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Abstract. We present two new approximation algorithms with (improved) constant ra-
tios for selecting n points in n unit disks such that the minimum pairwise distance among
the points is maximized.

(I) A very simple O(n log n)-time algorithm with ratio 0.5110 for disjoint unit disks. In
combination with an algorithm of Cabello [3], it yields a O(n2)-time algorithm with ratio
of 0.4487 for dispersion in n not necessarily disjoint unit disks.

(II) A more sophisticated LP-based algorithm with ratio 0.6495 for disjoint unit disks
that uses a linear number of variables and constraints, and runs in polynomial time. The
algorithm introduces a novel technique which combines linear programming and projections
for approximating distances.

The previous best approximation ratio for disjoint unit disks was 1

2
. Our results give a

partial answer to an open question raised by Cabello [3], who asked whether 1

2
could be

improved.

1. Introduction

Let R be a family of n subsets of a metric space. The problem of dispersion in R is
that of selecting n points, one in each subset, such that the minimum inter-point distance is
maximized. This dispersion problem was introduced by Fiala et al. [6] as “systems of distant
representatives”, generalizing the classic problem “systems of distinct representatives”. An
especially interesting version of the dispersion problem, which has natural applications to
wireless networking and map labeling, is in a geometric setting where R is a set of unit
disks in the plane.

Fiala et al. [6] showed that dispersion in (not necessarily disjoint) unit disks is NP-hard.
It is not difficult to modify their construction, which gives a reduction from Planar-3SAT,
to show that dispersion in disjoint unit disks is also NP-hard. Moreover, by a slackness
argument [7, 8], the same construction also implies that the problem is APX-hard; i.e, unless
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P = NP, the problem does not admit any polynomial-time approximation scheme. On the
positive side, Cabello [3] presented a quadratic-time approximation algorithm with ratio
0.4465 . . . (1/2.2393 . . .) for dispersion in not necessarily disjoint unit disks. For dispersion
in disjoint unit disks, Cabello [3] noticed that a naive algorithm called Centers, which
simply selects the centers of the given disks as the points, gives a 1

2 -approximation.
We first introduce some preliminaries. For two points, p = (xp, yp) and q = (xq, yq), let

|pq| denote the Euclidean distance between them: |pq| =
√

(xp − xq)2 + (yp − yq)2. A unit
disk is a disk of radius one. Let the distance between two disks be the distance between
their centers; e.g., the distance between two tangent disks is 2. Let D be a set of n disjoint
unit disks in the plane. Let δ be the minimum pairwise distance of the disks in D; clearly
δ ≥ 2. The algorithm Centers, by the obvious inequalities APX ≥ δ and OPT ≤ δ + 2,
achieves an approximation ratio

APX

OPT
≥ δ

δ + 2
≥ 1

2
.

Observe that the approximation ratio of Centers gets better as δ increases; in fact, it
can get arbitrarily close to 1, if δ is large enough. Cabello asked whether this trivial 1

2 -
approximation can be improved for disjoint unit disks [3, p. 72].

We start with a very simple and efficient algorithm that achieves a ratio better than 1
2

for dispersion in disjoint unit disks, and a ratio slightly better than 0.4465 for dispersion in
not necessarily disjoint unit disks:

Theorem 1.1. There is an O(n log n)-time approximation algorithm with ratio 0.5110 for
dispersion in n disjoint unit disks. In combination with an algorithm of Cabello, it yields a
O(n2)-time algorithm with ratio of 0.4487 for dispersion in n not necessarily disjoint unit
disks.

Using linear programming, we then obtain the following substantially better approxi-
mation for dispersion in disjoint unit disks:

Theorem 1.2. There is an LP-based approximation algorithm, with O(n) variables and
constraints, and running in polynomial time, that achieves approximation ratio 0.6495, for
dispersion in n disjoint unit disks.

It is likely that our method for proving Theorem 1.2, which uses projections for ap-
proximating distances, and linear programming for optimization, is also applicable to other
optimization problems involving distances.

Related work. The problem studied in this paper, dispersion in unit disks, is related to
a few other problems in computational geometry. We mention three results that are more
closely related to ours:

(1) For labeling n points with n disjoint congruent disks, each point on the boundary
of a distinct disk, such that radius of the disks is maximized, Jiang et al. [8] pre-
sented a 1

2.98+ε
-approximation algorithm, and proved that the problem is NP-hard

to approximate with ratio more than 1
1.0349 .

(2) For packing of n axis-parallel congruent squares (congruent disks in the L∞ metric)
in the same rectilinear polygon such that the side length of the squares is maximized,
Baur and Fekete [1] presented a 2

3 -approximation algorithm, and proved that the

problem is NP-hard to approximate with ratio more than 13
14 .
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(3) A 2
3 -approximation algorithm for a related problem of packing n unit disks in a

rectangle without overlapping an existent set of m unit disks in the same rectangle,
has been obtained by Benkert et al. [2].

(4) Given n points in the plane, Demaine et al. [4] considered the problem of moving
them to an independent set in the unit disk graph metric: that is, each point has to
move to a position such that all pairwise distances are at least 1, and such that the
maximum distance a point moved is minimized. They presented an approximation
algorithm, which achieves a good ratio if the points are initially “far from” an
independent set. However the approximation ratio becomes unbounded for instances
that are “very close to” an independent set. Observe that in this problem, the
optimum may be arbitrarily small, i.e., arbitrarily close to 0.

2. A simple approximation algorithm for unit disks

In this section we present a very simple approximation algorithm A1 for dispersion in
(not necessarily disjoint) unit disks, and prove Theorem 1.1. The idea of the algorithm is as
follows. Recall that δ is the minimum pairwise distance among the unit disks. Let σ = σ(δ)
be a positive parameter to be specified; in particular, at the threshold distance δ = 2 for
disjoint unit disks, we have σ(2) = 2.0883 . . ., which is only slightly larger than δ. Consider
the distance graph of the unit disks for the parameter σ, which has a vertex for each disk,
and an edge between two vertices if and only if the corresponding disks have distance at
most σ. If there is a vertex of degree at least two in the distance graph, that is, if there is
a disk close to two other disks, then a packing argument shows that the minimum pairwise
distance of any three points in the three disks must be small. Thus simply placing the
points at the disk centers already achieves a good approximation ratio. Otherwise, every
vertex in the distance graph has degree at most one, and the edges form a matching. In this
case, the disks that are close to each other are grouped into pairs. The distance between
the two points in each pair can be slightly increased by moving them away from the disk
centers, at the cost of possibly decreasing the distances between points in different pairs.

Let D be a set of n (not necessarily disjoint) unit disks in the plane. The algorithm A1

consists of three steps:

1. Compute the minimum pairwise distance δ of the disks in D, and for each disk, find
the two disks closest to it.

2. If the distance from some disk to its second closest disk is at most σ = σ(δ), return
the n disk centers as the set of points. Otherwise, proceed to the next step.

3. Place a point at the center of each disk. Then, for each disk, if the distance from the
disk to its closest disk is at most σ, move the point away from the closest disk for
a distance of (σ − δ)/4, so that the two points in each close pair of disks are moved
in opposite directions; we will show that δ < σ < δ + 4, thus the distance (σ − δ)/4
is between 0 and 1, and each point remains in its own disk. Finally, return the set
of points.

Algorithm analysis. The bottleneck for the running time of the algorithm A1 is simply
the computation of the two closest disks from each disk in step 1, which takes O(n log n)
time [5, p. 306]. The other two steps of the algorithm can clearly be done in O(n) time.
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For the proof of the approximation ratio, define the following function f(s) for s ≥ 0:

f(s) =

√

(1 + s)2 + 1/2 +
√

3(1 + s)2 − 3/4. (2.1)

The function f(·) is increasing and f(0) =
√

3. The justification for step 2 of the algorithm
A1 is the following packing lemma (its proof is omitted). Here the disk with center O is
close to two other disks with centers P and Q, respectively; see Figure 1.
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Figure 1: (a) A linkage of the five segments AP, BQ, CO, OP, OQ for three points A, B, C in three
unit disks with centers P, Q, O, respectively. (b) The extreme configuration: A, P, O
are collinear, B, Q, O are collinear, |AP | = |BQ| = |CO| = 1, |OP | = |OQ| = s,
|AC| = |BC| = |AB| = t.

Lemma 2.1. Let A,B,C be three points in three unit disks with centers P,Q,O, respec-
tively. Let s = max{|OP |, |OQ|} and t = min{|AC|, |BC|, |AB|}. Then t ≤ f(s).

Consider the following equation in σ:

δ

f(σ)
=

σ + δ

2(δ + 2)
. (2.2)

The next lemma (its proof is omitted) confirms that σ exists and lies in the desired range:

Lemma 2.2. There is a unique solution σ to (2.2). Moreover, δ < σ < δ + 4.

We now analyze the approximation ratio of the algorithm A1. Let APX be the mini-
mum pairwise distance of the points returned by the algorithm. Let OPT be the minimum
pairwise distance of the optimal set of points. Let

c = c(δ) =
δ

f(σ)
=

σ + δ

2(δ + 2)
. (2.3)

We next prove that APX ≥ c · OPT by considering two cases:

• If the algorithm returns the n disk centers as the set of points in step 2, then there
is a disk such that the distances from the disk to its two closest disks are at most
σ. By Lemma 2.1, we have OPT ≤ f(σ). Since APX = δ, it follows that

APX

OPT
≥ δ

f(σ)
. (2.4)
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• If the algorithm proceeds to step 3, then the distance from each disk to its second
closest disk is more than σ. If two disks have distance at most σ, then they must be
the closest disks of each other, and the movements of points in step 3 ensure that
their two points have distance at least δ + 2(σ − δ)/4 = (σ + δ)/2. On the other
hand, if two disks have distance more than σ, then after the movements their two
points have distance at least σ − 2(σ − δ)/4 = (σ + δ)/2. Thus APX ≥ (σ + δ)/2.
Since OPT ≤ δ + 2, it follows that

APX

OPT
≥ σ + δ

2(δ + 2)
. (2.5)

By (2.3), (2.4), and (2.5), the algorithm A1 achieves an approximation ratio of c(δ)
for δ ≥ 0. It can be verified that c(δ) is an increasing function of δ for δ ≥ 0. Thus, for
dispersion in disjoint unit disks, the approximation ratio is

c(δ) ≥ c(2) = 0.5110 . . . , for δ ≥ 2.

For dispersion in not necessarily disjoint unit disks, Cabello [3] presented a hybrid
algorithm that applies two different algorithms Placement and Centers then returns
the better solution. We now briefly review Cabello’s analysis for the hybrid algorithm. Let
x = OPT/2 (the scaling here is necessary because Cabello defined a unit disk as a disk of
unit diameter instead of unit radius). The algorithm Placement, which runs in O(n2)
time, achieves a ratio of

c1(x) =
−
√

3 +
√

3x +
√

3 + 2x − x2

4x
, for 1 ≤ x ≤ 2,

and a ratio of at least 1
2 for 0 ≤ x ≤ 1. The algorithm Centers achieves a ratio of

c2(x) =
x − 1

x
, for x ≥ 1,

which is at least 1
2 for x ≥ 2. Refer to Figure 2. Since c1(x) is decreasing in x and c2(x)

is increasing in x, the minimum approximation ratio of the hybrid algorithm occurs at the
intersection of the two curves c1(x) and c2(x) for 1 ≤ x ≤ 2: precisely, c1(x) = c2(x) =
0.4465 . . . (1/2.2393 . . .) for x = 1.8068 . . ..

 2
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Figure 2: Approximation ratios c1(x), c2(x), and c3(x) for 1 ≤ x ≤ 2. The solid decreasing curve
is c1(x). The dashed increasing curve is c2(x). The solid increasing curve is c3(x).

Now define
c3(x) = c(2x − 2), for x ≥ 1.
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From the obvious inequality OPT ≤ δ + 2, we have δ ≥ OPT− 2 = 2x− 2. Recall that the
function c(δ) is increasing in δ. Thus our algorithm A1 achieves an approximation ratio of
at least c(δ) ≥ c(2x − 2) = c3(x) for x ≥ 1. It can be verified that c2(x) = c3(x) = 0 for
x = 1 and 0 < c2(x) < c3(x) < 1 for x > 1. Refer back to Figure 2. Replace the algorithm
Centers by our algorithm A1 in the hybrid algorithm. Then the two curves c1(x) and c3(x)
intersects at x = 1.7750 . . . and, correspondingly, the minimum approximation ratio of the
new hybrid algorithm is 0.4487 . . . (1/2.2284 . . .). This completes the proof of Theorem 1.1.

3. An LP-based approximation algorithm for disjoint unit disks

In this section we present and analyze approximation algorithm A2. We first introduce
some definitions and notations. Let Ω1, . . . ,Ωn be n pairwise disjoint unit disks, and let oi

be the center of Ωi. Denote by δ the minimum pairwise distance among the disks; clearly,
δ ≥ 2. The algorithm computes δ in O(n log n) time in a preliminary step.

Let r = r(δ), where 0 < r ≤ 1, be a parameter that will be chosen later, in order to
maximize the approximation ratio. For i = 1, . . . , n, let ωi ⊂ Ωi be a concentric disk of
radius r. Let αij ∈ [−π/2, π/2) be the direction (or angle) of the line determined by oi and
oj . For α ∈ [−π/2, π/2), let ℓα be any line of direction α. For two vectors u = (u1, u2), and
v = (v1, v2), their dot product is 〈u · v〉 = u1v1 + u2v2. The scalar projection of v onto u is
given by the formula

projuv =
〈u · v〉
|u| . (3.1)

For two points, p and q, let projα(p, q) denote the length of the projection of the segment
pq onto a line ℓα of direction α, i.e., onto the vector (cos α, sin α).

Our approximation algorithm can be viewed as a two step process: Step 1. We first
restrict the feasible region of each point pi, from the given unit disk Ωi to a smaller concentric
disk ωi of radius r, 0 < r < 1. Further, we approximate each smaller disk ωi by an inscribed
regular polygon with sufficiently many sides (say, 64). For convenience however, we still
use “disks” when referring to the convex polygons approximating (inscribed in) the smaller
disks. Note that this first step is only conceptual. Step 2. We find a good approximation
for the dispersion problem constrained to the smaller size disks.

The idea is as follows: Observe that after Step 1, the centers of the original disks
Ωi are still in the feasible regions for each of the n points. So the 1

2 approximation that
we could easily achieve earlier, is still attainable. Secondly, observe that if r is sufficiently
small, then the distance between two points (in two smaller disks) can be well approximated
by the projection of the segment connecting the two points onto the line connecting the
centers of the two disks. The length of each such projection can be expressed as a linear
combination of the coordinates of the two points, and we can use linear programming in
order to maximize the smallest projection length of an inter-point distance. So all the
constraints in the dispersion problem will be expressed as linear inequalities, at the cost of
finding only an approximate solution. The resulting approximation ratio of the algorithm
is the product of the ratios achievable in Step 1 and Step 2. In the end, we select r so as
to maximize the overall ratio. We now present the technical details.

We start with a technical lemma that guarantees that a large fraction of the distance
between two points in two smaller disks is preserved by projection onto the line through
the two disk centers (Step 2).
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Lemma 3.1. Let ωi, ωj be two congruent disjoint disks of radius r, where 0 < r ≤ 1, at
distance d ≥ δ ≥ 2. Let ℓij be the line determined by oi and oj , and ℓ be a line that intersects

both ωi and ωj. Let α be the (nonnegative) angle between ℓij and ℓ. Then cos α ≥
√

d2−4r2

d
≥

√
δ2−4r2

δ
.

Proof. We can assume w.l.o.g. that ℓij is horizontal; see Figure 3. By symmetry, we can

ωj

ℓij

ℓ

ojoi

ωi

p

Figure 3: Lemma 3.1.

assume that ℓ has positive slope. We claim that if α ∈ [0, π/2] is maximized, then ℓ must
be tangent to ωi and ωj. Assume for instance that ℓ is not tangent to ωj, as illustrated in
the figure. Select a point p on ℓ left of the intersections points of ℓ with ∂ωi, and ∂ωj, and
rotate ℓ counterclockwise around p until ℓ becomes tangent to ωj. The angle α increases
in this operation, a contradiction of the assumed maximality. We conclude that ℓ must be

tangent to ωi and ωj in the first place, as desired. The angle formula cos α =
√

d2−4r2

d
is

now easily verified to hold in the tangent case.

The next two lemmas guarantee that a large fraction of OPT survives after restricting
the feasible regions to smaller disks (Step 1).

Lemma 3.2. Consider two disjoint unit disks Ωi and Ωj at distance |oioj| = d. Let pi ∈ Ωi

and pj ∈ Ωj be two points. Let qi ∈ ωi be the point on oipi at distance r|oipi| from oi.
Similarly define qj ∈ ωj as the point on ojpj at distance r|ojpj| from oj. Then

|qiqj|
|pipj|

≥ d + 2r

d + 2
. (3.2)

This inequality is tight.

Proof. We can assume w.l.o.g. that oi = (0, 0) and oj = (d, 0), where d ≥ 2. To represent
points, we use complex numbers in the proof. The point pi is represented by z1, where
z1 ∈ C, with |z1| ≤ 1; hence qi is represented by rz1. The point pj is represented by d + z2,
where z2 ∈ C, with |z2| ≤ 1; hence qj is represented by d + rz2. With this notation, the
claimed inequality is

|d + rz2 − rz1|
|d + z2 − z1|

≥ d + 2r

d + 2
. (3.3)

Write z = z2 − z1, and note that |z| ≤ |z1| + |z2| ≤ 2. Inequality (3.3) can be written
now as

|d + rz|
|d + z| ≥ d + 2r

d + 2
. (3.4)
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Let z = a(cos α + i sin α), be the complex number representation of z, where 0 ≤ a ≤ 2,
and α ∈ [0, 2π]. We have

|d + z|2 = (a cos α + d)2 + a2 sin2 α = a2 + d2 + 2ad cos α.

|d + rz|2 = (ar cos α + d)2 + a2r2 sin2 α = a2r2 + d2 + 2adr cos α.

Inequality (3.4) is thus equivalent to the following inequality:

(d + 2)2(a2r2 + d2 + 2adr cos α) ≥ (d + 2r)2(a2 + d2 + 2ad cos α). (3.5)

After performing the multiplications, canceling the same terms, and simplifying by
(1 − r), this amounts to verifying that

4d3 + 4d2(1 + r) + 8adr cos α ≥ a2d2(1 + r) + 2ad3 cos α + 4a2dr. (3.6)

Observe that
4d2(1 + r) ≥ a2d2(1 + r).

It remains to show that (after simplifying by 2d):

2d2 + 4ar cos α ≥ ad2 cos α + 2a2r. (3.7)

This last inequality is equivalent to

2(d2 − a2r) ≥ a(d2 − 4r) cos α. (3.8)

Inequality (3.8) is clearly satisfied when cos α < 0, so assume now that cos α ≥ 0. Obviously
2 ≥ a cos α, and from a2 ≤ 4, we also get

d2 − a2r ≥ d2 − 4r.

Putting these two inequalities together (taking the product) gives inequality (3.8), hence
inequality (3.2) is proved.

To see that (3.2) is tight, take pi = (−1, 0), and pj = (d + 1, 0), i.e., all six points
pi, pj , oi, oj , qi, qj are on the same line. The proof of Lemma 3.2 is now complete.

Lemma 3.3. Let p1, . . . , pn be n points, where pi ∈ Ωi, such that for any i 6= j, |pipj| ≥ d,
for some d > 0. Then there exist n points, q1, . . . , qn, such that qi ∈ ωi, and for any i 6= j,
|qiqj| ≥ δ+2r

δ+2 · d.
Proof. Let qi be defined as in Lemma 3.2. It suffices to show that

|qiqj|
|pipj|

≥ δ + 2r

δ + 2
.

By Lemma 3.2,
|qiqj|
|pipj|

≥ |oioj | + 2r

|oioj| + 2
.

Since |oioj| ≥ δ, we obviously have

|oioj| + 2r

|oioj | + 2
≥ δ + 2r

δ + 2
.

By combining the two inequalities the lemma follows.
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For δ ≥ 2, and 0 < r ≤ 1, let

c1(δ, r) =
δ + 2r

δ + 2
, c2(δ, r) =

√
δ2 − 4r2

δ
.

Observe that c1(δ, r) ≤ 1, and c2(δ, r) ≤ 1. We will show that Step 1 and Step 2 can
be implemented as to achieve approximation ratios c1(δ, r) and c2(δ, r), respectively. The
resulting overall approximation ratio is then

c(δ, r) = c1(δ, r) · c2(δ, r),

and it remains to choose r = r(δ) over the whole range δ ≥ 2, so as to maximize c(δ, r).

Selecting r(δ). For a fixed δ ≥ 2, let

f(r) = c(δ, r) = c1(δ, r) · c2(δ, r) =
δ + 2r

δ + 2
·
√

δ2 − 4r2

δ
.

Note that r ≤ 1 ≤ δ
2 , hence f(r) is well defined.

Consider first the case 2 ≤ δ < 4. Assume further that r < 1, so that
√

δ2 − 4r2 and
f(r) are strictly positive. The derivative of f(r) is

f ′(r) =
2(δ + 2r)(δ − 4r)

δ(δ + 2)
√

δ2 − 4r2
. (3.9)

The function f(r) is maximized by setting f ′(r) to zero, which yields r = δ
4 , (note that

r < 1), and correspondingly,

c

(

δ,
δ

4

)

= c1

(

δ,
δ

4

)

· c2

(

δ,
δ

4

)

=
3δ

2
· 1

δ + 2
·
√

3

4
=

3
√

3

4
· δ

δ + 2
.

Observe that c(δ, δ
4) ≥ c(2, 1

2 ) = 0.6495 . . ., in our interval 2 ≤ δ < 4.
Consider now the case δ ≥ 4, and assume further that r ≤ 1. Since δ ≥ 4 > 2, the

expression of the derivative f ′(r) in equation (3.9) is still valid. We have f ′(r) > 0, hence
f(r) is an increasing function, so

c(δ, r) = f(r) ≤ f(1) =

√
δ2 − 4

δ
.

Thus for δ ≥ 4, we set r = 1. To summarize, we set

r = r(δ) =

{

δ
4 if 2 ≤ δ ≤ 4,

1 if δ ≥ 4.
(3.10)

Note that r(δ) is a continuous function over the entire range δ ≥ 2. The resulting
overall approximation ratio of the algorithm, denoted by c = c(δ), is at least

c(δ) =

{

3
√

3
4 · δ

δ+2 if 2 ≤ δ ≤ 4,
√

δ2−4
δ

if δ ≥ 4.
(3.11)

Define also for future reference the approximation ratios achieved in Step 1 and Step

2 of the algorithm, based on our previous choice of r, depending on δ.

c1 = c1(δ) =

{

3
2 · δ

δ+2 if 2 ≤ δ ≤ 4,

1 if δ ≥ 4.
(3.12)
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c2 = c2(δ) =

{√
3

2 if 2 ≤ δ ≤ 4,
√

δ2−4
δ

if δ ≥ 4.
(3.13)

In particular, for δ = 2, we have

r =
1

2
, c1 =

3

4
, c2 =

√
3

2
,

hence the overall ratio for Step 1 and Step 2 is c1c2 = 3
√

3
8 .

To implement Step 2, we are lead to the following linear program, with the constraints
expressed symbolically at this point. LP1 maximizes the minimum projection on the set of
lines connecting the centers of the disks; that is, for each pair of disks, the length of the
projection of the segment connecting the corresponding two points on the line connecting
the two disk centers.

maximize z (LP1)

subject to

{

pi ∈ ωi, 1 ≤ i ≤ n
projαij

(pi, pj) ≥ z, 1 ≤ i < j ≤ n

Approximating the small disks by regular polygons. Let λ > 0 be small. Recall that
r = r(δ) is a fixed precomputed value. Select k large enough so that the apothem of the
regular k-gon inscribed in a circle of radius r is at least r(1 − λ). Recall that the apothem
length a is given by the formula: a = r cos π

k
, so we need to choose k so that

cos
π

k
≥ 1 − λ. (3.14)

The symbolic constraint pi ∈ ωi is replaced by the k linear constraints defining the sides of
the regular polygon (the polygon is the intersection of k half-planes). Let ε > 0 be small.
By setting λ = λ(ε) sufficiently small, we can ensure that the approximation ratio remains

at least (1 − ε)3
√

3
8 , say at least 0.649. Let now

c3(δ, r) =
δ + 2r(1 − λ)

δ + 2r
. (3.15)

Replacing the small disks of radius r by regular polygons with k sides incurs only a
slight loss in the approximation ratio for k sufficiently large, since the disks of radii a are
contained in the regular polygons with k sides, and a is close to r. Analogous to inequality
(3.2) in Lemma 3.2, the setting in (3.15) is justified, and the overall approximation ratio
of the algorithm is at least c3(δ, r) · c(δ, r). Recall the setting of r(δ) given by (3.10). For
2 ≤ δ ≤ 4, we have

c3

(

δ,
δ

4

)

=
δ + 2 δ

4(1 − λ)

δ + 2 δ
4

= 1 − λ

3
.

For δ ≥ 4, we have

c3(δ, 1) =
δ + 2(1 − λ)

δ + 2
= 1 − 2λ

δ + 2
≥ 1 − λ

3
.
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Consequently, to ensure that the approximation ratio of the algorithm is at least (1 −
ε) · c(δ) over the entire range δ ≥ 2, let λ = 3ε, and choose k such that (recall (3.14)):

cos
π

k
≥ 1 − 3ε.

For instance, setting ε = 7
10000 , and k = 50 satisfies the above inequality and ensures

that the approximation ratio remains at least (1 − ε)3
√

3
8 ≥ 0.649.

Writing the linear constraints. Implement each symbolic constraint projαij
(pi, pj) ≥ z

as follows: Let oi = (ξi, ηi) be coordinates of oi, for i = 1, . . . , n (part of the input). For
simplicity, assume that the disk centers are non-decreasing order of their x-coordinates:
ξ1 ≤ ξ2 ≤ . . . ≤ ξn. Consider a pair i, j, where i < j. Recall that αij ∈ (−π/2, π/2) is the
angle of the line determined by oi and oj. We have

cos αij =
ξj − ξi

|oioj|
, sinαij =

ηj − ηi

|oioj |
. (3.16)

Let aij = (cos αij , sin αij), so that |aij | = 1. Let sij = (xj − xi, yj − yi). According to (3.1),

projαij
(pi, pj) =

〈aij · sij〉
|aij |

= 〈aij · sij〉 = (xj − xi) cos αij + (yj − yi) sin αij.

Consequently, for each pair i, j, where i < j, generate the constraint:

(xj − xi) cos αij + (yj − yi) sin αij ≥ z;

where cos αij and sinαij are as in (3.16).

Establishing the approximation ratio.

Lemma 3.4. Let p1, . . . , pn be n points, where pi ∈ ωi, such that for any i 6= j, |pipj | ≥ d,
for some d > 0. Then for any i 6= j, projαij

(pi, pj) ≥ c2 · d.
Proof. Observe that the line determined by the points pi and pj intersects both disks ωi

and ωj. The claimed inequality is now immediate from Lemma 3.1.

Lemma 3.5. Let p1, . . . , pn be n points, where pi ∈ ωi, such that for any i 6= j, projαij
(pi, pj) ≥

d, for some d > 0. Then, for any i 6= j, |pipj| ≥ d.

Proof. Obviously, |pipj| ≥ projαij
(pi, pj) ≥ d, as required.

Lemma 3.6. The ratio of the approximation algorithm A2 is at least (1 − ε)3
√

3
8 , for any

given ε > 0. (3
√

3
8 = 0.6495 . . .) Moreover, if δ ≥ 2 is the minimum distance among the

unit disk centers, the approximation ratio is at least (1 − ε) · c(δ) ≥ (1 − ε)3
√

3
8 , where c(δ)

is given by (3.11).

Proof. Let p1, . . . , pn be n points, where pi ∈ Ωi, such that for any i 6= j, |pipj| ≥ d, for
some d > 0. In other words, assume that OPT ≥ d. By Lemma 3.3, there exist n points,
q1, . . . , qn, such that qi ∈ ωi, and for any i 6= j, |qiqj| ≥ c1 · d. (This inequality is trivial for
δ ≥ 4, since we set r = 1, and c1 = 1 in that case; refer to (3.12).) By Lemma 3.4, for any
i 6= j, projαij

(qi, qj) ≥ c2 ·c1 ·d = c(δ) ·d. Recall that the linear program (LP1) finds a point

set {pi = (xi, yi), i = 1, . . . , n}, for which the minimum projection is maximized. However,
the feasible regions for each point are the slightly smaller inscribed regular polygons rather
than the small disks. By Lemma 3.5, and the preceding discussion, the computed point set
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satisfies that, for any i 6= j, |pipj| ≥ (1 − ε) · c(δ) · d. Hence the approximation algorithm

has ratio at least (1 − ε) · c(δ) ≥ (1 − ε)3
√

3
8 , as claimed.

Reducing the number of constraints to O(n). Recall that OPT ≤ δ+2. So there is no
need to write any constraints for pairs of disks at distance δ + 4 or more, since the distance
between the corresponding points is at least δ + 2. An easy packing argument shows that
the number of pairs of disks at distance at most δ + 4 is only O(n).

Solving the LP. The constraints of the LP involve irrational numbers, and hence it cannot
be claimed that the original LP is solvable in polynomial time. However, it is enough to solve
the LP up to some precision. For this, it is enough to approximate the numbers involved in
the constraints up to some precision, which is polynomial in the error of the output. There
are bounds on how many bits of precision are needed in the constraints to obtain a bound
on the precision of the solution, and they are polynomially related [9]. Consequently, since
we are dealing with ε-approximation anyway, we can encode each coefficient into a rational

number with (1/ε)O(1) bits. Then, by our choice of ε, each coefficient has a constant number
of bits. Thus the LP algorithm runs in polynomial time; e.g., O(n4) or O(n3.5) using interior
point methods.
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