
Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 453-464
www.stacs-conf.org

ON OPTIMAL HEURISTIC RANDOMIZED SEMIDECISION

PROCEDURES, WITH APPLICATION TO PROOF COMPLEXITY

EDWARD A. HIRSCH AND DMITRY ITSYKSON

Steklov Institute of Mathematics at St. Petersburg,
27 Fontanka, St.Petersburg, 191023, Russia
URL: http://logic.pdmi.ras.ru/~hirsch
URL: http://logic.pdmi.ras.ru/~dmitrits

Abstract. The existence of a (p-)optimal propositional proof system is a major open
question in (proof) complexity; many people conjecture that such systems do not exist.
Kraj́ıček and Pudlák [KP89] show that this question is equivalent to the existence of an
algorithm that is optimal1 on all propositional tautologies. Monroe [Mon09] recently gave
a conjecture implying that such algorithm does not exist.

We show that in the presence of errors such optimal algorithms do exist. The concept
is motivated by the notion of heuristic algorithms. Namely, we allow the algorithm to
claim a small number of false “theorems” (according to any polynomial-time samplable
distribution on non-tautologies) and err with bounded probability on other inputs.

Our result can also be viewed as the existence of an optimal proof system in a class of
proof systems obtained by generalizing automatizable proof systems.

1. Introduction

Given a specific problem, does there exist the “fastest” algorithm for it? Does there exist
a proof system possessing the “shortest” proofs of the positive solutions to the problem?
Although the first result in this direction was obtained by Levin [Lev73] in 1970s, these
important questions are still open for most interesting languages, for example, the language
of propositional tautologies.

1998 ACM Subject Classification: F.2.
Key words and phrases: propositional proof complexity, optimal algorithm.
Partially supported by grants RFBR 08-01-00640 and 09-01-12066, and the president of Russia grant

“Leading Scientific Schools” NSh-4392.2008.1, by Federal Target Programme “Scientific and scientific-
pedagogical personnel of the innovative Russia” 2009-2013 (contract N Π265 from 23.07.2009). The second
author is also supported by Russian Science Support Foundation.

c© E. A. Hirsch and D. Itsykson
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2475

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

454 E. A. HIRSCH AND D. ITSYKSON

Classical version of the problem. According to Cook and Reckhow [CR79], a proof system
is a polynomial-time mapping of all strings (“proofs”) onto “theorems” (elements of cer-
tain language L; if L is the language of all propositional tautologies, the system is called a
propositional proof system). The existence of a polynomially bounded propositional proof
system (that is, a system that has a polynomial-size proof for every tautology) is equiva-
lent to NP = co -NP. In the context of polynomial boundedness a proof system can be
equivalently viewed as a function that given a formula and a “proof”, verifies in polynomial
time that a formula is a tautology: it must accept at least one “proof” for each tautology
(completeness) and reject all proofs for non-tautologies (soundness).

One proof system Πw is simulated by another one Πs if the shortest proofs for every
tautology in Πs are at most polynomially longer than the shortest proofs in Πw. The
notion of p-simulation is similar, but requires also a polynomial-time computable function
for translating the proofs from Πw to Πs. A (p-)optimal propositional proof system is one
that (p-)simulates all other propositional proof systems.

The existence of an optimal (or p-optimal) propositional proof system is a major open
question. If one would exist, it would allow to reduce the NP vs co -NP question to
proving proof size bounds for just one proof system. It would also imply the existence of
a complete disjoint NP pair [Raz94, Pud03]. Kraj́ıček and Pudlák [KP89] show that the
existence of a p-optimal system is equivalent to the existence of an algorithm that is optimal
on all propositional tautologies, namely, it always solves the problem correctly and it takes
for it at most polynomially longer to stop on every tautology than for any other correct
algorithm on the same tautology. Monroe [Mon09] recently gave a conjecture implying that
such algorithm does not exist. Note that Levin [Lev73] showed that an optimal algorithm
does exist for finding witnesses to non-tautologies; however, (1) its behaviour on tautologies
is not restricted; (2) after translating to the decision problem by self-reducibility the running
time in the optimality condition is compared to the running time for all shorter formulas
as well.

An automatizable proof system is one that has an automatization procedure that given
a tautology, outputs its proof of length polynomially bounded by the length of the shortest
proof in time bounded by a polynomial in the output length. The automatizability of a
proof system Π implies polynomial separability of its canonical NP pair [Pud03], and the
latter implies the automatizability of a system that p-simulates Π. This, however, does not
imply the existence of (p-)optimal propositional proof systems in the class of automatizable
proof systems. To the best of our knowledge, no such system is known to the date.

Proving propositional tautologies heuristically. An obvious obstacle to constructing an op-
timal proof system by enumeration is that no efficient procedure is known for enumerating
the set of all complete and sound proof systems. Recently a number of papers overcome
similar obstacles in other settings by considering either computations with non-uniform
advice (see [FS06] for survey) or heuristic algorithms [FS04, Per07, Its09]. In particular,
optimal propositional proof systems with advice do exist [CK07]. We try to follow the
approach of heuristic computations to obtain a “heuristic” proof system. While our work is
motivated by propositional proof complexity, i.e., proof systems for the set of propositional
tautologies, our results apply to proof systems for any recursively enumerable language.

We introduce a notion of a randomized heuristic automatizer (a randomized semideci-
sion procedure that may have false positives) and a corresponding notion of a simulation.

ON OPTIMAL HEURISTIC RANDOMIZED SEMIDECISION PROCEDURES 455

Its particular case, a deterministic automatizer (making no errors) for language L, along
with deterministic simulations, can be viewed in two ways:

• as an automatizable proof system for L (note that such proof system can be iden-
tified with its automatization procedure; however, it may not be the case for ran-
domized algorithms, whose running time may depend on the random coins), where
simulations are p-simulations of proof systems;

• as an algorithm for L, where simulations are simulations of algorithms for L in the
sense of [KP89].

Given x ∈ L, an automatizer must return 1 and stop. The question (handled by
simulations) is how fast it does the job. For x /∈ L, the running time does not matter.
Given x /∈ L, a deterministic automatizer simply must not return 1. A randomized heuristic
automatizer may erroneously return 1; however, for “most” inputs it may do it only with
bounded probability (“good” inputs). The precise notion of “most” inputs is: given an
integer parameter d and a sampler for L, “bad” inputs must have probability less than 1/d
according to the sampler. The parameter d is handled by simulations in the way such that
no automatizer can stop in time polynomial in d and the length of input unless an optimal
automatizer can do that.

In Sect. 2 we give precise definitions. In Sect. 3 we construct an optimal randomized
heuristic automatizer. In Sect. 4 we give a notion of heuristic probabilistic proof system
and discuss the relation of automatizers to such proof systems.

2. Preliminaries

2.1. Distributional proving problems

In this paper we consider algorithms and proof systems that allow small errors, i.e.,
claim a small amount of wrong theorems. Formally, we have a probability distribution
concentrated on non-theorems and require that the probability of sampling a non-theorem
accepted by an algorithm or validated by the system is small.

Definition 2.1. We call a pair (D,L) a distributional proving problem if D is a collection
of probability distributions Dn concentrated on L ∩ {0, 1}n.

In what follows we write Prx←Dn to denote the probability taken over x from such
distribution, while PrA denotes the probability taken over internal random coins used by
algorithm A.

2.2. Automatizers

Definition 2.2. A (λ, ǫ)-correct automatizer for distributional proving problem (D,L) is
a randomized algorithm A with two parameters x ∈ {0, 1}∗ and d ∈ N that satisfies the
following conditions:

(1) A either outputs 1 (denoted A(. . .) = 1) or does not halt at all (denoted A(. . .) = ∞);
(2) For every x ∈ L and d ∈ N, A(x, d) = 1.
(3) For every n, d ∈ N,

Pr
r←Dn

{

Pr
A
{A(r, d) = 1} > ǫ

}

<
1

λd
.

456 E. A. HIRSCH AND D. ITSYKSON

Here λ > 0 is a constant and ǫ > 0 may depend on the first input (x) length. An automatizer
is a (1, 1

4)-correct automatizer.

Remark 2.3. For recursively enumerable L, conditions 1 and 2 can be easily enforced at
the cost of a slight overhead in time by running L’s semidecision procedure in parallel.

In what follows, all automatizers are for the same problem (D,L).

Definition 2.4. The time spent by automatizer A on input (x, d) is defined as the median
time

tA(x, d) = min

{

t ∈ N

∣

∣

∣

∣

Pr
A
{A(x, d) stops in time at most t} ≥

1

2

}

.

We will also use a similar notation for “probability p time”:

t
(p)
A (x, d) = min

{

t ∈ N

∣

∣

∣

∣

Pr
A
{A(x, d) stops in time at most t} ≥ p

}

.

Definition 2.5. Automatizer S simulates automatizer W if there are polynomials p and q
such that for every x ∈ L and d ∈ N,

tS(x, d) ≤ max
d′≤q(d·|x|)

p(tW (x, d′) · |x| · d).

Definition 2.6. An optimal automatizer is one that simulates every other automatizer.

Definition 2.7. Automatizer A is polynomially bounded if there is a polynomial p such
that for every x ∈ L and every d ∈ N,

tA(x, d) ≤ p(d · |x|).

The following proposition follows directly from the definitions.

Proposition 2.8.

(1) If W is polynomially bounded and is simulated by S, then S is polynomially bounded
too.

(2) An optimal automatizer is not polynomially bounded if and only if no automatizer
is polynomially bounded.

3. Optimal automatizer

The optimal automatizer that we construct runs all automatizers in parallel and stops
when the first of them stops (recall Levin’s optimal algorithm for SAT [Lev73]). A major
obstacle to this simple plan is the fact that it is unclear how to enumerate all automatizers
efficiently (put another way, how to check whether a given algorithm is a correct automa-
tizer). The plan of overcoming this obstacle (similar to constructing a complete public-key
cryptosystem [HKN+05] (see also [GHP09])) is as follows:

• Prove that w.l.o.g. a correct automatizer is very good: in particular, amplify its
probability of success.

• Devise a “certification” procedure that distinguishes very good automatizers from
incorrect automatizers with overwhelming probability.

• Run all automatizers in parallel, try to certify automatizers that stop, and halt
when the first automatizer passes the check.

The amplification is obtained by repeating and the use of Chernoff bounds.

ON OPTIMAL HEURISTIC RANDOMIZED SEMIDECISION PROCEDURES 457

Proposition 3.1 (Chernoff bounds (see, e.g., [MR95, Chapter 4])).
Let X1,X2, . . . ,Xn ∈ {0, 1} be independent random variables. Then if X is the sum of Xi

and if µ is E[X], for any δ, 0 < δ ≤ 1:

Pr{X < (1 − δ)µ} < e−µδ2/2, Pr{X > (1 + δ)µ} < e−µδ2/3.

Corollary 3.2. Let X1,X2, . . . ,Xn ∈ {0, 1} be independent random variables. Then if X
is the sum of Xi and if 1 ≥ µ1 ≥ E[X] ≥ µ2 ≥ 0, for any δ, 0 < δ ≤ 1:

Pr{X < (1 − δ)µ2} < e−µ2δ2/2, Pr{X > (1 + δ)µ1} < e−µ1δ2/3.

Lemma 3.3 (amplification). Every automatizer W is simulated by a (4, e−m/48)-correct
automatizer S, where m ∈ N may depend at most polynomially on d · |x| (for input (x, d)).
Moreover, there are polynomials p and q such that for every x ∈ L and d ∈ N,

t
(1−e−m/64)
S (x, d) ≤ max

d′≤q(d·|x|)
p(tW (x, d′)). (3.1)

Proof. S(x, d) runs m copies of W (x, 4d) in parallel and stops as soon as the 3
8 fraction of

copies stop.
By Chernoff bounds, S is (4, e−m/48)-correct. The “strong” simulation condition

(3.1) is satisfied because by Chernoff bounds the running time of the fastest 3
8 fraction of

executions is less than median time with probability at least 1 − e−m/64.

Theorem 3.4 (optimal automatizer). Let (D,L) be a distributional proving problem, where
L is recursively enumerable and D is polynomial-time samplable, i.e., there is a polynomial-
time randomized Turing machine that given 1n on input outputs x with probability Dn(x)
for every x ∈ {0, 1}n. Then there exists an optimal automatizer for (D,L).

Proof. For algorithm A, we say that it is (λ, ǫ)-correct for input length n and parameter d
if it it satisfies condition 3 of Definition 2.2 for n and d. If an algorithm is (λ, ǫ)-correct for
every n (resp., every d), we omit n (resp., d).

In order to check an algorithm for correctness, we define a certification procedure that
takes an algorithm A and distinguishes between the cases where A is (4, 1

18d log2
∗ n

)-correct

for given n, d (from Lemma 3.3 we know that one can assume such correctness) or it is not
(1, 1

16d log2
∗ n

)-correct ((1, 1
16d log2

∗ n
)-correct automatizers suffice for the correctness of further

constructions). W.l.o.g. we may assume that

A satisfies conditions 1 and 2 of Definition 2.2 (3.2)

(for the latter condition, notice that L is recursively enumerable and one may run its
semidecision procedure in parallel).

The certification procedure has a subroutine Test that estimates the probability of A’s
error simply by repeating A and couting its faults.

Test(A,x, d′, T, l, f):

(1) Repeat for each i ∈ {1, . . . , l}
(a) If A(x, d′) stops in T steps, let ci = 1; otherwise let ci = 0.

(2) If
∑

i ci ≥ l/f , then reject; otherwise accept.

Lemma 3.5. For every A,x, d′, T, l, f ,

458 E. A. HIRSCH AND D. ITSYKSON

(1) If A(x, d′) stops with probability less than 1
1.01f , then Test will reject it with prob-

ability less than e
− l

3.03·104·f .
(2) If A(x, d′) stops in time at most T with probability more than 1

0.99f , then Test will

accept it with probability less than e
− l

2·104·f .

Proof. Follows directly from Chernoff bounds.

Certify(A,n, d′, T, k, l, f):

(1) Repeat for each i ∈ {1, . . . , k}
(a) Generate xi according to Dn.
(b) If Test(A,xi, d

′, T, l, f) rejects, let bi = 1; otherwise let bi = 0.
(2) If

∑

i bi ≥ k/(2d′), then reject; otherwise accept.

Lemma 3.6. Let d, n, T ∈ N. Let A be an algorithm pretending to be an automatizer. Run

Certify(A,n, d′, T, k, l, f).

Then

(1) If A is (4, 1
1.011f)-correct, then A is accepted by Certify almost for sure, failing

with probability less than e−
k

12d′ + k · e
− l

3.03·104·f .
(2) Let AT be a restricted version of A that behaves similarly to A for T steps and enters

an infinite loop afterwards. If AT is not (1, 1
0.99f)-correct for length n and parameter

d, then A is accepted by Certify with probability less than e−
k

8d′ + k · e
− l

2·104·f .

Proof. 1. Let ∆ = {x ∈ Im Dn | Pr{A(x, d) = 1} > 1
1.011f }. By assumption, Dn(∆) < 1

4d′ .

The certification procedure takes k samples from Dn. For every sample xi ∈ L \∆, the

probability that the corresponding bi equals 1 is less than e
− l

3.03·104·f . Thus, the probability

that there is a sample xi from L \ ∆ that yields bi = 1 is less than k · e
− l

3.03·104 ·f . Denote
this unfortunate event by E. If it does not hold, only samples from ∆ may cause bi = 1
and by Chernoff’s bound

Pr{
∑

i

bi ≥ k/(2d′) | E} < e−
k

12d′ .

Thus, the total probability of reject is as claimed.
2. Let ∆ = {x ∈ ImDn | Pr{A(x, d) = 1} > 1

0.99f }. By assumption, Dn(∆) ≥ 1
d′ .

The certification procedure takes k samples from Dn. For every sample xi ∈ ∆, the

probability that the corresponding bi equals 0 is less than e
− l

2·104·f . Thus, the probability

that there is a sample xi from ∆ that yields bi = 0 is less than k · e
− l

2·104·f . Denote this
unfortunate event by E. Assuming it does not hold only samples outside ∆ may cause
bi = 0 and by Chernoff’s bound

Pr{
∑

i

bi < k/(2d′) | E} < e−
k

8d′ .

ON OPTIMAL HEURISTIC RANDOMIZED SEMIDECISION PROCEDURES 459

We now define the optimal automatizer U . It works as follows:

U(x, d):

(1) Let

n = |x|,

d′ = 16d log2
∗ n,

f = 17d log2
∗ n,

k = 12d′ ln(16d log2
∗ n),

l = (3.03 · 104) · f · ln(16kd log2
∗ n).

(2) Run the following processes for i ∈ {1, . . . , log∗ n} in parallel:
(a) Run Ai(x, d′), the algorithm with Turing number i satisfying assumption (3.2),

and compute the number of steps Ti made by it before it stops.
(b) If Certify(Ai, n, d′, Ti, k, l, f) accepts,

then output 1 and stop U (all processes).
(3) If none of the processes has stopped, go into an infinite loop.

Correctness. We now show that U errs with probability less than 1/4.
What are the inputs that cause U to error? For every such input x there exists i ≤ log∗ n

such that

ui
x =

∞
∑

T=1

pi
x,T ci

T ≥
1

4 log∗ n
, (3.3)

where

pi
x,t = Pr{Ai(x, d′) stops in exactly t steps},

ci
t = Pr{Certify(Ai, n, d′, t, k, l, f) accepts}.

Let Ei be the set of inputs x /∈ L satisfying inequality (3.3).
We claim that D(Ei) < 1

d log∗ n , which suffices to show the (1, 1/4)-correctness.

Assume the contrary. Let Ti = min{t | ci
t < e−

k
8d′ + k · e

− l
2·104·f }. Note that by

Lemma 3.6 ATi−1
i is (1, 1

0.99f)-correct for n and d′, i.e.,

Pr
x←Dn

{
∑

T<T i
∗

pi
x,T >

1

0.99f
} <

1

d′
.

460 E. A. HIRSCH AND D. ITSYKSON

We omit i and n in the estimations that follow. Here is how we get a contradiction:

1

4d log2
∗ n

≤
D(Ei)

4 log∗ n
=

∑

x∈Ei

1

4 log∗ n
D(x) ≤

∑

x∈Ei

uxD(x) ≤

∑

x/∈L

uxD(x) =
∑

x/∈L

∞
∑

T=1

px,T cT D(x) =

∑

x/∈L

∑

T<T∗

px,T cT D(x) +
∑

T≥T∗

px,T cT D(x)

 ≤

∑

T<T∗

∑

x/∈L,
P

t<T∗

px,t≤
1

0.99f

px,T D(x) +
∑

x/∈L,
P

t<T∗

px,t>
1

0.99f

px,TD(x)

+ e−
k

8d′ + k · e
− l

2·104·f ≤

1

0.99f
+

1

d′
+ e−

k
8d′ + k · e

− l
2·104·f <

1

16d log2
∗ n

+
1

16d log2
∗ n

+
1

8d log2
∗ n

=
1

4d log2
∗ n

.

Simulation. Assume we are give a correct automatizer As. Plug in m = 48 · ln(18d log2
∗ n)

into Lemma 3.3. The lemma yields that As is “strongly” simulated by a (4, 1
18d log2

∗ n
)-correct

automatizer A. It remains to estimate, for given “theorem” x ∈ L, the (median) running

time of U in terms of t
(1−e−m/64)
A (x, d) = t

(1− 1

(18d log2∗ n)3/4
)

A (x, d) (as we know that the latter
is bounded by max

d′≤q(d·|x|)
p(tAs(x, d′)) for a polynomials p and q).

Since the definition of simulation is asymptotic, we consider only x of length greater
than the Turing number of A. By Lemma 3.6, A is not certified with probability less than

e−
k

12d′ + k · e
− l

3.03·104 ·f ≤ 1
8d log2

∗ n
. If A is certified, U stops in time upper bounded by a

polynomial of the time spent by A with an overhead polynomial in |x| and d for running
other algorithms and the certification procedures. Thus the median time tU (x, d) is bounded

by a polynomial in |x|, d, and t
(1
2
+ 1

8d log2∗ n
)

A (x, d) ≤ t
(1− 1

(18d log2∗ n)3/4
)

A (x, d).

4. Heuristic proof systems

In this section we define proof systems that make errors (claim a small fraction of
wrong theorems). We consider automatizable systems of this kind and show that every such
system defines an automatizer taking time at most polynomially larger than the length of
the shortest proof in the initial system. This shows that automatizers form a more general
notion than automatizable heuristic proof systems. The opposite direction is left as an open
question.

Definition 4.1. Randomized Turing machine Π is a heuristic proof system for distributional
proving problem (D,L) if it satisfies the following conditions.

(1) The running time of Π(x,w, d) is bounded by a polynomial in d, |x|, and |w|.

ON OPTIMAL HEURISTIC RANDOMIZED SEMIDECISION PROCEDURES 461

(2) (Completeness) For every x ∈ L and every d ∈ N, there exists a string w such that
Pr{Π(x,w, d) = 1} ≥ 1

2 . Every such string w is called a Π(d)-proof of x.

(3) (Soundness) Prx←Dn{∃w : Pr{Π(x,w, d) = 1} > 1
4} < 1

d .

Definition 4.2. Heuristic proof system is automatizable if there is a randomized Turing
machine A satisfying the following conditions.

(1) For every x ∈ L and every d ∈ N, with probability at least 1
2 algorithm A(x, d)

outputs a correct Π(d)-proof of size bounded by a polynomial in d, |x|, and |w|,

where w is the shortest Π(d)-proof of x.
(2) The running time of A(x, d) is bounded by a polynomial in |x|, d, and the size of

its own output.

Definition 4.3. We say that heuristic proof system Π1 simulates heuristic proof system

Π2 if there exist polynomials p and q such that for every x ∈ L, the shortest Π
(d)
1 -proof of

x has size at most

p(d · |x| · max
d′≤q(|x|d)

{the size of the shortest Π
(d′)
2 -proof of x}).

Note that this definition essentially ignores proof systems that have much shorter proofs
for some inputs than the inputs themselves. We state it this way for its similarity to the
automatizers case.

Definition 4.4. Heuristic proof system Π is polynomially bounded if there exists a polyno-
mial p such that for every x ∈ L and every d ∈ N, the size of the shortest Π(d)-proof of x is
bounded by p(|x|d).

Proposition 4.5. If heuristic proof system Π1 simulates system Π2 and Π2 is polynomially
bounded, then Π1 is also polynomially bounded.

We now show how automatizers and automatizable heuristic proof systems are related.
Consider automatizable proof system (Π, A) for distributional proving problem (D,L)

with recursively enumerable language L. Let us consider the following algorithm AΠ(x, d):

(1) Execute 1000 copies of A(x, d) in parallel.
For each copy,
(a) if it stops with result w, then

• execute Π(x,w, d) 10000 times;
• if there were at least 4000 accepts of Π (out of 10000), stop all parallel

processes and output 1.
(2) Execute the enumeration algorithm for L; output 1 if this algorithm says that x ∈ L;

go into an infinite loop otherwise.

Proposition 4.6. If (Π, A) is a (correct) heuristic automatizable proof system for recur-
sively enumerable language L, then AΠ is a correct automatizer for x ∈ L and tAΠ

(x, d) is
bounded by polynomial in size of the shortest Πd-proof of x.

Proof. Soundness (condition 3 in Def. 2.2). Let ∆n = {x ∈ L | ∃w : Pr{Π(x,w, d) = 1} >
1
4}. By definition, Dn(∆n) < 1

d . For x ∈ {0, 1}n \ ∆n and specific w, Chernoff bounds
imply that Π(x,w, d) accepts in 0.4 or more fraction of executions with exponentially small
probability, which remains much smaller than 1

4 even after multiplying by 1000.
Completeness (conditions 2 and 1 in Def. 2.2) is guaranteed by the execution of the

semi-decision procedure for L.

462 E. A. HIRSCH AND D. ITSYKSON

Simulation. For x ∈ L, the probability that A errs 1000 times is negligible (at most
2−1000). Thus with high probability at least one of the parallel executions of A(x, d) outputs
a correct Πd-proof of size bounded by a polynomial in the size of the shortest Πd-proof of x.
For x ∈ L and (correct) Π(d)-proof w, Chernoff bounds imply that Π(x,w, d) accepts in at
least 0.4 fraction of executions with probability close to 1. Therefore, tAΠ

(x, d) is bounded
by a polynomial in |x|, d, and the size of the shortest Πd-proof of x.

5. Further research

One possible direction is to show that automatizers are equivalent to automatizable
heuristic proof systems or, at least, that there is an optimal automatizable heuristic proof
system. That may require some tweak in the definitions, because the first obstacle to proving
the latter fact is the inability to check a candidate proof system for the non-existence of a
much shorter (correct) proof than those output by a candidate automatizer.

Also Kraj́ıček and Pudlák [KP89] and Messner [Mes99] list equivalent conditions for
the existence of (deterministic) optimal and p-optimal proof systems. It seems promising
(and, in some places, challenging) to prove similar statements in the heuristic setting.

Acknowledgements

During the work on the subject, we discussed it with many people. Our particular
thanks go to (in the alphabetical order) Dima Antipov, Dima Grigoriev, and Sasha Smal.

References

[CK07] Stephen A. Cook and Jan Kraj́ıček. Consequences of the provability of NP ⊆ P/poly. The

Journal of Symbolic Logic, 72(4):1353–1371, 2007.
[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems.

The Journal of Symbolic Logic, 44(1):36–50, March 1979.
[FS04] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic polynomial time. In

Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, pages 316–324,
2004.

[FS06] Lance Fortnow and Rahul Santhanam. Recent work on hierarchies for semantic classes. SIGACT

News, 37(3):36–54, 2006.
[GHP09] Dima Grigoriev, Edward A. Hirsch, and Konstantin Pervyshev. A complete public-key cryptosys-

tem. Groups, Complexity, Cryptology, 1(1):1–12, 2009.
[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust combiners

for oblivious transfer and other primitives. In Proc. of EUROCRYPT-2005, 2005.
[Its09] Dmitry M. Itsykson. Structural complexity of AvgBPP. In Proceedings of 4th International Com-

puter Science Symposium in Russia, volume 5675 of Lecture Notes in Computer Science, pages
155–166, 2009.

[KP89] Jan Kraj́ıček and Pavel Pudlák. Propositional proof systems, the consistency of first order theories
and the complexity of computations. The Journal of Symbolic Logic, 54(3):1063–1079, September
1989.

[Lev73] Leonid A. Levin. Universal sequential search problems. Problems of Information Transmission,
9:265–266, 1973.

[Mes99] Jochen Messner. On optimal algorithms and optimal proof systems. In Proceedings of the 16th

Symposium on Theoretical Aspects of Computer Science, volume 1563 of Lecture Notes in Com-

puter Science, pages 361–372, 1999.

ON OPTIMAL HEURISTIC RANDOMIZED SEMIDECISION PROCEDURES 463

[Mon09] Hunter Monroe. Speedup for natural problems and coNP?=NP. Technical Report 09-056, Elec-
tronic Colloquium on Computational Complexity, 2009.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge University Press,
1995.

[Per07] Konstantin Pervyshev. On heuristic time hierarchies. In Proceedings of the 22nd IEEE Conference

on Computational Complexity, pages 347–358, 2007.
[Pud03] Pavel Pudlák. On reducibility and symmetry of disjoint NP pairs. Theoretical Computer Science,

295(1–3):323–339, 2003.
[Raz94] Alexander A. Razborov. On provably disjoint NP-pairs. Technical Report 94-006, Electronic

Colloquium on Computational Complexity, 1994.

464 E. A. HIRSCH AND D. ITSYKSON

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

