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Abstract. We propose a novel, generic definition of probabilistic sched-
ulers for population protocols. We design two new schedulers, the State
Scheduler and the Transition Function Scheduler. Both possess the sig-
nificant capability of being protocol-aware, i.e. they can assign transition
probabilities based on information concerning the underlying protocol.
We prove that the proposed schedulers, and also the Random Scheduler
that was defined by Angluin et al. [1], are all fair with probability 1. We
also define and study equivalence between schedulers w.r.t. performance
and correctness and prove that there exist fair probabilistic schedulers
that are not equivalent w.r.t. to performance and others that are not
equivalent w.r.t. correctness. We implement our schedulers using a new
tool for simulating population protocols and evaluate their performance
from the viewpoint of experimental analysis and verification. We study
three representative protocols to verify stability, and compare the ex-
perimental time to convergence with the known complexity bounds. We
run our experiments from very small to extremely large populations (of
up to 108 agents). We get very promising results both of theoretical and
practical interest.

Keywords. Population Protocols, Fairness, Probabilistic Schedulers, Com-
municating Automata, Sensor Networks, Experimental Evaluation

1 Introduction

Recently, Angluin et al. [1,2] introduced the notion of a computation by a pop-
ulation protocol to model distributed systems in which individual agents are ex-
tremely limited and can be represented as finite-state machines. In their model,
complex behavior of the system as a whole emerges from the rules governing
pairwise interaction of the agents. The computation is carried out by a collec-
tion of agents, each of which receives a piece of the input. These agents move
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around and information can be exchanged between two agents whenever they
come into contact with (or sufficiently close to) each other. The goal is to ensure
that every agent can eventually output the value that is to be computed.

An execution of a protocol proceeds from the initial configuration by in-
teractions between pairs of agents. In a real distributed execution, interactions
could take place simultaneously, but when writing down an execution simulta-
neous interactions can be ordered arbitrarily. Angluin et al. think of the order
in which pairs of agents come into contact and interact as being chosen by an
adversary. From a particular system state, the adversary decides which of the
possible different interactions will be selected; essentially it decides the compu-
tation sequence (i.e. schedule of interactions). So, the designer’s goals is to make
protocols work correctly under any schedule the adversary may choose.

In such models there may exist diverging (infinite) schedules of interactions
such that during their execution some event becomes possible infinitely often
but it has not an infinite number of occurences. If the adversary selects such a
sequence, it will lead the system to unfair situations, where although an event is
realizable infinitely often, it never occurs because conflicts are resolved in a non
equitable manner. To deal with these issues, a fairness restriction is imposed on
the adversarial scheduler: the scheduler is not allowed to avoid a possible step
forever. The fairness constraint allows the scheduler to behave arbitrarily for an
arbitrarily long period of time, but does require that it behave nicely eventually.
Therefore correctness is a property that can be satisfied eventually.

Fairness relative to a set of state is important since most of the “interesting”
system properties express reachability relations of some set of states [3]. In other
words, fairness becomes crucial when a property is to be proven in formal systems
based on non-deterministic models. In this work we try to apprehend the concept
of fairness in the basic population protocols model. To do so, we focus on the
class of probabilistic schedulers proposed in [1,2], in which the scheduler selects
randomly the next pair to interact. We define two new adversaries that are bound
by the fairness constraint of [1]. The “reasonable” scheduling policies that they
introduce lead to significantly different performance characterizations for some
protocols well studied in the relevant literature. We show that the current notion
of fairness gives rise to many difficulaties in studying not only to performance
but also protocol correctness.

Although in the area initiated by the proposal of the population protocol
model there exists already a large amount of work, this work has almost ex-
cluded experimental evaluation through simulations, testbed development and
testing in real sensor populations. Mainly, the foundational approach has been
followed, but as the gap between theoretical results and their practical verifica-
tion grows we believe that now is the right time for approaches that deal with
the latter. Moreover, any progress in the development of tools specialized on
experimental evaluation of protocols could provide a powerful alternative option
in cases where analysis fails or turns out to be extremely hard. To expermental
study the fairness property of our schedulers, we’ve developed a specialized sim-
ulation tool, dedicated for the simulation of population protocols. Following [4],
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we replace low-level effects with abstract and exchangeable models. This fact,
together with the use of data structures that support efficient lookup and up-
dates in constant time, allows us to simulate for the first time extremely large
populations (i.e. of up to 108 agents) in a reasonable time.

We choose three characteristic protocols appearing in the relevant literature,
for which known bounds exist in the case of the random scheduler, that are of
great significance in a wide range of applications; these are the Or protocol, the
Leader Election protocol, and the Majority protocol. These protocols are then
tested intensively on a wide range of possible real scenarios. We compare their
performance based mainly on three metrics that we define, namely, the Protocol
Stability, the Approximate Stability, and the Population Dynamics. Our results
indicate that no scheduler can be thought of as being universally worst/best in
terms of performance. For the three protocols under consideration, our simula-
tions validate the existing time complexity bounds in the case of the random
scheduler and yield new time complexity results for the proposed schedulers
(taking into account a possible amount of statistical error).

The Population Protocol (PP) model was inspired in part by work by Dia-
madi and Fischer [5] on trust propagation in a social network. The motivation
given for the model was the study of sensor networks in which passive agents
were carried along by other entities. Much work has been devoted to the, now,
well-known fact that the set of computable predicates of the basic (complete
interaction graph) population protocol model and most of its variants is exactly
equal or closely related to the set of semilinear predicates. Moreover, in [1,2], the
Probabilistic Population Protocol model was proposed, in which the scheduler
selects randomly and uniformly the next pair to interact. More recent work has
concentrated on performance, supported by this random scheduling assumption.
Additionally, several extensions of the basic model have been proposed in order
to more accurately reflect the requirements of practical systems. In [6], Angluin
et al. studied what properties of restricted communication graphs are stably
computable, gave protocols for some of them, and proposed a model extension
with stabilizing inputs. In [7] the Mediated Population Protocol (MPP) model was
proposed that extends the population protocol model with communication links
that are able to store states. The MPP model was proved to be computationally
stronger than the PP model and it was observed that it is especially capable of
deciding graph properties, concerning the communication graph on which the
protocol runs. In [8] the decidable graph properties by MPPs where studied for
the first time and it was proven that connectivity cannot be decided by the new
model. Unfortunatelly, the class of decidable graph languages by MPPs remains
open. Finally, some works incorporated agent failures and gave to the agents
slightly increased memory capacity. For an excellent introduction to the subject
of population protocols see [9] and for some recent advances mainly concerning
mediated population protocols see [10].
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2 Population Protocols

A population protocol (PP) is a 6-tuple (X,Y,Q, I,O, δ), where X, Y , and Q are
all finite sets, and X is the input alphabet, Y is the output alphabet, Q is the set
of states, I : X → Q is the input function, O : Q → Y is the output function,
and δ : Q × Q → Q × Q is the transition function. If δ(a, b) = (a′, b′), we call
(a, b)→ (a′, b′) a transition and we define δ1(a, b) = a′ and δ2(a, b) = b′.

A population protocol A = (X,Y,Q, I,O, δ) runs on a communication graph
(also known as interaction graph) G = (V,E) (G is here assumed to be directed
and without multiple edges or self-loops). From now on we will use the letter n to
denote the cardinality of V (size of the population). Initially, all agents (i.e. the
elements of V ) receive a global start signal, sense their environment and each
one receives an input symbol from X. After receiving their input symbol, all
agents apply the input function to it and go to their initial state (e.g. all agents
that received σ ∈ X begin with initial state I(σ) ∈ Q). An adversary scheduler
selects in each step a directed pair of agents (u, υ) ∈ E, where u, υ ∈ V and
u 6= υ, to interact. Assume that the scheduler selects the pair (u, υ), that the
current states of u and υ are a, b ∈ Q, respectively, and that δ(a, b) = (a′, b′).
Agent u plays the role of the initiator in the interaction (u, υ) and υ that of
the responder. When interacting, u and υ apply the transition function to their
directed pair of states, and, as a result, u goes to a′ and υ to b′ (both update
their states according to δ, and specifically, the initiator applies δ1 while the
responder δ2).

A configuration is a snapshot of the population states. Formally, a configura-
tion is a mapping C : V → Q specifying the state of each agent in the population.
C0 is the initial configuration (for simplicity we assume that all agents apply the
input function at the same time) and, for all u ∈ V , C0(u) = I(x(u)), where x(u)
is the input symbol sensed by agent u. Let C and C ′ be configurations, and let u,
υ be distinct agents. We say that C goes to C ′ via encounter e = (u, υ), denoted
C

e→ C ′, if C ′(u) = δ1(C(u), C(υ)), C ′(υ) = δ2(C(u), C(υ)), and C ′(w) = C(w)
for all w ∈ V −{u, υ}, that is, C ′ is the result of the interaction of the pair (u, υ)
under configuration C and is the same as C except for the fact that the states of
u, υ have been updated according to δ1 and δ2, respectively. We say that C can
go to C ′ in one step, denoted C → C ′, if C e→ C ′ for some encounter e ∈ E. We
write C ∗→ C ′ if there is a sequence of configurations C = C0, C1, . . . , Ct = C ′,
such that Ci → Ci+1 for all i, 0 ≤ i < t, in which case we say that C ′ is reachable
from C.

3 Schedulers

3.1 Fair Probabilistic Schedulers

As defined in [2], the transition graph T (A, G) of a protocol A running on a
communication graph G (or just T when no confusion arises about the protocol
and the communication graph) is a directed graph whose nodes are all possible
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configurations and whose edges are all possible one-step transitions between
those configurations.

Definition 1. A probabilistic scheduler, w.r.t. a transition graph T (A, G), de-
fines for each configuration C ∈ V (T ) an infinite sequence of probability dis-
tributions of the form (dC1 , d

C
2 , . . .), over the set Γ+(C) = {C ′ | C → C ′} (the

possibly closed out-neighbourhood of C), where dCt : Γ+(C) → [0, 1] and such
that

∑
C′∈Γ+(C) d

C
t (C ′) = 1 holds, for all t and C.

The initial configuration C0 depends only on the values sensed by the population
and, in particular, it is formed by their images under the input function. So, for
the time being, we can assume that C0 is selected in a deterministic manner. Let
Ct denote the configuration selected by the scheduler at step t (the configuration
of the system after t selections of the scheduler and applications of the transition
function). Assume that it is the lth time that Ct is encountered during the
execution so far; then a probabilistic scheduler selects Ct+1 randomly, according
to the distribution dCtl . In other words, dCl denotes the probability distribution
over Γ+(C) when C is encountered for the lth time.

Definition 2. We call a probabilistic scheduler consistent, w.r.t. a transition
graph T (A, G), if for all configurations C ∈ V (T ), it holds that dC = dC1 = dC2 =
. . ., which, in words, means that any time the scheduler encounters configuration
C it chooses the next configuration with the same probability distribution dC over
Γ+(C), and this holds for all C (each with its own distribution).

From now on, and when no confusion arises, we shall use the letters i and j not
only to denote configuration indices but also to denote configurations themselves.
Note that a consistent probabilistic scheduler for T (A, G) is simply a labeling P :
E(T )→ [0, 1] on the arcs of T , such that for any i ∈ V (T ),

∑
j∈Γ+(i) P (i, j) = 1.

So, any time a consistent scheduler encounters a configuration i, it selects the
next configuration j according to the probability distribution defined by the
labels of the arcs leaving from i. Note that in the latter case, if we remove from
T all e ∈ E(T ) where P (e) = 0 then the resulting graph D is the underlying
graph of a finite Markov chain where the state space is C = QV (all possible
configurations) and for all i, j ∈ C, if i→ j then IPij = P (i, j), i.e. equal to the
label of arc (i, j), otherwise IPij = 0.

A strongly connected component of a directed graph is final iff no arc leads
from a node in the component to a node outside. A configuration is final iff it
belongs to a final strongly connected component of the transition graph.

An execution is a finite or infinite sequence of configurations C0, C1, C2, . . .,
where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. An infinite
execution is fair if for every possible transition C → C ′, if C occurs infinitely
often in the execution then C ′ also occurs infinitely often. A computation is an
infinite fair execution.

Let yC , where yC(u) = O(C(u)) for all u ∈ V , denote the output (assign-
ment) of configuration C. We say that a computation of a population protocol
A stabilizes to output yC if it contains a configuration C such that for all C ′

reachable from C we have that yC′ = yC .
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Theorem 1. Let Ξ = C0, C1, . . . be an infinite execution of A on G, FΞ be the
set of configurations that occur infinitely often in Ξ, and TFΞ be the subgraph of
T (A, G) induced by FΞ . Ξ is a computation (i.e. it is additionally fair) iff TFΞ
is a final strongly connected component of T (A, G).

Proof. The “only if” part was proven in [2]. We prove here the “if” part. Assume
that TFΞ is a final strongly connected component of T (A, G) and that Ξ is not
fair (i.e. that the statement of the “if” part does not hold). Then there exists
some configuration C ∈ FΞ (i.e. appearing infinitely often) and a C ′ /∈ FΞ such
that C → C ′. But this contradicts the fact that TFΞ is final. ut

We now keep the preceding definitions of Ξ, T (A, G), FΞ , TFΞ , but addi-
tionally assume a consistent scheduler.

Theorem 2. If for all i ∈ FΞ and all configurations j s.t. i → j it holds that
IPij > 0, then Ξ is a computation with probability 1.

Proof. Because i is persistent and all its successor configurations j may occur
in one step from i with non-zero probability it follows that those j are also
persistent with probability 1, i.e. they also occur infinitely often in Ξ, thus Ξ is
a computation with probability 1, by definition. ut

Definition 3. A scheduler S is fair if for any protocol A, any communication
graph G, and any infinite execution Ξ of A on G caused by S, Ξ is also a
computation (i.e. additionally fair).

Intuitively a scheduler is fair if it always leads to computations.

Theorem 3. Any consistent scheduler, for which it holds that IPij > 0, for any
protocol A, any communication graph G, and all configurations i, j ∈ V (T (A, G))
where i→ j and i 6= j, is fair with probability 1.

Proof. First of all, note that the underlying Markov chain graph of such a sched-
uler is the transition graph without possibly some self-loops. Assume that the
statement does not hold. Then the probability that a specific infinite execution
Ξ of some protocol A on some graph G caused by the scheduler is not a compu-
tation is non-zero. This means that a Ξ may occur, for which there exists some
configuration i ∈ FΞ (appearing infinitely often in Ξ) and j /∈ FΞ such that
i→ j. Now there are two cases:

1. i = j. In this case the contradiction is trivial, because it follows that i ∈ FΞ
while at the same time i /∈ FΞ .

2. i 6= j. However, by assumption IPij > 0, and because i is persistent j must
also be with probability 1.

ut
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3.2 Proposed Schedulers

In [1] a probabilistic scheduler that selects the next ordered pair to interact at
random, independently and uniformly from all ordered pairs corresponding to
arcs of the communication graph (i.e. elements of E) was defined. Here we call
this scheduler Random Scheduler, and define two new probabilistic schedulers,
namely the State Scheduler and the Transition Function Scheduler.

The Random Scheduler. To generate Ci+1 the Random Scheduler selects
an ordered pair (u, υ) ∈ E at random, independently and uniformly (each with
probability 1/|E|), and applies the transition function to (Ci(u), Ci(υ)).

The State Scheduler. Consider a population protocol for k-mutual exclu-
sion, in which only k agents are in state 1 and the rest of the population is
in state 0. When an agent that holds a token interacts with another agent, it
passes the token. Now consider an execution where n� k and we use the Ran-
dom Scheduler. In the case in which the communication graph is complete, the
probability of selecting a pair with states (1, 0) is much smaller than selecting a
pair with states (0, 0). Essentially, this means that the scheduler may initiate a
large number of interactions that do not help the protocol in making progress.
This observation is the motivation for the State Scheduler. Instead of selecting a
pair of processes independently and uniformly, the scheduler selects a pair based
on the states of the processes. It first selects a pair of states and in the sequel it
selects one process from each state. Thus it allows the “meaningful” transitions
to be selected more often and may avoid selecting a large number of interactions
that delay the protocol’s progress.

More formally, an ordered pair of states (q, q′) is said to be an interaction
candidate under configuration C if ∃(u, υ) ∈ E such that C(u) = q and C(υ) =
q′. Then a configuration Ci+1 is generated from Ci as follows: (i) by drawing
an order pair (q, q′) of states at random, independently and uniformly from all
ordered pairs of states that are interaction candidates under Ci, (ii) drawing an
ordered pair (u, υ) such that Ci(u) = q and Ci(υ) = q′ from all such pairs at
random, independently and uniformly, (iii) applying the transition function δ to
(Ci(u), Ci(υ)) and updating the states of u and υ accordingly to obtain Ci+1.

The Transition Function Scheduler. Continuing the same argument, we
define one more scheduler that assumes knowledge of the protocol executed.
It examines the transition function δ and selects pairs of agents based on the
defined transitions. In the case in which function δ defines transitions that do
not change the state, neither of the initiator nor of the responder agent (e.g.,
(α, β) → (α, β)), these transitions are ignored by the scheduler. This scheduler
guarantees that all interactions will lead to a state change of either the initiator
or the responder or both.

More formally, suppose → is a binary relation over Q2 which is the rela-
tion analogue of the corresponding transition function δ. The reflexive reduction
of →, denoted by →̇, is simply → without members related to themselves by
→. A configuration Ci+1 is generated from Ci as follows: (i) by drawing a pair
((q1, q2), (q′1, q

′
2)) at random, independently and uniformly from all such pairs be-

longing to ·→ for which (q1, q2) is an interaction candidate under Ci, (ii) drawing
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an ordered pair (u, υ) such that Ci(u) = q1 and Ci(υ) = q2 from all such pairs
at random, independently and uniformly, (iii) applying the transition function
δ to (Ci(u), Ci(υ)) and updating the states of u and υ accordingly to obtain
Ci+1 (if in step (i) there exists no such interaction candidate, then the Transi-
tion Function Scheduler becomes a Random Scheduler, and remains in the same
configuration for an infinite number of steps).

Given the above schedulers we can classify any scheduler for population pro-
tocols based on whether it assumes any knowledge on the actual protocol exe-
cuted or not.

Definition 4. We call a scheduler protocol-oblivious (or agnostic) if it con-
structs the interaction pattern without any knowledge on the protocol executed
and protocol-aware if it takes into account information concerning the underly-
ing protocol.

Based on this classification, the Random Scheduler is a protocol-oblivious sched-
uler while the State and Transition Function Schedulers are protocol-aware.

Theorem 4. The Random Scheduler, State Scheduler, and Transition Function
Scheduler are all fair with probability 1.

Proof. Let T (A, G) be any transition graph.

– Random Scheduler. Let i be any configuration in V (T ). Any time i is encoun-
tered, any j for which i → j is selected with probability IPij = |Kij |/|E|,
where Kij = {e | e ∈ E(G) and i e→ j}, which is independent of the number
of times i has been encountered. Thus the Random Scheduler is consistent.
Moreover, |Kij | > 0, because from definition of i → j we have that ∃e ∈ E
(where E is used instead of E(G)) such that i e→ j. Thus IPij > 0 and The-
orem 3 applies implying that the Random Scheduler is fair with probability
1.

– State Scheduler. Let i, j be distinct configurations in V (T ) such that i→ j.
When the State Scheduler has chosen i to select the next configuration of the
execution, it performs two experiments. First it selects a pair of states (q, q′)
from all interaction candidates. Then it selects an arc e from all (u, υ) ∈ E
such that i(u) = q and i(υ) = q′. Let Kij again denote the set of arcs (i.e.
interactions) that convert i to j. Let also Mij = {(q, q′) | ∃(u, υ) ∈ Kij

such that i(u) = q and i(υ) = q′} and ICi denote the set of all interaction
candidates under i (note thatMij ⊆ ICi). Now 1/|ICi| is the probability that
a specific interaction candidate is selected by the scheduler. Let K(q,q′)

ij =
{(u, υ) | (u, υ) ∈ Kij and i(u) = q, i(υ) = q′} (the subset of Kij containing
all arcs (u, υ) that convert i to j and where the state of u is q and the state
of υ is q′) and E

(q,q′)
i = {(u, υ) | (u, υ) ∈ E and i(u) = q, i(υ) = q′}. Now

given a chosen interaction candidate (q, q′) ∈ Mij the probability that j is
selected is equal to |K(q,q′)

ij |/|E(q,q′)
i |. Thus we have

IPij =
∑

(q,q′)∈Mij

|K(q,q′)
ij |

|ICi||E(q,q′)
i |

.
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|K(q,q′)
ij |, |ICi| and |E(q,q′)

i | for all (q, q′) ∈ Mij only depend on the specific
configurations i and j and are always the same w.r.t. different times at which
i is encountered by the scheduler. Thus the State Scheduler is consistent.
Moreover, since (i→ j)⇒ ∃e = (u, υ) ∈ E such that i e→ j. Let q and q′ be
the states of u and υ under i, respectively. It follows that (q, q′) ∈ Mij and
that |Mij | > 0. Finally, note that e ∈ K(q,q′)

ij , because e ∈ Kij , i(u) = q, and
i(υ) = q′. Thus IPij > 0, Theorem 3 applies and as a consequence the State
Scheduler is fair with probability 1.

– Transition Function Scheduler. In the case in which i 6= j, IPij is defined as
in the State Scheduler, by simply replacing the phrase “interaction candi-
date” with “interaction candidate that constitutes the lhs of some rule in the
reflexive reduction of δ”. So also this scheduler is consistent and fair with
probability 1. Note that when i = j and i has at least one out-neighbor in T
different from i, then IPij = 0, since this scheduler does not select transitions
that leave the states of the participating agents unaffected. Moreover, if i has
a unique out-going arc (in T ) pointing to itself, then the scheduler selects
i for an infinite number of steps with probability 1 (in this case becomes a
Random Scheduler). In both cases no problem arises, because for Theorem
3 to apply we only require IPij > 0 for all i 6= j such that i→ j.

ut

4 Large Scale Simulation

A plethora of network simulation environments and tools with widely varying
scopes have been proposed to the relevant research community, each with dif-
ferent application domains, focusing on different aspects of the system. Most
incorporate details on the operation of the lower stacks of the networks to pro-
vide a more realistic simulation environment (e.g., ns-2 [11], OPNET Modeler
[12]). Others focus on particular network types in order to improve accuracy,
performance, or scalability, most notable examples are Shawn [4], AlgoSenSim
[13], ADAPT [14] and WSNGE [15].

The most central issue in simulating population protocols is the way in which
agents interact; the scheduler of the population must be at the core of the simula-
tor. The vast majority of existing simulation tools use a discrete-event processor
as their engine that does not allow to directly dictate the way the events are
processed. The only way to affect the way agents interact is to do it indirectly via
controlling either the mobility of the nodes, or their power schedule or through
a failure model. This is a very limiting factor for simulating population proto-
cols. For this reason we decided to develop a specialized tool, dedicated for the
simulation of population protocols.

We totally avoid the complete simulation of the physical environment and the
lower-level networking protocols. We follow the approach of [4] and replace low-
level effects with abstract and exchangeable models that allows us to simulate
extremely large networks in reasonable time. In a 32-bit linux with 4GB of
memory we can simulate populations of up to n = 108 while in a 64-bit system
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this can increase to even higher numbers. Our simulation tool (which we call
ppsim) is available for download at http://ru1.cti.gr/projects/ppsim.

We developed the tool using generic programming in JAVA 1.6 where all the
components are parameterized on the set of states Q of the population protocol,
implemented by the component State. Figure 1 (see Appendix) shows the main
components of the simulation tool; dashed borders represent abstract classes
that are extended to implement specific protocols, schedulers and experiments.
The Agent component represents a single node and only keeps track of the state
of the agent, i.e., a local variable of the parameterized type State. The Protocol
component only defines the transition function T as the corresponding transition
relation T ⊆ Q4 by a four column matrix where each row (α, β, α′, β′) represents
a transition (α, β)→ (α′, β′). Thus protocols are implemented in a very easy and
quick way.

Fig. 1. Main components of the simulator and their interconnection.

The Population component holds all the Agents in a hash table (or HashMap
in JAVA) and uses two additional data structures for monitoring the dynamics
of the population and for grouping the agents based on their state.

The Scheduler component implements a specific policy of interactions. All
the schedulers defined in Sec. 3.2 subclass this component. The restricted inter-
actions schedulers are also responsible for storing the graph structure using a
hash table that maps to each agent a set of neighbors.

The last component of our tool is the Experiment that defines the perfor-
mance metrics, duration and operation parameters of the simulator in a param-
eterized way. We define a set of experiments for evaluating the performance of
protocols based on the following metrics:

Protocol Stability. The most important goal of simulation is to verify the
correctness of a protocol. The experiment lets the population interact and

http://ru1.cti.gr/projects/ppsim
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monitors the number of interactions required until the execution converges
to a stable state.

Approximate Stability. In large sized populations it is common for a protocol
to require a very large number of interactions until the execution converges
to a stable state as in the final stages it requires a specific interactions to
occur between very few agents. Therefore we wish to examine the number of
interactions required until a fraction of the population reaches a stable state.

Population Dynamics. In order to understand the behavior of a protocol
under different schedulers and interaction graphs we wish to monitor the
dynamics of the population as the protocol execution progresses. After each
interaction we count the number of agents that are at state q ∈ Q. Let nq
be the number of agents at a given state q, then n =

∑|Q|
i=1 ni.

5 Logical OR Protocol (Propagation of an epidemic)

We start by considering a simple protocol based on an example of [9] where each
agent with input 0 simply outputs 1 as soon as it discovers that another agent
had input 1. Formally, we have Q = X = Y = {0, 1} and the transitions defined
by function T are the following:

(0, 0)→ (0, 0)
(0, 1)→ (1, 1) (1, 0)→ (1, 1)
(1, 1)→ (1, 1)

Essentially, if all agents have input 0, no agent will ever be in state 1. If
some agent has input 1, given a fair scheduler, we expect that the number of
agents with state 1 will increase and will eventually reach n. In both cases, all
agents stabilize to the correct output value, though some important fundamental
questions are “how fast?” and “how does the scheduler and the interaction graph
affect the number of interactions required to stabilize?”.

We start our experimentation by evaluating the protocol stability. We set
the input bit of only one agent to 1 and set n = {101, . . . , 107}. We count the
number of interactions until all agents output 1. The experimental results have
been used to compare the average number of interactions required when using
different schedulers and interaction graphs. For the case of a complete interac-
tion graph, based on Figure 2, we observe that the Random scheduler seems
to require O(n log n) interactions. The experimental results with the random
scheduler verify the theoretical results of [16] that characterize the behavior of
the Or protocol in complete graphs as a one-way epidemic. They show that
the number of interactions for the epidemic to finish is Θ(n log n) with high
probability by using arguments of the well known coupon collector problem, in
which balls are thrown uniformly at random into bins until every bin contains
at least one ball. Interestingly, the State scheduler and the Transition Function
scheduler seem to require only O(n) interactions.

In the second set of experiments we evaluate the population dynamics. Fig-
ure 3 depicts the number of agents that have changed to state 1 as the protocol
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Fig. 2. Total number of interactions for Logical OR protocol to reach a stable
state under different schedulers.

evolves. Interestingly, for the case of the Random scheduler, initially the rate of
increase of n1 is small, then as a critical mass of agents is infected, n1 increases
very fast until it slows down again when it comes to infecting the last remaining
agents. This experiment shows clearly that although the Or protocol is correct
since the execution reaches a stable state, it requires a very large number of
interactions to cover all the population.

6 Leader Election Protocol

We now study the fundamental problem of leader election in such constrained yet
extremely large scale systems. We use the deterministic leader election protocol
stated in [6] where an agent at state 1 is a leader and at state 0 it is a non-leader.
Initially all agents start with a status leader and the protocol stabilizes when
only one agent is a leader and all other agents have a status follower. Formally,
Q = X = Y = {0, 1} and transition function T is defined as follows:

(0, 0)→ (0, 0)
(1, 0)→ (0, 1) (0, 1)→ (1, 0)
(1, 1)→ (0, 1)

Based on the above transitions and a fair scheduler, this protocol starting
with the initial configuration in any interaction graph, it will eventually reach
a configuration where only one agent will be in state 1 (the leader) and every
other agent will be in state 0. When this configuration is reached we say that
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Fig. 3. Number of agents at state 1 per protocol interactions under different
schedulers when n = 10000.

the protocol has stabilized. Interestingly, in this protocol, the agent elected as
the leader does not remain fixed. Due to the transitions (2) and (3) the leader
continuously changes.

We start by evaluating the protocol stability and the effect of the sched-
uler and the interaction graph on the number of interactions required for n =
{101, . . . , 107}. Figure 4 shows the results for the case of the unrestricted sched-
ulers. We note that these are the first results (either via rigorous mathematical
analysis or via experimentation) on the performance of this very basic protocol.
By taking into account a possible amount of statistical error, our results indicate
that the agnostic scheduler requires O(n2) interactions while the protocol aware
schedulers require O(n) interactions.

In the second set of experiments we evaluate the population dynamics. The
results are shown in Figure 5. As with the Or protocol, the heavy tail indicates
that stabilization requires a very large number of interactions (regardless of the
interaction graph) except for if we apply a protocol aware scheduler.

7 Majority Protocol (Propagation of conflicting
epidemics)

We now consider a very broad application where nodes are carried by individ-
uals that wish to vote. There are 2 candidates (X or Y ) and individuals are
not forced to vote. The nodes play the role of the ballot; by pressing the corre-
sponding button an input value is generated for the software agents. We wish
to execute a protocol to count the ballots and outputs the winner. We here use
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Fig. 4. Total number of interactions for the Leader Election protocol to stabilize
for different schedulers.

Fig. 5. Number of agents at state 1 per protocol interactions under different
schedulers when n = 10000.

a simple protocol based on [17] where each agent has three states: X, Y or B
(for undecided). Formally, we have Q = X = Y = {X,Y,B} and the transition
function T is defined as follows:
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(X,X)→ (X,X)
(Y, Y )→ (Y, Y )
(B,B)→ (B,B)
(X,B)→ (X,X) (B,X)→ (X,X)
(Y,B)→ (Y, Y ) (B, Y )→ (Y, Y )
(X,Y )→ (X,B)
(Y,X)→ (Y,B)

One can view the above protocol as an extention of the Or protocol of Sec. 8.1
to three states. If we remove all transitions related to state Y we get the simple
Or protocol. For this we view this protocol as the propagation of conflicting
epidemics; the epidemic of X and the epidemic of Y . The nodes at state B are
not infected and nodes at states X and Y attempt to infect the nodes they meet
with their respective state. Such nodes immediately infect a non infected node
while they cure a node of the opposing epidemic.

Fig. 6. Total number of interactions for the Majority protocol to stabilize for
different schedulers.

We start by evaluating the stability of the protocol. Figure 6 depicts the
results for the unrestricted schedulers. The results for the Random scheduler
experimentally validate the theoretical analysis of [17]; from any non-blank con-
figuration the protocol requires O(n log n) interactions to reach a stable state.
However the very interesting result lies in the behavior of the two protocol aware
schedulers. For the first time they are outperformed (i.e., need larger number of
interactions) by the protocol agnostic scheduler.
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In order to explain this finding we use the results of the second set of experi-
ments. Figure 7(a) depicts the protocol dynamics when 60% of the agents are set
to state X and the remaining 40% to state Y . Initially, the population of both
states drops since the interaction of X with Y generates new Bs. Interestingly,
after a certain number of interactions ny matches nb and after that point they
decrease with similar rates. As with the previous two protocols, the convergence
to a stable configuration slows down as nx increases and becomes very slow as
nx → n.

To better understand the behavior of the protocol we conduct a second ex-
periment where 20% of the agents are set to state X and 10% are set to state Y .
Based on Figure 7(b), we observe that initially both nx and ny increase. After a
while ny is dominated by nx and starts to drop. Again, at some point ny matches
nb and after that point they decrease with similar rates.

In both experiments the key reason for achieving stability is the superiority
of X over Y in number of agents. As nx increases, the Random scheduler selects
more often agents at state X than agents at state Y or B. Thus the X epidemic
will propagate faster than Y . However this is not the case for the State scheduler
that offers equal probabilities to all states or the Transition Function scheduler
that also offers similar probabilities to all states. Under these protocol aware
schedulers it will take a O(n2) interactions (instead of O(n log n)) for state X
to overdominate the other two states and lead the execution to a stable state.

(a) Initially X=6000, Y=4000 (b) Initially X=2000, Y=1000

Fig. 7. Number of agents at each state of the protocol per total interactions in
a Compete graph with the Random Scheduler and when n = 10000.

8 Equivalence Between Schedulers

Definition 5. Two fair probabilistic schedulers S1 and S2 are called time equiv-
alent w.r.t. a protocol A iff all computations of A under S1 and S2 beginning
from the same initial configuration take asymptotically the same expected time
(number of steps) to convergence.
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Definition 6. Two fair probabilistic schedulers S1 and S2 are called computa-
tionally equivalent w.r.t. a protocol A iff for all computations of A under S1 and
S2 beginning from the same initial configuration, w.h.p., A stabilizes to the same
output assignment (the output assignment of a configuration C is yC : V → Y
defined as yC(u) = O(C(u)) for all u ∈ V ).

8.1 Not All Fair Probabilistic Schedulers are Time Equivalent

We use a simple protocol, called the OR Protocol or the One-Way Epidemic
Protocol, based on an example of [9], in which each agent with input 0 simply
outputs 1 as soon as it interacts with some agent in state 1. We, also, assume
that the underlying communication graph is complete. Formally, we have Q =
X = Y = {0, 1} and the transitions defined by δ are the following:

(0, 0)→ (0, 0) (1, 0)→ (1, 1)
(0, 1)→ (1, 1) (1, 1)→ (1, 1)

Essentially, if all agents have input 0, no agent will ever be in state 1. If
some agent has input 1, given a fair scheduler, we expect that the number of
agents with state 1 will increase and will eventually reach n. In both cases,
if a fair scheduler is assumed then all agents will eventually stabilize to the
correct output value, though an important fundamental questions is “how fast
is stability reached?” and “how do different schedulers affect the performance of
the protocol?”.

In [?], Angluin et al. characterized the behavior of the OR Protocol in com-
plete communication graphs as a one-way epidemic. They showed that the num-
ber of interactions for the epidemic to finish in the case of the Random Scheduler
is Θ(n log n) w.h.p., by using arguments from the well-known coupon collector
problem.

Theorem 5. The State Scheduler and the Transition Function Scheduler are
time equivalent w.r.t. the One-Way Epidemic Protocol.

Proof. The State Scheduler and the Transition Function Scheduler both require
only O(n) interactions. In particular, the Transition Function Scheduler can
choose only between transitions (1, 0) → (1, 1) and (0, 1) → (1, 1) that both
increase the number of agents in state 1 by one. If initially at least one agent is
in state 1, then in each step one agent goes from state 0 to state 1 (no new agents
in state 0 emerge) and because the agents are n, in at most n−1 steps all agents
will be in state 1 and stability will have been reached. In the case of the State
Scheduler, assume the worst-case scenario in which initially only one agent is in
state 1. Because the graph is complete, the interaction candidates are in the first
step (0, 0), (0, 1), and (1, 0) ((1, 1) is not, because there exists only one agent in
state 1). So, initially, there is a 2/3 probability to select a transition that gives
birth to a new 1. When this happens, in an expected number of 1.5 steps, all four
left-hand sides of the rules of δ will be interaction candidates (until the step in
which only one 0 remains, when again the probability of progress becomes 2/3).
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Because in all other possible configurations the probability to progress is 1/2, it
follows that progress is always made with at least probability 1/2, which in turn
implies that on average at most 2(n − 1) (i.e. again O(n)) steps are expected
until stability is reached. ut

The above discussion indicates that the performance of a population protocol
clearly depends on the scheduler’s functionality. In fact, it seems here that the
additional knowledge, concerning the transition function, allowed to the State
Scheduler and the Transition Function Scheduler provides us with interaction
patterns that always lead to optimal computations. However, we can show that
the same knowledge may also allow the definition of fair schedulers that lead
the protocols to worst-case scenarios. To do so we will slightly modify the State
Scheduler to obtain a new scheduler, called the Modified Scheduler. Let us con-
sider the case in which the scheduler is weakly protocol-aware in the sense that
it can only partition the rules of the transition function to classes (possibly with
elements sharing some common property and assign some probability to each
class.

Definition 7. The Modified Scheduler selects from the class of the identity rules
(rules that leave both the state of the initiator and that of the responder unaf-
fected) with probability 1− ε and from all the remaining rules with probability ε,
where 0 < ε < 1. Those probabilities are then evenly divided into the correspond-
ing class members. All other components of the Modified Scheduler’s definition
remain the same as in the case of the State Scheduler.

Theorem 6. The Modified Scheduler can lead the One-Way Epidemic Protocol
to arbitrarily bad performance.

Proof. First of all, note that the Modified Scheduler is fair with probability 1,
because the transition probabilities may have been modified but still remain non-
zero for non-loop arcs of T and independent of the number of steps. Consider
now the situation in which n− 2 nodes are initially in state 0 and the remaining
2 are in state 1. Because n− 2 0s have to be converted to 1s, it follows that the
probability that the computation stabilizes in less than n− 2 steps is 0. Let the
random variable D denote the number of steps until the computation stabilizes
(all agents become 1). We have already shown that IP[D = i] = 0 for i < n− 2.
Note that IP[D = i] equals IP[the last remaining 0 becomes 1 in step i]. Let also
Ni denote the number of non-identity rules that have appeared in i steps. For
the computation to stabilize in i steps, exactly n − 3 non-identity rules must
have been chosen in the first i − 1 steps (n − 3 0s converted to 1s and one 0
remaining) and also a non-identity rule in the last step (the last 0 is converted
to a 1). Note that Ni is a binomial random variable having parameters (i, ε).
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Then for all i ≥ n− 2

IP[D = i] = IP[Ni−1 = n− 3] · IP[non-identity rule appears in step i]

=
[(

i− 1
n− 3

)
εn−3(1− ε)i−1−(n−3)

]
· ε

=
(
i− 1
n− 3

)
εn−2(1− ε)i−n+2

and the expectation of D is

IE[D] =
(n− 2)

ε
.

The calculation of the above result can be found in the technical report at
http://fronts.cti.gr/aigaion/?TR=93.

Obviously, IE[D] can become arbitrarily large, by decreasing ε (that is, the
probability that a non-identity rule is selected) and the theorem follows. If, for
example, we set ε = (n− 2)/2n given that n > 2 (because then 0 < ε < 1), then
the expected number of steps to convergence is exponential in the size of the
population (equal to 2n). ut

Thus, it is evident that the fairness condition, as has been defined by An-
gluin et al. in [1], is not sufficient to guarantee the construction of protocols
that perform well under all kinds of allowed schedulers. It seems that a protocol
may perform optimally under some fair scheduler but at the same time reach
its worst-case performance under some other, also provably fair, scheduler. Ob-
viously, either some stronger definition of fairness needs to be proposed, that,
for example, would characterize the Modified Scheduler as unfair in the case in
which ε is far away from 1/2, possibly because it always seems to prefer some
class of rules from others, or maybe protocol-aware schedulers and other kinds of
yet unknown schedulers that can be adjusted to lead to divergent performance
scenarios, should somehow be formally prohibited.

Theorem 7. There exists at least one protocol w.r.t. which some fair probabilis-
tic schedulers are not time equivalent.

Proof. Follows by comparing the expected running time of the One-Way Epi-
demic Protocol under the State and Transition Function Schedulers to its ex-
pected running time under the Random and Modified Schedulers (the latter
expected times are from [?] and Theorem 6). ut

8.2 Not all Fair Probabilistic Schedulers are Computationally
Equivalent

Now we are about to show that, due to the weakness characterizing the selected
notion of fairness, not only performance but also protocol correctness depends
greatly on the underlying scheduler. Assume that each agent initially votes for

http://fronts.cti.gr/aigaion/?TR=93
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one of some election candidates x and y or chooses to vote blank, denoted by b. If
x is the majority vote, then we want every agent in the population to eventually
output x, otherwise y (we assume here that the state of an agent is also its
output). Now let us consider the following one-way protocol that was proposed
in [17].

(x, b)→ (x, x) (x, y)→ (x, b)
(y, b)→ (y, y) (y, x)→ (y, b)

In words, when an x meets a b it convinces it to vote x, when a y meets a b
it convinces it to vote y, an x switches a y to the blank-undecidable state, and a
y does the same to an x. Given an initial configuration of xs, ys and blanks that
contains at least one non-blank, the goal is for the agents to reach consensus on
one of the values x or y. Additionally, the value chosen should be the majority
non-blank initial value, provided it exceeds the minority by a sufficient margin. In
[17] it was proven that if the above protocol runs under the Random Scheduler
on any complete graph with n nodes then with high probability consensus is
reached in O(n log n) interactions and the value chosen is the majority provided
that its initial margin is ω(

√
n log n).

It seems that this is not the case when the underlying scheduler is the Transi-
tion Function Scheduler. Intuitively, the Transition Function Scheduler does not
take into great account the advantage of xs. Let Nx(t), Ny(t), and Nb(t) denote
the number of xs, ys, and bs before step t+1, respectively. Note that when all xs,
ys and bs appear in the population then the probability of Nx(t+ 1) = Nx(t) + 1
is 1/4 and the same holds for Ny(t + 1) = Ny(t) + 1. On the other hand,
when the Random Scheduler is assumed, then the greater the number of xs,
the more the arcs leading from xs to bs, thus the greater the probability of
Nx(t+ 1) = Nx(t) + 1.

Fig. 8. The two-dimensional symmetric random walk. We show that the prob-
ability that the particle will reach the Ny axis before reaching the Nx axis is
constant.
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Lemma 1. The Majority Protocol errs under the Transition Function Scheduler
with constant probability, when x = Θ(y) in the initial configuration (x and y
are used instead of Nx and Ny, respectively).

Proof. The probability of the minority to win is equal to the probability that
the symmetric walk (Nx, Ny) beginning from the initial point (x0, y0) will meet
the Ny axis before meeting the Nx axis. The particle moves to each of its 4
neighboring points with probability 1/4 (see Figure 8, where 0 and 1 are the
probabilities that we assign to the boundaries that constitute the collection of
points for which the system stabilizes to a winning vote). The only exception is
when the number of bs becomes equal to zero. But in this case the xs decrease
by one with probability 1/2, the same holds for the ys and with probability 1
a b appears again and the walk returns to its initial symmetric distribution (to
simplify the argument we ignore those states, because they do not strongly affect
the probability that we want to compute). To the best of our knowledge, this
kind of symmetric random walk in two dimensions has only been studied in [?],
a paper cited by Feller [?], and is closely related to the Dirichlet problem. For
any interior point (x, y), if u(x, y) denotes the probability that the minority wins
(the walk meets the Ny axis before meeting the Nx axis), then

u(x, y) =
1
4

(u(x+ 1, y) + u(x, y + 1) + u(x− 1, y) + u(x, y − 1)), (1)

and we are interested in the value of u(x, y) when x = Θ(y), that is the initial
number of xs and the initial number of ys are of the same order (e.g. x = n/2
and y = n/4). The homogeneous solution of (1) is u(x, y) = x+y

2n and the general
(with the boundary conditions into account) is x+y

2n + f(x, y), where f(x, y) is a
particular non-homogeneous solution. When x, y = Θ(n) the u(x, y) behaves as
the homogeneous, thus u(n/2, n/4) is equal to 3/8, which is constant. ut

Theorem 8. There exists at least one protocol w.r.t. which two fair probabilistic
schedulers are not computationally equivalent.

Proof. The Random Scheduler is not computationally equivalent to the Transi-
tion Function Scheduler w.r.t. the Majority Protocol, because there exists some
initial margin in the case in which the majority is x, which is ω(

√
n log n) and

also the initial number of xs and the initial number of ys are of the same order.
For example, in the case in which x = 3n/4 − k (where k � n) and y = n/4,
x and y are of the same order and x − y ' n/2 = ω(

√
n log n) for sufficiently

large n. But given an initial configuration satisfying the above dynamics, under
the Random Scheduler the protocol w.h.p. stabilizes to a majority winning con-
figuration, while under the Transition Function Scheduler from Lemma 1 there
is a constant probability that the protocol will stabilize to a minority winning
configuration. Thus, it does not hold that w.h.p. those schedulers make the pro-
tocol stabilize to the same output assignment (see again Definition 6) and the
theorem follows. ut
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9 Future Research Directions

In the area initiated by the proposal of the Population Protocol model [1] many
unresolved problems remain. The Population Protocol model makes absolutely
minimal assumptions about the underlying system. The agents follow a com-
pletely unpredictable movement, they cannot store unique identifiers, and even
a single Byzantine failure can lead to global failure of the system. How can we
readjust (relax) those assumptions to more accurately reflect practical sensor
network systems? For example in [18], Guerraoui and Ruppert assumed that the
agents are equipped with read-only IDs (from the industry) and that they are
also capable of storing a constant number of other agents’ IDs. In this man-
ner they obtained a very strong model, which they call the Community Proto-
col model (because the agents are now named individuals, like members of a
community), that can solve any decision problem in NSPACE(n log n) (and
is additionally robust to Byzantine failures of a constant number of agents).
Moreover in [7] they allowed the communication links to store states from a set
of cardinality that is independent of the population size, to obtain the Medi-
ated Population Protocol model that is also stronger than the Population Pro-
tocol model. In the case of wireless communication is there some architecture
to reasonably implement the proposed model without using a global storage
(for more information about the global storage idea the reader is referred to
http://fronts.cti.gr/aigaion/?TR=65, i.e. the corresponding technical re-
port of [7])? In the latter model either an exact characterization of the class of
solvable problems has to be found or at least some impossibility results should
appear to provide a first insight of what the model is not capable of computing
(a first attempt can be found in [8], and in [7] it was proven that all stably
computable predicates belong to NSPACE(m), where m denotes the number
of edges of the communication graph). Finally, how can someone verify safely
and quickly, in a distributed or centralized way, that a specific protocol meets
its design objectives? This is a crucial problem that remains open and has to be
solved if our protocols are to be run in real critical application scenarios (e.g. fire
detection, vehicle malfunction report and/or fixing, patient health status report,
and generally any kind of critical data transmission).
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