
Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 263-274
www.stacs-conf.org

PLANAR SUBGRAPH ISOMORPHISM REVISITED

FREDERIC DORN 1

1 Department of Informatics, University of Bergen, Norway
E-mail address: frederic.dorn@ii.uib.no

Abstract. The problem of Subgraph Isomorphism is defined as follows: Given a pat-
tern H and a host graph G on n vertices, does G contain a subgraph that is isomorphic
to H? Eppstein [SODA 95, J’GAA 99] gives the first linear time algorithm for subgraph
isomorphism for a fixed-size pattern, say of order k, and arbitrary planar host graph, im-

proving upon the O(n
√

k)-time algorithm when using the “Color-coding” technique of Alon

et al [J’ACM 95]. Eppstein’s algorithm runs in time k
O(k)

n, that is, the dependency on

k is superexponential. We improve the running time to 2O(k)
n, that is, single exponential

in k while keeping the term in n linear. Next to deciding subgraph isomorphism, we can
construct a solution and count all solutions in the same asymptotic running time. We may
enumerate ω subgraphs with an additive term O(ωk) in the running time of our algorithm.
We introduce the technique of “embedded dynamic programming” on a suitably structured
graph decomposition, which exploits the number and topology of the underlying drawings
of the subgraph pattern (rather than of the host graph).

Introduction

In the literature, we often find results on polynomial time or even linear time algorithms for
NP-hard problems. Take for example the NP-complete problem of computing an optimal
tree-decomposition of a graph. Bodlaender [3] gives a linear time algorithm—restricted
to graphs of constant treewidth. The Graph Minor Theory by Robertson and Seymour
implies amongst others that there is an O(n3) algorithm for the disjoint path problem,
that is for finding disjoint paths between a constant number of terminals. Taking a closer
look at such results, one notices that a function exponential in size of some constant c is
hidden in the O-notation of the running time—here, c is the treewidth and the number of
terminals, respectively. In another line of research, parameterized complexity, the primary
goal is to rather find algorithms that minimize the exponential term of the running time—
the exponential function of the problem parameter k. The first step here is to prove that
such an algorithm with a separate exponential function exists, that is, that the studied
problem is fixed parameter tractable (FPT) [13, 16, 21]. Such problem has an algorithm

with time complexity bounded by a function of the form f(k) · nO(1), where the parameter

1998 ACM Subject Classification: F.2.2;G.2.1;G.2.2.
Key words and phrases: Graph algorithms; Subgraph Isomorphism; NP-hard problems; Dynamic pro-

gramming; Topological graph theory.
Supported by the Research Council of Norway.

c© Frederic Dorn
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2460

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

264 FREDERIC DORN

function f is a computable function only depending on k. The second step in the design of
FPT-algorithms is to decrease the growth rate of the parameter function.

We can identify two different trends in which exact algorithms are improved. Either one
decreases the degree of the polynomial term in the asymptotic running time, or one focusses
on obtaining parameter functions with better exponential growth. In the present work, we
achieve both goals for the computational problem Planar Subgraph Isomorphism.

Subgraph Isomorphism generalizes many important graph problems, such as Hamil-

tonicity, Longest Path, and Clique. It is known to be NP -complete, even when re-
stricted to planar graphs [18]. Until now, the best known algorithm to solve Subgraph

Isomorphism, that is to find a subgraph of a given host graph isomorphic to a pattern
H on k vertices, is the näıve exhaustive search algorithm with running time O(nk) and no
FPT-algorithm can be expected here [13]. For a pattern H of treewidth at most t, Alon

et al. [1] give an algorithm of running time 2O(k)nO(t). For Planar Subgraph Isomor-

phism, given planar pattern and input graph, some considerable improvements have been
made mostly during the 90’s ([23], [1]). The current benchmark has been set by Eppstein [14]

to kO(k)n, by employing graph decomposition methods, similar to the Baker-approach [2]
for approximating NP-complete problems on planar graphs. Eppstein’s algorithm is actu-
ally the first FPT-algorithm for Planar Subgraph Isomorphism with k as parameter.
Eppstein poses three open problems: a) whether one can extend the technique in [1] to im-

prove the dependence on the size of the pattern from kO(k) to 2O(k) for the decision problem
of subgraph isomorphism; and whether one can achieve similar improvements, b) for the
counting version, and c) for the listing version of the subgraph isomorphism problem.

Our results. In this work, we do not only achieve this single exponential behavior in k for
all three problems—without applying the randomized coloring technique—we also keep the
term in n linear. That is, we give an algorithm for Planar Subgraph Isomorphism for a
pattern H of order k with running time 2O(k)n. Next to deciding subgraph isomorphism, we
can construct a solution and count all solutions in the same asymptotic running time. We
may list ω subgraphs with an additive term O(ωk) in the running time of our algorithm. Our
algorithm also improves the time complexity of [17] for large patterns of size k ∈ o(

√
n log n).

The novelty of our result comes from embedded dynamic programming, a technique
we find interesting on its own. Here, one decomposes the graph by separating it into
induced subgraphs. In the dynamic programming step, one computes partial solutions for
the separated subgraphs, that are updated to an overall solution for the whole graph. In
ordinary dynamic programming, one would argue how the subgraph pattern hits separators
of the host graph. Instead, in embedded dynamic programming for subgraph isomorphism,
we proceed exactly the opposite way: we look at how separators can be routed through
the subgraph pattern. As a consequence, we bound the number of partial solutions by a
function of both the separator size of the host graph and the pattern size—as it turns out,
for the planar subgraph isomorphism problem, that function is single exponential in the
number of vertices of the pattern. To obtain a good bound on the parameter function, we
apply several fundamental enumerative combinatorics results in the technical sections of
this work. Next to the number of face-vertex sequences in embedded graphs, these counting
results give an upper bound on the number of planar drawings of the pattern.

Our algorithm is divided into two parts with the second part being the aforementioned
embedded dynamic programming. For keeping the time complexity of our algorithm linear

PLANAR SUBGRAPH ISOMORPHISM REVISITED 265

in the size of the host graph, we give a fast method for computing sphere-cut decomposi-
tions—natural extensions of tree-decompositions to plane graphs—with separators of size
linearly bounded by the size of the subgraph pattern.

Theorem 0.1. Let G be a planar graph on n vertices and H a pattern of order k. We can
decide if there is a subgraph of G that is isomorphic to H in time 2O(k)n. We find subgraphs
and count subgraphs of G isomorphic to H in time 2O(k)n and enumerate ω subgraphs in
time 2O(k)n + O(ωk).

Let us mention that for k-Longest Path on planar graphs, the authors of [12] give

the first algorithm with subexponential running time behaviour, namely 2O(
√

k)n + O(n3),
employing the techniques Bidimensionality and topological dynamic programming. Bidi-
mensionality Theory employs results of Graph Minor Theory for planar graphs [24] and
other structural graph classes to algorithmic graph theory (entry [6], for a survey [7]). Un-
fortunately, Bidimensionality does only work for finding specific patterns in a graph, such
as k-paths, but not for subgraph isomorphism problems in general. For a survey on other
planar subgraph isomorphism problems with restricted patterns, please consider [14].

Organization. Following the definitions in Section 1, we state in Section 2 how to obtain
a sphere-cut decomposition of small width. In Section 3 we restrict Planar Subgraph

Isomorphism to Plane Subdrawing Equivalence. We give some technical lemmas in
Section 3.1 to bound the number of ways a separator of the sphere-cut decomposition can be
routed through a plane pattern. We describe embedded dynamic programming in Section 3.2
and subsume the entire algorithm for Plane Subdrawing Equivalence in Section 3.3.
In Section 4 we extend our algorithm for solving Planar Subgraph Isomorphism.

1. Preliminaries

Subgraph isomorphism. Let G,H be two graphs. We call G and H isomorphic if there
exists a bijection ν : V (G) → V (H) with {v,w} ∈ E(G) ⇔ {ν(v), ν(w)} ∈ E(H). We call
H subgraph isomorphic to G if there is a subgraph H ′ of G isomorphic to H.

Branch decompositions. A branch decomposition 〈T, µ〉 of a graph G consists of an un-
rooted ternary tree T (internal vertex-degree 3) and a bijection µ : L → E(G) from the
set L of leaves of T to the edge set of G. We define for every edge e of T the middle
set mid(e) ⊆ V (G) as follows: Let T1 and T2 be the two connected components of T \ {e}.
Then let Gi be the graph induced by the edge set {µ(f) : f ∈ L∩V (Ti)} for i ∈ {1, 2}. The
middle set is the intersection of the vertex sets of G1 and G2, i.e., mid(e) := V (G1)∩V (G2).
The width bw of 〈T, µ〉 is the maximum order of the middle sets over all edges of T , i.e.,
bw(〈T, µ〉) := max{|mid(e)| : e ∈ T}. An optimal branch decomposition of G is defined by
a tuple 〈T, µ〉 which provides the minimum width, the branchwidth bw(G).

Plane graphs and equivalent drawings. Let Σ be the unit sphere. A planar drawing
or simply drawing of a graph G with vertex set V (G) and edge set E(G) maps vertices to
points in the sphere, and edges to simple curves between their end vertices, such that edges
do not cross, except in common end vertices. A plane graph is a graph G together with a
planar drawing. A planar graph is a graph that admits a planar drawing. For details, see
e.g. [9]. The set of faces F (G) of a plane graph G is defined as the union of the connected
regions of Σ\G. A subgraph of a plane graph G, induced by the vertices and edges incident

266 FREDERIC DORN

to a face f ∈ F (G), is called a bound of f . If G is 2-connected, each bound of a face is
a cycle. We call this cycle face-cycle (for further reading, see e.g. [9]). For a subgraph
H of a plane graph G, we refer to the drawing of G reduced to the vertices and edges of
H as a subdrawing of G. Consider any two drawings G1 and G2 of a planar graph G. A
homeomorphism of G1 onto G2 is a homeomorphism of Σ onto itself which maps vertices,
edges, and faces of G1 onto vertices, edges, and faces of G2, respectively. We call two planar
drawings equivalent, if there is a homeomorphism from one onto the other.

Theorem 1.1. e.g. [9] Every 3-connected planar graph has a unique drawing in a sphere
Σ up to homeomorphism.

Proposition 1.2. e.g. [22] Every planar n-vertex graph has 2O(n) non-equivalent drawings.

Remark 1.3. Let G and H be two plane graphs. If their drawings are equivalent, then
G is isomorphic to H. On the contrary, if G is isomorphic to H and neither graphs are
3-connected, then their drawings are not necessarily equivalent.

Triangulations. We call a plane graph G a planar triangulation or simply a triangulation
if every face in F (G) is bounded by a triangle (a cycle of length three). If H is a subdrawing
of a triangulation G, we call G a triangulation of H.

Nooses and combinatorial nooses. A noose of a Σ-plane graph G is a simple closed
curve in Σ that meets G only in vertices. From the Jordan Curve Theorem, it then follows
that nooses separate Σ into two regions. Let V (N) = N ∩ V (G) be the vertices and F (N)
be the faces intersected by a noose N . The length of N is the number |V (N)| of vertices in
V (N). The clockwise order in which N meets the vertices of V (N) is a cyclic permutation
π on the set V (N).

Remark 1.4. Let a plane graph H be a subdrawing of a plane graph G. Every noose N

in G is also a noose in H and N ∩ V (H) ⊆ N ∩ V (G).

A combinatorial noose NC = [v0, f0, v1, f1, . . . , fℓ−1, vℓ] in a plane graph G is an alternating
sequence of vertices and faces of G, such that
• fi is a face incident to both vi, vi+1 for all i < ℓ,

• v0 = vℓ and the vertices v1, . . . , vℓ are mutually distinct and

• if fi = fj for any i 6= j and i, j = 0, . . . , ℓ − 1, then the vertices vi, vi+1, vj , and vj+1 do
not appear in the order (vi, vj , vi+1, vj+1) on the bound of face fi = fj.

The length of a combinatorial noose [v0, f0, v1, f1, . . . , fℓ−1, vℓ] is ℓ.

Remark 1.5. The order in which a noose N intersects the faces F (N) and the vertices
V (N) of a plane graph G gives a unique alternating face-vertex sequence of F (N) ∪ V (N)
which is a combinatorial noose NC . Conversely, for every combinatorial noose NC there
exists a noose N with face-vertex sequence NC .

We may view combinatorial nooses as equivalence classes of nooses, that can be represented
by the same face-vertex sequence.

Sphere cut decompositions. For a Σ-plane graph G, we define a sphere cut decomposition
or sc-decomposition 〈T, µ, π〉 as a branch decomposition which for every edge e of T has
a noose Ne that cuts Σ into two regions ∆1 and ∆2 such that Gi ⊆ ∆i ∪ Ne, where Gi

is the graph induced by the edge set {µ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1, 2} and T1∪̇T2 =
T \ {e}. Thus Ne meets G only in V (Ne) = mid(e) and its length is |mid(e)|. The vertices
of mid(e) = V (G1)∩V (G2) are enumerated according to a cyclic permutation π on mid(e).

PLANAR SUBGRAPH ISOMORPHISM REVISITED 267

The following two propositions will be crucial in that they give us upper bounds on the
number of partial solutions we will compute in our dynamic programming approach. With
both propositions, we will bound the number of combinatorial nooses in a plane graph by
the number of cycles in the triangulation of some auxiliary graph.

Proposition 1.6. ([4]) No planar n-vertex graph has more than 21.53n simple cycles.

Proposition 1.7. ([27]) The number of non-isomorphic maximal planar graphs on n ver-
tices is approximately 23.24n.

Proposition 1.7 also gives a bound on the number of non-isomorphic triangulations. Any
drawing of a maximal planar graph G must be a triangulation, otherwise G would not be
maximal. With Theorem 1.1, every maximal planar graph has a unique drawing which is a
triangulation. On the other hand, every triangulated graph is maximal planar.

2. Computing sphere-cut decompositions in linear time

In this section we sketch an algorithm for computing sc-decompositions of bounded width.
Let H be a connected subgraph of G with |V (H)| = k, and let v ∈ V (H). Then H

is a subgraph of the induced subgraph Gv of G, where Gv = G[S] with S = {w ∈ S |
dist(v,w) ≤ k} (dist(v,w) denotes the length of a shortest path between v and w in G).
This observation helps us to shrink the search space of our algorithm by cutting out chunks
of G of bounded width and solve subgraph isomorphism separately on each chunk. With
the algorithm of Tamaki [26], one can compute a branch decomposition of Gv of width
≤ 2k + 1, following similar ideas as in the approach of Baker [2] for tree decompositions.
With some simple modifications, we achieve the same result for sc-decompositions. In an
extended version of this paper [10], we prove the following lemma and give an algorithm
that computes a sc-decomposition of bounded width in linear time.

Lemma 2.1. ([2],[26],[10]) Let G be a plane graph with a rooted spanning tree whose root-
leaf-paths have length ≤ k. We can find an sc-decomposition of width 2k +1 in time O(kn).

3. Plane Subdrawing Equivalence

In this section, we study the variant of the subgraph isomorphism problem on patterns and
host graphs drawn in the unit sphere. In Plane Subdrawing Equivalence, the question
is to find a subdrawing of a plane host graph G that is equivalent to the drawing of a plane
pattern H. By Remark 1.3, the problem is equivalent to Planar Subgraph Isomorphism

for 3-connected planar graphs. In Section 4 we carry over our results to all planar graphs.
We first introduce some topological tools that we need for embedded dynamic programming.
At every step of the dynamic programming, we compute every way how a combinatorial
noose N corresponding to a middle set of the sc-decomposition 〈T, µ, π〉 of G can intersect
a subdrawing equivalent to the drawing of pattern H. Each intersection gives rise to a
combinatorial noose of H. See Figure 1 for an illustration.

The running time of the algorithm crucially depends on the number of combinatorial
nooses in H. The aim of this section is to prove the following:

268 FREDERIC DORN

G

H

N

G

N

H

Figure 1: On the left, we draw graph G with an emphasized subdrawing H intersected by a com-

binatorial noose N indicated by dashed lines. On the right, we have the same graph G

with a different copy of H intersected by N .

Theorem 3.1. Let G be a plane graph on n vertices and H be a plane graph on k ≤ n

vertices. We can decide if there is a subdrawing of G that is equivalent to the drawing of H

in time 2O(k)n. We can find and count subdrawings equivalent to the drawing of H in time
2O(k)n, and enumerate ω subdrawings in time 2O(k)n + O(ωk).

3.1. Combinatorial nooses in plane graphs

For a refined algorithm analysis we now take a close look at combinatorial nooses of plane
graphs. In particular we are interested in counting the number of combinatorial nooses. In
this subsection, we will prove the following proposition:

Proposition 3.2. Every plane k-vertex graph has 2O(k) combinatorial nooses.

Before proving this proposition, we state that every combinatorial noose of a plane graph
on k vertices corresponds to a cycle in some other plane graph on at most O(k) vertices. The
proofs of the following lemmas can be found in [10]. First we relate combinatorial nooses
in a planar triangulation H to the cycles of H. Then we state that for any plane graph H

there is an auxiliary graph H∗, such that the combinatorial nooses of H can be injectively
mapped to the cycles of the triangulations of H∗. From Proposition 1.6 we know an upper
bound on the number of cycles in planar graphs, which we employ to prove Proposition 3.2.

Lemma 3.3. Let H be a planar triangulation and NC = [v0, f0, v1, f1, . . . , fℓ−1, vℓ] a com-
binatorial noose of H. Then for every pair of consecutive vertices vi, vi+1 in NC , there is a
unique edge {vi, vi+1} in E(H). That is, the sequence [v0, v1, . . . , vℓ] is a simple cycle in H

if |V (NC)| > 2, and if |V (NC)| = 2, it corresponds to a single edge in H.

For an edge e = {v,w} of a graph H we subdivide e by adding a vertex u to V (H) and
replacing e by two new edges e1 = {v, u} and e2 = {u,w}. In a drawing of H, we place
point u in the middle of the drawing of e partitioning e into e1 and e2.

Lemma 3.4. Let H be plane graph and NC = [v0, f0, v1, f1, . . . , fℓ−1, vℓ] a combinatorial
noose of H with |V (NC)| > 2. Let H∗ be obtained by subdividing every edge in E(H). There
exists a planar triangulation H ′ of H∗ such that [v0, v1, . . . , vℓ] is a cycle in H ′.

PLANAR SUBGRAPH ISOMORPHISM REVISITED 269

Proof of Proposition 3.2. If H is triangulated, we have with Lemma 3.3 that every
combinatorial noose corresponds to a unique cycle in H. By Proposition 1.6, the number of
cycles in H is bounded by 21.53k. Since for every edge of a cycle in H, we have two choices
for a combinatorial noose to visit an incident face, we get the overall upper bound of 22.53k

on the number of combinatorial nooses. If H is plane, we have to count the triangulations
of H∗ (Lemma 3.4). By Proposition 1.7 and the comments below it, there are at most 23.24n

non-isomorphic triangulations on n vertices. Let us denote this set of triangulated graphs
by Φ. We note that H∗ is a subgraph of some graph of Φ, say of all graphs in ΦH ⊆ Φ
with |ΦH | ≥ 1. Since every triangulated graph is 3-connected, we have with Theorem 1.1
that every graph H ′ in ΦH has a unique drawing in Σ up to homeomorphism. The plane
graph H∗ is then a subdrawing of a drawing equivalent to an arbitrary planar drawing of
H ′ in Σ. The number of triangulations times the number of combinatorial nooses in each
triangulation is an upper bound on the number of combinatorial nooses in H∗.

For embedded dynamic programming on a sc-decomposition 〈T, µ, π〉, we can argue
with Remark 1.4 that if H is a subdrawing of G, then noose N formed by the middle set
mid(e) is a noose of H, too. Recalling Remark 1.5, the alternating sequence of vertices and
faces of H visited by N forms a combinatorial noose NC in H. This observation allows us
to discuss the results from a combinatorial point of view without the underlying topological
arguments. Instead of nooses we will refer to combinatorial nooses in the remaining section.

3.2. Embedded dynamic programming

In embedded dynamic programming, the basic difference to usual dynamic programming is
that we do not check for every partial solution for a given problem if or how it lies in the
graph processed so far. Instead, we check how the graph that we have processed so far is
intersecting the entire solution, that is how the graph is embedded into our solution. For
subdrawing equivalence, we are interested in how G is drawn in the plane pattern H up to
homeomorphism. Each edge of an sc-decomposition tree T corresponds to a noose N of G.
We will associate to N the list of all possible subgraphs of H that appear in the part of G

bounded by N . Therefore, we will describe all possible ways H is intersected by N . The
number of solutions we get is bounded by the number of combinatorial nooses in H we can
map N onto. We describe the algorithm in what follows.

Dynamic programming. We root sc-decomposition 〈T, µ, π〉 at some node r ∈ V (T). For
each edge e ∈ T , let Le be the set of leaves of the subtree rooted at e. The subgraph Ge of
G is induced by the edge set {µ(v) | v ∈ Le}. The vertices of mid(e) form a combinatorial
noose N that separates Ge from the residual graph.

Assuming H is a subgraph of G, the basic idea of embedded dynamic programming is
that we are interested in how the vertices of the combinatorial noose N are intersecting faces
and vertices of H. Since every noose in G is a noose in H, we can map N to a combinatorial
noose NH of H, bounding (clockwise) a unique subgraph Hsub of H.

In each step of the algorithm, all solutions for a sub-problem in Ge are computed,
namely all possibilities of how N is mapped onto a combinatorial noose NH in H that
separates Hsub from the rest of H, where Hsub ⊆ H is isomorphic to subgraphs of Ge. For
every middle set, we store this information in an array. It is updated in a bottom-up process
starting at the leaves of 〈T, µ, π〉. During this updating process it is guaranteed that the
‘local’ solutions for each subgraph associated with a middle set of the sc-decomposition are
combined into a ‘global’ solution for the overall graph G.

270 FREDERIC DORN

Valid mappings. Let G be a plane graph with a rooted sc-decomposition 〈T, µ, π〉 and
let H be a plane pattern. For every middle set mid(e) of 〈T, µ, π〉 let N be the associated
combinatorial noose in G with face-vertex sequence of F (N) ∪ V (N). Let L denote the set
of all combinatorial nooses of H whose length is at most the length of N . We now want
to map N order preserving to each NH ∈ L. We map vertices of N to both vertices and
faces of H. Therefore, we consider partitions of V (N) = V1(N)∪̇V2(N) where vertices in
V1(N) are mapped to vertices of V (H) and vertices in V2(N) to faces of F (H). We define
a mapping γ : V (N) ∪ F (N) → V (H) ∪ F (H) relating N to the combinatorial nooses in
L. For every NH ∈ L on faces and vertices of set F (NH) ∪ V (NH) and for every partition
V1(N)∪̇V2(N) of V (N) mapping γ is valid if
a) γ restricted to V1(N) is a bijection to V (NH);

b) for every v ∈ V2(N) and f ∈ F (N) we have γ(v) and γ(f) in F (NH);

c) for every vi ∈ V (N) and subsequence [fi−1, vi, fi] of N , face γ(vi) is equal to both
γ(fi−1) and γ(fi), and vertex γ(vi) is incident to both γ(fi−1) and γ(fi) ;

d) for every pair wi, wj ∈ V (NH): if {wi, wj} ∈ E(H) then {γ−1(wi), γ
−1(wj)} ∈ E(G).

Items a) and b) say where to map the faces and vertices of N to. Item c) (with a)) makes
sure that if two vertices vh, vj in sequence N = [. . . , vh, . . ., vj , . . .] are mapped to two
vertices wi, wi+1 that appear in sequence NH as [. . . , wi, fi, wi+1, . . .] then every face and
vertex inbetween vh, vj in sequence N (here underlined) is mapped to face fi. Item d) rules
out the invalid solutions, that is, we do not map a pair of vertices in G that have no edge
in common to the endpoints of an edge in H. We do so because if H is a subgraph of G

then an edge in H is an edge in G, too. For an illustration, see Figure 2.

G

N

Ge

N N
Hγ

N
H

H

Hsub

Figure 2: On the left, we have a plane graph G with a subgraph H emphasized. A combinatorial

noose N separating subgraph Ge is indicated by dashed lines. The vertices of N are

full and empty circles and the faces triangles. In the middle, we have H and indicate to

which faces (big triangles) of H vertices and faces of N are mapped by γ. This gives us

combinatorial noose NH on the right, separating subgraph Hsub.

We assign an array Ae to each mid(e) consisting of all tuples 〈NH , γe〉 each representing
a valid mapping γe from combinatorial noose N corresponding to mid(e) to a combinatorial
noose NH ∈ L. The vertices and faces of N are oriented clockwise around the drawing of
Ge. Without loss of generality, we assume for every 〈NH , γe〉 ∈ Ae the orientation of NH

to be clockwise around the subdrawing Hsub of H equivalent to a subdrawing of Ge.

Step 0: Initializing the leaf edges. For each parent edge eℓ of a leaf ℓ of T we initialize
the valid mappings from the combinatorial noose bounding the edge µ(ℓ) of G to every
combinatorial noose in H of length at most two.

PLANAR SUBGRAPH ISOMORPHISM REVISITED 271

Step 1: Update process. We update the arrays of the middle sets in post-order manner
from the leaves of T to root r. In each dynamic programming step, we compare the arrays
of two middle sets mid(e),mid(f) in order to create a new array assigned to the middle
set mid(g), where e, f and g have a vertex of T in common. From [12] we know about a
special property of sc-decompositions: namely that the combinatorial noose Ng is formed
by the symmetric difference of the combinatorial nooses Ne, Nf and that Gg = Ge ∪Gf . In
other words, we are ensured that if two solutions on Ge and Gf bounded by Ne and Nf fit
together, then they form a new solution on Gg bounded by Ng. We now determine when
two solutions represented as tuples in the arrays Ae and Af fit together. We update two

tuples 〈NH
e , γe〉 ∈ Ae and 〈NH

f , γf 〉 ∈ Af to a new tuple in Ag if

• for every x ∈ (V (Ne) ∪ F (Ne)) ∩ (V (Nf) ∪ F (Nf)), we have γe(x) = γf (x);

• for the subgraph He of H separated by NH
e and the subgraph Hf of H separated by NH

f ,

we have that E(He) ∩ E(Hf) = ∅ and V (He) ∩ V (Hf) ⊆ {γ(v) | v ∈ V (Ne) ∩ V (Nf)}.
If Ne and Nf fit together, we get a valid mapping γg : Ng → NH

g as follows:
• for every x ∈ (V (Ne)∪F (Ne))∩ (V (Nf)∪F (Nf))∩ (V (Ng)∪F (Ng),) we have γe(x) =

γf (x) = γg(x);

• for every y ∈ (V (Ne) ∪ F (Ne)) \ (V (Nf) ∪ F (Nf)) we have γe(y) = γg(y);

• for every z ∈ (V (Nf) ∪ F (Nf)) \ (V (Ne) ∪ F (Ne)) we have γf (z) = γg(z).

We have that γg is a valid mapping from Ng to the combinatorial noose NH
g that bounds

subgraph Hg = He ∪ Hf . Thus, we add tuple 〈NH
g , γg〉 to array Ag.

Step 2: End of DP. If, at some step, we have a solution where the entire subgraph H is
formed, we exit the algorithm confirming. That is, if H = He ∪ Hf and Hi is bounded by
Ni (for both i ∈ {e, f}) then the combinatorial noose Ng is bounding the subdrawing of G

equivalent to the drawing of H. We output this subdrawing by reconstructing the solution
top-down in 〈T, µ, π〉. If at root r no subdrawing equivalent to the drawing of H has been
found, we output ’FALSE’.

Correctness of DP. Let plane graph H be a subdrawing of G. We have already seen how
to map every combinatorial noose of G that identifies a separation of G via a valid mapping
γ to a combinatorial noose of H determining a separation of H. Step 0 ensures that every
edge of H is bounded by a combinatorial noose NH of length two, which is determined
by tuple 〈NH , γ〉 in an array assigned to a leaf edge of T . We need to show that Step 1
computes a valid solution for Ng from Ne and Nf for incident edges e, f, g. We note that
the property that the symmetric difference of the combinatorial nooses Ne and Nf forms a

new combinatorial noose Ng is passed on to the combinatorial nooses NH
e , NH

f and NH
g of

H, too. If the two solutions fit together, then He of H separated by NH
e and subgraph Hf

of H separated by NH
f only intersect in the image of V (Ne)∩V (Nf). We may observe that

NH
e and NH

f intersect in a continuous alternating subsequence with order reversed to each

other, i.e., NH
e |Ne∩Nf

= NH
f |Ne∩Nf

, where NH means the reversed sequence NH . Since

every oriented NH identifies uniquely a separation of E(H), we can easily determine if two
tuples 〈NH

e , γe〉 ∈ Ae and 〈NH
f , γf 〉 ∈ Af fit together and form a new subgraph of H. If H

is a subdrawing of G, then at some step we will enter Step 2 and produce the entire H.

Running time analysis. We first give an upper bound on the size of each array. The
number of combinatorial nooses in L we are considering is bounded by the total number of
combinatorial nooses in H, which is 2O(|V (H)|) by Proposition 3.2. The number of partitions

272 FREDERIC DORN

of vertices of any combinatorial noose N is bounded by 2|V (N)|. Since the order of both NH

and N is given we only have 2|V (H)| possibilities to map vertices of N to NH , once the

vertices of N are partitioned. Thus, in an array Ae we may have up to 2O(|V (H)|) · 2|V (N)| ·
|V (H)| tuples 〈NH

e , γe〉. We first create all tuples in the arrays assigned to the leaves. Since
middle sets of leaves only consist of an edge in G, we get arrays of size O(|V (H)|2) which we
compute in the same asymptotic running time. When updating middle sets mid(e),mid(f),
we compare every tuple of one array Ae to every tuple in array Af to check if two tuples fit
together. We can compute the unique subgraph He (resp. Hf) described by a tuple in Ae

(resp. Af), compare two tuples in Ae, Af and create a new tuple in Ag in time linear in the

order of V (N) and V (H). Since the size of Ag is bounded by 2O(|V (H)|)·2O(|V (N)|), the update
process for two middle sets takes the same asymptotic time. Assuming sc-decomposition
〈T, µ, π〉 of G has width ω and |V (H)| ≤ ω, we get the following result.

Lemma 3.5. For a plane graph G with a given sc-decomposition 〈T, µ, π〉 of G of width w

and a plane pattern H on k ≤ w vertices we can search for a subdrawing of G equivalent to
H in time 2O(w) · n.

3.3. The algorithm

We present the overall algorithm for solving Plane Subdrawing Equivalence with run-
ning time stated in Theorem 3.1.

Algorithm 3.1: Plane Subdrawing Equivalence: PLSE.

Input : Plane graph G; Plane pattern H of order k.
Choose an arbitrary vertex v in G.1

Partition V (G) into S0 ∪ S1 ∪ . . . ∪ Sℓ with Si = {w ∈ V (G) : dist(v,w) = i}2

for every Gi = G[Si ∪ . . . ∪ Si+k] with 0 ≤ i ≤ ℓ − k do3

Compute sc-decomposition 〈T, µ, π〉 of Gi.4

Do embedded dynamic programming on 〈T, µ, π〉 to find a subdrawing of Gi5

equivalent to the drawing of H and intersecting Si.

Partitioning the vertex set in Line 2 of Algorithm 3.1 PLSE, is a similar approach to
the well-known Baker-approach [2]. Every vertex set Si contains the vertices of distance i

to the chosen vertex v. S0 = {v} and ℓ is the maximum distance in G from v. The graph
Gi in Line 3 is induced by the sets Si, . . . , Si+k. As in [14], we may argue that every vertex
in G appears in at most k subgraphs Gi. This keeps our running time linear in n. We can
apply Lemma 2.1 to each Gi in Line 4 to a compute sc-decomposition 〈T, µ, π〉 of width
≤ 2k +1, by adding a root vertex r for the BFS tree and make r adjacent to every vertex in
Si. The dynamic programming approach can easily be turned into an algorithm counting
subdrawing equivalences (similar to [14]), by using a counter in the dynamic programming.
Using an inductive argument, for every subgraphs Gi in Line 5 we only compute subgraphs
intersecting with vertices in Si and thus omit double-counting. We can adopt our technique
to list the subdrawings of G equivalent to the drawing of H.

PLANAR SUBGRAPH ISOMORPHISM REVISITED 273

4. Planar subgraph isomorphism

Now we consider the case when both pattern H and host graph G are planar but not plane.
From Remark 1.3 we know that two isomorphic planar graphs must not need to come with
equivalent drawings. However, we observe that if H is isomorphic to a subgraph of G, then
for every planar drawing of G there exists a drawing of H that is equivalent to a subdrawing
of G. Hence, we may simply draw G planarly, and run the algorithm of the previous section
for all non-equivalent drawings of H.

Algorithm 4.1: Planar subgraph isomorphism.

Input : Planar graph G, Planar pattern H of size k.
Compute a planar drawing of G.
if H 3-connected then Return PLSE(G,H).
for every non-equivalent drawing I of H do

Return PLSE(G, I).

The whole algorithm. We compute in Algorithm 4.1 every non-equivalent drawing of
H as follows. First, we compute the set H of non-isomorphic maximal planar graphs in
time proportional to its size using the algorithm in [20]. For every graph H ′ ∈ H and
every subdrawing I of H ′ we check whether I is isomorphic to H by using the linear
time algorithm for planar graph isomorphism in [19]1 . By Proposition 1.2, we then call

Algorithm 3.1 2O(k) times, for each plane graph I isomorphic to H. This ensures us that
Algorithm 3.1 has running time as stated in Theorem 0.1 2.

Conclusion

We have shown how to use topological graph theory to improve the results on the already
mentioned variations of Planar Subgraph Isomorphism, solving the open problems
posed in [14] and [12]. With the results of [15], [14] extends the feasible graph class from
planar graphs to apex-minor-free graphs. This cannot be done with the tools presented
here. However, the authors of [11] devise a truly subexponential algorithm for k-Longest

Path in H-minor-free graphs and thus apex-minor-free graphs, employing the structural
theorem of Robertson and Seymour [25] and the results of [8, 5]. Can the structure of
H-minor-free graphs, be exploited for our purposes?

It seems unlikely that our work can be extended to obtain a subexponential algorithm.
The first reason, mentioned in the introduction, is that Bidimensionality applies to sub-
graphs with minor properties rather than to general subgraphs. Secondly, our enumerative
bounds are either tight or of lower bound 2Ω(k). We want to pose the open problem: Is
Plane Subdrawing Equivalence solvable in time 2o(k)nO(1)?

Acknowledgments. The author thanks Paul Bonsma, Holger Dell and Fedor Fomin for
discussions and comments of great value to the presentation of these results.

1We get a list of drawings of H , from which we can delete equivalent drawings by a modification of the
algorithm in [19]—namely isomorphism test for face-vertex graphs.

2It can be show that Algorithm 3.1 runs in time O(212.57k
n) and Algorithm 4.1 in O(218.81k

n)

274 FREDERIC DORN

References

[1] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. Assoc. Comput. Mach., 42 (1995), pp. 844–856.
[2] B. S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. Assoc. Comput.

Mach., 41 (1994), pp. 153–180.
[3] H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM

J. Comput., 25 (1996), pp. 1305–1317.
[4] K. Buchin, C. Knauer, K. Kriegel, A. Schulz, and R. Seidel, On the number of cycles in

planar graphs, in Proc. of the 13th Annual International Conference on Computing and Combinatorics
(COCOON’07), vol. 4598 of LNCS, Springer, 2007, pp. 97–107.

[5] A. Dawar, M. Grohe, and S. Kreutzer, Locally excluding a minor, in Proc. of the 22nd IEEE
Symposium on Logic in Computer Science (LICS 2007), IEEE Computer Society, 2007, pp. 270–279.

[6] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos, Subexponential parameterized
algorithms on graphs of bounded genus and H-minor-free graphs, J. ACM, 52 (2005), pp. 866–893.

[7] E. D. Demaine and M. T. Hajiaghayi, The bidimensionality theory and its algorithmic applications,
Computer J., 51 (2008), pp. 292–302.

[8] E. D. Demaine, M. T. Hajiaghayi, and K. Kawarabayashi, Algorithmic graph minor theory: De-
composition, approximation, and coloring, in Proc. of the 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2005), IEEE Computer Society, 2005, pp. 637–646.

[9] R. Diestel, Graph theory, vol. 173 of Grad. Texts in Math., Springer, New York, third ed., 2000.
[10] F. Dorn, Planar Subgraph Isomorphism Revisited, http://arxiv.org/abs/0909.4692, 2009.
[11] F. Dorn, F. V. Fomin, and D. M. Thilikos, Catalan structures and dynamic programming on H-

minor-free graphs, in Proc. of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2008), ACM, New York, 2008, pp. 631–640.

[12] F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin, Efficient exact algorithms on planar
graphs: Exploiting sphere cut decompositions, Algorithmica, (2009, to appear).

[13] R. G. Downey and M. R. Fellows, Parameterized complexity, Springer, New York, 1999.
[14] D. Eppstein, Subgraph isomorphism in planar graphs and related problems, J. Graph Alg. and Appl.,

3 (1999), pp. 1–27.
[15] D. Eppstein, Diameter and treewidth in minor-closed graph families, Algorithmica, (2009).
[16] J. Flum and M. Grohe, Parameterized Complexity Theory, Texts in Theoretical Computer Science.

EATCS Series, Springer, Berlin, 2006.
[17] F. V. Fomin and D. M. Thilikos, New upper bounds on the decomposability of planar graphs, J.

Graph Theory, 51 (2006), pp. 53–81.
[18] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of NP-

Completeness, W.H. Freeman and Company, New York, 1979.
[19] J. E. Hopcroft and J. K. Wong, Linear time algorithm for isomorphism of planar graphs (prelim-

inary report), in Proc. of the Sixth Annual ACM Symposium on Theory of Computing (STOC’74),
ACM, 1974, pp. 172–184.

[20] Z. Li and S.-I. Nakano, Efficient generation of plane triangulations without repetitions, in Proc. of
the 28th International Colloquium on Automata, Languages and Programming (ICALP’01), vol. 2076
of LNCS, Springer, 2001, pp. 433–443.

[21] R. Niedermeier, Invitation to fixed-parameter algorithms, vol. 31 of Oxford Lecture Series in Mathe-
matics and its Applications, Oxford University Press, Oxford, 2006.

[22] D. Osthus, H. J. Prömel, and A. Taraz, On random planar graphs, the number of planar graphs
and their triangulations, J. Combin. Theory Ser. B, 88(1) (2003), pp. 119–134.

[23] J. Plehn and B. Voigt, Finding minimally weighted subgraphs, in Proc. of the 16th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG’90), vol. 484 of LNCS, Springer,
1990, pp. 18–29.

[24] N. Robertson, P. Seymour, and R. Thomas, Quickly excluding a planar graph, J. Combin. Theory
Ser. B, 62 (1994), pp. 323–348.

[25] N. Robertson and P. D. Seymour, Graph minors. XVI. Excluding a non-planar graph, J. Combin.
Theory Ser. B, 89 (2003), pp. 43–76.

[26] H. Tamaki, A linear time heuristic for the branch-decomposition of planar graphs, in Proc. of the 11th
Annual European Symposium on Algorithms (ESA’03), vol. 2832 of LNCS, Springer, 2003, pp. 765–775.

[27] W. T. Tutte, A census of planar triangulations, Canad. J. Math., 14 (1962), pp. 21–38.
This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

