerful
tools in the design of algorithms. Roughly speaking, such theorems say that ei-
ther some width parameter (like pathwidth, treewidth, branchwidth, rank-width,
etc.) of a graph is small (in which case one can proceed with dynamic program-
ming techniques), or the graph contains some big pattern graph as a minor and
such a graph can certify an answer to the problem. The most celebrated theorem
of this type is the Excluding Grid-minor Theorem [15, 13]: “there is a function

f , such that every graph G of treewidth at least f(k) contains a (k × k)-grid as

a minor”. Building on this theorem, Robertson and Seymour obtained their well
known polynomial time algorithm for the disjoint path problems [14]. The bound

in the obstruction theorem was refined by Robertson et al. [18] to f(k) = 202k5

.
It is conjectured by Robertson et al. [18] that this bound is polynomial. For
some classes of graphs like planar, graphs of bounded genus, and more generally,
H-minor-free graphs, it is possible to prove that f(k) = O(k) [4, 5, 18] and the
bidimensionality theory was built on the top of these results. Bidimensionality
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provides a meta-algorithmic framework for the design of subexponential param-
eterized algorithms (i.e. the algorithms of running time 2o(k)nO(1), where k is
the parameter and n the length of the input) for wide families of combinatorial
problems. There is also an evidence that such subexponential algorithms are
optimal even for sparse structures such as planar graphs (see surveys [2, 9] on
bidimensionality). The applications of this theory are well understood and de-
veloped for minor closed graph optimization problems, i.e. the problems which
only decrease under edge deletions/contractions.

However, many graph optimization problems are closed under edge contrac-
tions but not under edge deletions. Examples include most variants and exten-
sions of the dominating set problem, connected dominating set, travelling sales-
man, or various distance modification problems. One of the challenges in Graph
Theory and Algorithms is a possible extension of these results from graph minors
to graph contractions (see [2, 7]). The proofs from graph minors are very nontriv-
ial, and such an extension is a difficult and sometimes an impossible task. For
example, Demaine et al. in [7] disproved the analogue of Wagner’ s Conjecture
for graph contractions. Despite of that, it is possible to extend some algorithmic
graph-minor results to graph contractions. In particular, it is possible to adapt
obstruction theorems from graph minors to graph contractions. The extension
of bidimensionality theory and meta theorems for contraction parameters was
obtained in [3–5]. It is based on a modification of the grid-minor theorem for
apex-minor-free graphs (graph class is apex-minor-free if it does not contain a
graph with some fixed apex graph as a minor). An (k × k)-augmented grid of
span s is an (k×k)-grid with some extra edges such that each vertex is attached
to at most s non-boundary vertices of the grid. Fig. 1 provides an example of
an augmented (6 × 6)-grid of span 5. The obstruction theorem for contractions
[3, 5] states that for every apex graph H there is a universal constant cH such
that every H-minor-free graph of treewidth at least cH · k can be contracted
into a (k × k)-augmented grid of span cH . This combinatorial theorem is the
cornerstone of the meta algorithmic framework in the design of subexponential
parameterized algorithms for contraction-closed parameters on different classes
of sparse graphs. This framework, called contraction bidimensionality, was devel-
oped by Demaine et al. [3] (see also surveys [2, 9]). (We postpone the definitions
related to contraction bidimensionality untill Section 5, where we revise it.)
Unfortunately, there is a drawback in the bidimensionality framework which is
inherited by the “excluding-grid” theorem for contractions. The problem is that
the number of augmented grids is huge. Even the number of planar augmented
grids, i.e. graphs obtained by triangulating some faces of an (k × k)-grid, is at

least 2(k−1)2 . As a result, to verify if a parameter is apex-contraction bidimen-
sional, one has to estimate its value on a graph family of exponential size. In
this paper, we eliminate this main inefficiency of the meta algorithmic frame-
work by redefining the notion of apex-contraction bidimensionality in simple and
unifying way. With the new notion, we reduce the verification apex-contraction
bidimensionality to the estimation of the value of the parameter in one specific
triangulation of the (k × k)-grid. The proof that this simple criterion holds for
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apex-contraction bidimensionality is highly nontrivial and requires the identifi-
cation of a single pattern graph to which large-treewidth apex-minor free graphs
can be contracted. This result has its own combinatorial merit as the contraction
counterpart of the Excluding-grid Minor Theorem.

Let Γk be the graph obtained from the (k× k)-grid by triangulating internal
faces of (k × k)-grid such that all internal vertices become of degree 6, all non-
corner external vertices are of degree 4, and then one corner of degree two is
joined by edges with all vertices of the external face. Graph Γ6 is shown in Fig. 1.
The main combinatorial contribution of our work is the following theorem.

Fig. 1. An augmented (6 × 6)-grid of span 5 (on the left) and the graph Γ6 (on the
right).

Theorem 1. Let H be an apex graph. There is a constant cH such that every
connected graph G excluding H as a minor and of treewidth at least cH · k,
contains Γk as a contraction.

In the conclusion of their survey [2], Demaine and Hajiaghayi mentioned
that contraction bidimensionality is so far undefined for H-minor-free graphs (or
general graphs). They also wrote that it would be quite interesting to explore
an analogous theory of graph contractions paralleling the Graph Minor Theory.
In this direction, we make a step by extending Theorem 1 for more general
graph classes. We prove that for H-minor free graphs, big treewidth implies
the existence of one two pattern graphs as contractions. In what follows, tw(G)
denotes the treewidth of G.

Theorem 2. Let G be a connected graph excluding a graph H as a minor. Then
there exists some constant cH such that if tw(G) ≥ cH ·k2, then G contains as a
contraction either Γk or Πk, where Πk is the graph obtained from Γk by adding
a vertex adjacent to all vertices of Γk.

We stress that one can (artificially) define contraction-closed parameters
whose value is non-trivial for Πk and, for them, bidimensionality could be de-
fined even for H-minor free graphs. However, it is interesting to notice that for
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all known contraction-closed parameters the value of Πk is independent from
k and this indicates that the classic Win/win approach for contraction closed
parameters is structurally confined to apex-minor free graphs.

Finally, we show the following analogue of the Excluding Grid-minor The-
orem. It follows that, instead of a single grid, there are three pattern graphs
appearing as contractions in graphs with big treewidth (for minors, the only
such pattern is the grid).

Theorem 3. For any positive integer k, there is a constant ck such that ev-
ery connected graph G where tw(G) ≥ ck, contains one of Kk, Γk, Πk as a
contraction, where Kk is a complete graph on k vertices.

2 Basic definitions

We consider finite undirected graphs without loops or multiple edges. The vertex
set of a graph G is denoted by V (G) and its edge set by E(G).

Let G be a graph. For a vertex v, we denote by NG(v) its (open) neighborhood,
i.e. the set of vertices which are adjacent to v. The closed neighborhood of v, i.e.
the set NG(v) ∪ {v}, is denoted by NG[v]. For U ⊆ V (G), we define NG[U ] =⋃

v∈U NG[v] (we may omit index if the graph under consideration is clear from
the context). If U ⊆ V (G) (resp. u ∈ V (G) or E ⊂ E(G) or e ∈ E(G)) then
G − U (resp. G − u or G − E or G − e) is the graph obtained from G by the
removal of vertices of U (resp. of vertex u or edges of E or of the edge e).

Surfaces. A surface Σ is a compact 2-manifold without boundary (we always
consider connected surfaces). Whenever we refer to a Σ-embedded graph G we
consider a 2-cell embedding of G in Σ. To simplify notations, we do not distin-
guish between a vertex of G and the point of Σ used in the drawing to represent
the vertex or between an edge and the line representing it. We also consider a
graph G embedded in Σ as the union of the points corresponding to its vertices
and edges. That way, a subgraph H of G can be seen as a graph H , where
H ⊆ G. Recall that ∆ ⊆ Σ is an open (resp. closed) disc if it is homeomorphic
to {(x, y) : x2 + y2 < 1} (resp. {(x, y) : x2 + y2 ≤ 1}). The Euler genus of a non-
orientable surface Σ is equal to the non-orientable genus g̃(Σ) (or the crosscap
number). The Euler genus of an orientable surface Σ is 2g(Σ), where g(Σ) is
the orientable genus of Σ. We refer to the book of Mohar and Thomassen [12]
for more details on graphs embeddings.

Contractions and minors. Given an edge e = {x, y} of a graph G, the graph
G/e is obtained from G by contracting the edge e, i.e. the endpoints x and y are
replaced by a new vertex vxy which is adjacent to the old neighbors of x and y
(except from x and y). A graph H obtained by a sequence of edge-contractions
is said to be a contraction of G. In this work we use contraction with different
topological properties, and for this purpose it is convenient to give an alternative
definition of contraction.
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Let G and H be graphs and let φ : V (G) → V (H) be a surjective mapping
such that
1. for every vertex v ∈ V (H), its codomain φ−1(v) induces connected graph
G[φ−1(v)];
2. for every edge {v, u} ∈ E(H), the graph G[φ−1(v) ∪ φ−1(u)] is connected;
3. for every {v, u} ∈ E(G), either φ(v) = φ(u), or {φ(v), φ(u)} ∈ E(H).

We say that H is a contraction of G via φ, and denote it as H ≤φ
c G. Let us

observe that H is a contraction of G if H ≤φ
c G for some φ : V (G) → V (H). In

this case we simply write H ≤c G. If H ≤φ
c G and v ∈ V (H) then we call the

codomain φ−1(v) by the model of v in G.
Let G be a graph embedded in some surface Σ and let H be a contraction of

G via function φ. We say that H is a surface contraction of G if for each vertex
v ∈ V (H), G[φ−1(v)] is embedded in some open disk in Σ.

Let G0 be a graph embedded in some surface Σ of Euler genus γ and let G+ be
another graph that might share common vertices with G0. We set G = G0∪G+.
Let also H be some graph and let v ∈ V (H). We say that G contains a graph
H as a v-smooth contraction if H ≤φ

c G for some φ : V (G) → V (H) and there
exists an closed disk D in Σ such that all the vertices of G that are outside D
are exactly the model of v, i.e. φ−1(v) = V (G) \ (V (G) ∩ D).

A graph H is a minor of a graph G if H is the contraction of some subgraph
of G and we denote it H ≤m G. It is said that H is a surface minor of a graph
G embedded in some surface Σ if H is the surface contraction of some subgraph
of G. It can be easily noted that if H is a surface minor of a graph G embedded
in a surface Σ then it can be assumed that H is embedded in a surface Σ′

homeomorphic to Σ. For simplicity, we assume in such cases that Σ′ and Σ are
the same surface.

We say that a graph G is H-minor-free when it does not contain H as a
minor. We also say that a graph class G is H-minor-free (or, excludes H as a
minor) when all its members are H-minor-free. An apex graph is a graph obtained
from a planar graph G by adding a vertex and making it adjacent to some of
the vertices of G. A graph class G is apex-minor-free if G excludes a fixed apex
graph H as a minor.

Grids and their triangulations. Let k and r be positive integers where k, r ≥
2. The (k × r)-grid is the Cartesian product of two paths of lengths k − 1 and
r − 1 respectively. A vertex of a (k × r)-grid is a corner if it has degree 2. Thus
each (k × r)-grid has 4 corners. A vertex of a (k × r)-grid is called internal if it
has degree 4, otherwise it is called external.

A partial triangulation of a (k × r)-grid is a planar graph obtained from a
(k × r)-grid (we call it the underlying grid) by adding edges. Let us note that
there are many non-isomorphic partial triangulations of on underlying grid. For
each partial triangulation of a (k × r)-grid we use the terms corner, internal
and external referring to the corners, the internal and the external vertices of
the underlying grid.

Let us remind that we define Γk as the following (unique, up to isomorphism)
triangulation of a plane embedding of the (k × k)-grid. Let Γ be a plane em-
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bedding of the (k × k)-grid such that all external vertices are on the boundary
of the external face. We triangulate internal faces of the (k × k)-grid such that
all the internal vertices have degree 6 in the obtained graph and all non-corner
external vertices have degree 4, and then one corner of degree two is joined by
edges with all vertices of the external face (we call this corner loaded). We also
use notation Γ ∗

k for the graph obtained from Γk if we remove all edges incident
to its loaded vertex that do not exist in its underlying grid. We define the graph
Πk as the graph obtained if we add a new vertex in Γk and connect it with all
vertices of it. Let K be a clique of size 3 in Γ ∗

k . Notice that exactly two of the
edges of Γk[K] are also edges of the underlying (k × k)-grid of Γk. We call the
unique vertex of K that is incident to both these two edges rectangular vertex
of K.

Let G be a partial triangulation of a (k × k)-grid and let m be a positive
integer. Then by Pm(G) we denote the collection of m2 vertex disjoint induced
subgraphs of G where all of them are isomorphic to a (⌊k/m⌋ × ⌊k/m⌋)-grid
and where the union of their vertices induce a graph containing (⌊k/m⌋ · m ×
⌊k/m⌋ · m)-grid as a spanning subgraph.

Suppose that G is a connected graph which contains as an induced subgraph
a partially triangulated ((k + 2) × (k + 2))-grid Γ in such a way that internal
vertices of Γ are not adjacent to vertices of V (G)\V (Γ ). We define the boundary
contraction of G to Γ as the partially triangulated (k×k)-grid bc(G, Γ ) obtained
as follows: let v be a corner of the subgrid of Γ induced by the internal vertices
which has the minimum degree (in this graph), all external vertices of Γ are
contracted to v, and then all vertices of V (G) \ V (Γ ) are contracted to v. Note
that if Γ is embedded in a disk of some surface Σ then bc(G, Γ ) is a v-smooth
contraction of G.

Treewidth and pathwidth. A tree decomposition of a graph G is a pair (X , T )
where T is a tree and X = {Xi | i ∈ V (T )} is a collection of subsets of V (G)
such that:
1.

⋃
i∈V (T ) Xi = V (G),

2. for each edge {x, y} ∈ E(G), {x, y} ⊆ Xi for some i ∈ V (T ); and
3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) is maxi∈V (T ) {|Xi| −
1}. The treewidth of a graph G is the minimum width over all tree decompositions
of G. If, in the above definitions, we restrict the tree T to be a path then we
define the notions of path decomposition and pathwidth. We write tw(G) and
pw(G), respectively, for the treewidth and the pathwidth of a graph G.

Graph minor theorem. The proof of our results is using the Excluded Mi-
nor Theorem from the Graph Minor theory. Before we state it, we need some
definitions.

Definition 1 (Clique-Sums). Let G1 and G2 be two disjoint graphs, and k ≥ 0
an integer. For i = 1, 2, let Wi ⊆ V (Gi), form a clique of size h and let G′

i be
the graph obtained from Gi by removing a set of edges (possibly empty) from the
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clique Gi[Wi]. Let F : W1 → W2 be a bijection between W1 and W2. We define
the h-clique-sum of G1 and G2, denoted by G1 ⊕h,F G2, or simply G1 ⊕ G2 if
there is no confusion, as the graph obtained by taking the union of G′

1 and G′
2

by identifying w ∈ W1 with F (w) ∈ W2, and by removing all the multiple edges.
The image of the vertices of W1 and W2 in G1⊕G2 is called the join of the sum.

Note that some edges of G1 and G2 are not edges of G, since it is possible
that they had edges which were removed by clique-sum operation. Such edges
are called virtual edges of G. We remark that ⊕ is not well defined; different
choices of G′

i and the bijection F could give different clique-sums. A sequence
of h-clique-sums, not necessarily unique, which result in a graph G, is called a
clique-sum decomposition of G.

Definition 2 (h-nearly embeddable graphs). Let Σ be a surface with cycles C1,
. . . , Ch, such that each cycle Ci is the border of an open disc ∆i in Σ. A graph
G is h-nearly embeddable in Σ, if G has a subset X of size at most h, called
apices, so that there are (possibly empty) subgraphs G0, . . . , Gh of G \ X where

i) G′ = G \ X = G0 ∪ G1 ∪ · · · ∪ Gh (we denote G+ = G1 ∪ . . . ∪ Gh),
ii) G0 is embeddable in Σ such that G0 ∩

⋃
i=1,...,h ∆h = ∅, we fix an embedding

of G0,
iii) graphs G1, . . . , Gh (called vortices) are pairwise disjoint,
iv) for 1 ≤ i ≤ h, let Ui := {ui

1, . . . , u
i
mi

} = V (G0) ∩ V (Gi), Gi has a path
decomposition Bi = (Bi

j)1≤j≤mi
, of width at most h such that

a) for 1 ≤ j ≤ mi we have ui
j ∈ Bi

j,
b) the vertices (we call them bases of Gi) ui

1, . . . , u
i
mi

appear on Ci in this
order (either if we walk clockwise or anti-clockwise).

The following proposition is known as the Excluded Minor Theorem [17] and
is the cornerstone of Robertson and Seymour’s Graph Minors theory.

Theorem 4 ([17]). For every non-planar graph H, there exists an integer cH,
depending only on H, such that every graph excluding H as a minor can be
obtained by cH-clique-sums from graphs that can be cH-nearly embedded in a
surface Σ in which H cannot be embedded. Moreover, while applying each of the
clique sums, at most three vertices from each summand other than apices and
vertices in vortices are identified.

Let us remark that by the result of Demaine et al. [6] such a clique-sum
decomposition can be obtained in time O(nc) for some constant c which depends
only from H (see also [1]).

Lemmata on treewidth. We need the following two well known results about
treewidth.

Lemma 1. If G1 and G2 are graphs, then tw(G1⊕G2) ≤ max{tw(G1), tw(G2)}.

Lemma 2. If G is a graph and X ⊆ V (G), then tw(G − X) ≥ tw(G) − |X |.

The following lemma is implicit in the proofs from [5, 4].

Lemma 3. Let G be a h-nearly embeddable graph without apices (i.e. where
X = ∅). Then tw(G) ≤ (h + 1) · (tw(G0) + 1) − 1.
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3 Lemmata on grids and their triangulations

In this section we give a sequence of auxiliary lemmata used to prove Lemma 11,
the most important technical tool in the proofs of Theorems 1 and 2.

It is implicit in the proofs in [4, Theorem 4.12] and [16, (5.1)] that if the
treewidth of a graph embedded in a surface with Euler genus eg(G) is large
enough then this graph contains (r × r)-grid as a surface minor. We state this
with the following lemmata.

Lemma 4. Let G be a graph embedded in a surface Σ of Euler genus γ. If the
treewidth of G is more than 12r(γ + 1), then G has the (r × r)-grid as a surface
minor.

Lemma 5. Let H be a partial triangulation of a ((2k+1)×(2k+1))-grid. Then
H contains Γk as a contraction in a way that all external vertices of H belong
to the model of the loaded corner of Γk.

A basic ingredient of our proofs is a result roughly stating that if a graph G
with a big grid as a minor is embedded on a surface Σ of small genus, then there
is a disc in Σ containing a big enough part of the grid of G. This result is implicit
in the work of Robertson and Seymour and there are simpler alternative proofs
by Mohar and Thomassen [11, 19] (see also [4, Lemma 3.3] and [8, Lemma 4.7]).
By using a variant of this result from Geelen et al. [10] together with Lemmata 4
and 5 we prove the following.

Lemma 6. Let G be a graph embedded in a surface of Euler genus γ and let k
be a positive integer. If the treewidth of G is more than 12 · (γ + 1)3/2 · (2k + 4),
then G contains Γk as a v-smooth contraction with v being one of the corners of
Γk.

The following is based on Lemma 3 and Lemma 6

Lemma 7. There is a constant c such that if G is a graph h-nearly embedded
in a surface of Euler genus γ without apices, where tw(G) ≥ c · γ3/2 · h3/2 · k,
then G contains as a v-smooth contraction the graph Γk with the loaded corner
v.

Let C = {K1, . . . , Kr} be a sequence of (not necessary different) cliques in
a graph G and let E ⊆ E(G[∪i=1,...,rKi]). We define the cl(G, C, E) to be the
graph constructed from G − E by adding for each non-empty Ki a new vertex

z
(i)
new and making it adjacent to all vertices in Ki.

The proof of the following lemma is based on Lemma 5.

Lemma 8. Let G0 be a graph embedded in surface Σ of Euler genus γ and
let G+ be another graph that might share common vertices with G0. We set
G′ = G0 ∪ G+. Let C = {K1, . . . , Kr} be a collection of cliques in G′ such that
each of them shares at most 3 vertices with G0. Let E ⊆ E(G′[∪i=1,...,rKi]) and

let Ĝ′ = cl(G′, C, E). Then, if G′ contains Γ2k+5 with the loaded corner v as a
v-smooth contraction, then Ĝ′ contains Γk as a contraction.
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We also need the following two lemmata.

Lemma 9. Let G be a graph and let C = {K1, . . . , Kr} be a sequence of cliques
in G, let E ⊆ E(G[∪i=1,...,rKi]) and let Ĝ = cl(G, C, E). Let also G′ = G − X
for some X ⊆ V (G), where |X | ≤ h. We set C′ = {K1 \ X, . . . , Kr \ X}, E′ be
the edges of E without endpoints in X and let Ĝ′ = cl(G′, C′, E′). Then if Ĝ′ can
be contracted to Γk, then Ĝ can be contracted to a graph H containing a vertex
subset Y , |Y | ≤ h, where H − Y = Γk.

Lemma 10. Let G be a connected graph that obtained from Γ2rk+4(2r−1) by
adding r ≥ 1 new vertices and an arbitrary number of edges incident to these
vertices. Then G can be contracted to an apex graph which contains Γk and at
most one additional vertex which is adjacent to some vertices of Γk.

The following lemma is the most crucial technical result used in the proofs
of Theorems 1 and 2.

Lemma 11. Let G be a connected graph excluding a graph H as a minor. Then
there exists some constant cH such that if tw(G) ≥ cH · k, then G contains as
a contraction a graph where the removal of at most one of its vertices results to
Γk.

Proof. Let G be a connected H-minor-free graph. If H is a planar graph then
G has bounded treewidth [13] and the claim of the theorem is trivial. Assume
that H is not planar. By Theorem 4, G can be represented as h-clique-sum
G = G1 ⊕ · · · ⊕ Gm such that each graph Gi can be h-nearly-embedded in
a surface Σ (on which H cannot be embedded) where h is a constant which
depends only on H . Let F = Gi such that tw(F ) = maxj=1,...,m tw(Gj). By
Lemma 1,

tw(G) ≤ tw(F ). (1)

Assume that F is h-nearly-embedded in Σ and denote by X the set of apices of
F . Recall that |X | ≤ h. Let F ′ = F − X . By Lemma 2,

tw(F ) − |X | ≤ tw(F ′). (2)

Observe that F ′ is h-nearly embedded in Σ without apices. Using Lemma 7 and
combining it’s claim with inequalities 1 and 2, we note that there is a constant
cH which depends only on H such that if tw(G) ≥ cH · k then F ′ contains as
a v-smooth contraction the graph Γr where v is the loaded corner of Γr and
r = 2r+1 · k + 8(2r − 1) + 5.

Denote by S1, . . . , St components of the graph G − V (F ). For each Si let
Ki be the set of vertices of F which are adjacent to some vertex of Si, and
let C = {K1, . . . , Kt}. By the definition of h-clique-sum each Ki is a clique of
F . Denote by E the set of virtual edges of F . We assume that for any virtual
edge {u, v}, there is a clique Ki ∈ C such that u, v ∈ Ki (otherwise it is easy
to redefine h-clique-sums in the representation of G and exclude such an edge).

For every component Si, all vertices of it are contracted into single vertex z
(i)
new.
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Denote by F̂ obtained from G by these contractions. It can be easily seen that F̂
is the graph cl(F, C, E). We set C′ = {K1 \X, . . . , Kt \X}, E′ be the edges of E
without endpoints in X and let F̂ ′ = cl(F ′, C′, E′). Since F ′ can be contracted
to Γr, it follows immediately from Lemma 8 that F̂ ′ contains Γs as a contraction
for s = (r−6)/2 = 2r ·k+4(2r−1). Then by Lemma 9, F̂ (and consequently the
graph G) can be contracted to a graph R containing a vertex subset Y, |Y | ≤ h
such that R − Y = Γs. It remains to use Lemma 10 and note that R can be
contracted to an apex graph which consists of Γk and at most one apex vertex
which is adjacent to some vertices of Γk. The graph R is a contraction of G, so
G contains as a contraction a graph which after the removal of at most one of
its vertices results to Γr.

4 Proofs of theorems

Proof (of Theorem 1). Let H be an apex graph. It was shown by Robertson et
al. [13], that every planar graph on ⌈h/7⌉ vertices is a minor of an (h× h)-grid,
and without loss of generality, we can assume that H is a graph constructed
from a (h × h)-grid by adding one apex vertex adjacent to all vertices of the
grid. By Lemma 11, if tw(G) ≥ cH · k, for some constant cH , then G contains
as a contraction a graph F such that the removal of at most one of its vertices
results in Γ = Γh·(k+2). If F = Γ , then the theorem follows trivially. Thus we
assume that F has an additional vertex u adjacent to some vertices of Γ . We
consider the collection Ph(Γ ) of h2 vertex disjoint induced subgraphs of Γ . We
claim that there is a subgraph in Ph(Γ ) such that none of its vertices is adjacent
to u. Indeed, if each subgraph in Ph(Γ ) contains a vertex adjacent to u, then
Γ contain an (h × h)-grid as a minor such that the nodes of this grid are the
neighbors of u. But this contradicts the assumption that G is H-minor-free.

Thus there is a subgraph Γ ∗
k+2 in Ph(Γ ) such that none of the vertices of

Γ ∗
k+2 is adjacent to u. The graph Γ ∗

k+2 can be seen as a graph obtained from
Γk+2 by removal all edges adjacent to the loaded corner of Γk+2 that are not the
edges of the underlying grid. Therefore, after applying the boundary contraction
of F to Γ ∗

k+2, the resulting graph bc(F, Γ ′) is Γk.

Proof (of Theorem 2). Let us assume that tw(G) ≥ cH · k2, where cH is the
constant from Lemma 11. By the same lemma, G can be contracted to a graph
H such that by the removal of at most one vertex of H the result is isomorphic
to Γk2 . If H is itself isomorphic to Γk2 then we are done as Γk2 contains Γk as a
contraction. Suppose then that G has an additional vertex x and let S = NG(x).
Let P be a collection of k disjoint copies of Γ ∗

k in Γk2 . In case for some A ∈ P ,
V (A)∩S = ∅, we contract all edges with both endpoints in ∪H∈P\{A}V (H). The
obtained graph is Γ ∗

k with one more vertex adjacent to all its external vertices
and this graph can be further contracted to Γk. Suppose now that each graph in
P intersects some neighbor of x. Then contract all edges of all graphs in P and
the resulting graph is Pk.

Proof (of Theorem 3). Suppose that G does not contain H = Kk as a con-
traction. Then G is an H-minor-free graph. By Theorem 2, there exists some
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constant cH such that if tw(G) ≥ cH ·k2, then G contains as a contraction either
Γk or Πk. We put ck = cH · k2, which concludes the proof of the theorem.

5 Contraction bidimensionality revised

The theory of bidimensionality is a meta algorithmic framework for designing
efficient fixed-parameter algorithms and approximation algorithms for a broad
range of graph problems. Roughly speaking, graph problem is bidimensional
if (a) the solution of the problem on the (k × k)-grid (or some modification
of the grid) is proportional to Ω(k2) (b) the problem is closed under taking
minor/contraction, which means that the solution value can only decrease with
contracting or removing edges in the graph. Many problems are bidimensional.
Classic examples are vertex cover, dominating set, and feedback vertex set.

A parameter P is a function mapping graphs to nonnegative integers. The
decision problem associated with P asks, for a given graph G and nonnegative
integer k, whether P (G) ≤ k. Intuitively, a parameter is bidimensional if its
value depends on the area of a grid and not on its width or height.

For minor-closed parameters, the definition of bidimensionality is easy [3]. A
parameter P is minor bidimensional if (a) P is closed under taking of minors
and (b) for the (k× k)-grid Γ , P (Γ ) = Ω(k2). Examples of minor bidimensional
parameters are sizes of a vertex cover, a feedback vertex set, or a minimum
maximal matching in a graph.

For contraction-closed parameters, the definition of bidimensionality is much
more complicated and depends on the class of graphs it is used for. Demaine et
al. [3, 4, 2, 8] defined parameter P as contraction bidimensional if the following
hold: (a) P is closed under taking of contractions and (b) for a “(k × k)-grid-
like graph” Γ , P (Γ ) = Ω(k2). Here the property of being “grid-like graph” is
different for different graph classes and is defined as follows.

b1) For planar graphs and single-crossing-minor-free graphs, a “(k× k)-grid-like
graph” is a partially triangulated (k × k)-grid;

b2) For graphs of Euler genus γ, this is a partially triangulated (k×k)-grid with
up to γ additional handles;

b3) For apex-minor-free graphs, this is (k × k)-augmented grid, i.e. partially
triangulated grid augmented with additional edges such that each vertex is
incident to O(1) edges to non-boundary vertices of the grid.

Typical examples of contraction bidimensional parameters are sizes of a domi-
nating, clique-transversal, or edge domination sets.

The main contribution of Theorem 1 to contraction bidimensionality is that
the notions of “grid-like” graphs (b1), (b2), and (b3) can be replaced by the
following one

b′) P (Γk) = Ω(k2).

This is justified by the following theorem, which is the main (meta) algorith-
mic contribution of this paper.
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Theorem 5. Let P be a graph parameter which satisfies conditions (a) and
(b′). Let G be a n-vertex graph excluding an apex graph H as a minor. Then if
P is computable in time 2O(tw(G)) · nO(1), then deciding P (G) ≤ k can be done

in time 2O(
√

k) · nO(1).
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