
Learning Parities in the Mistake-Bound Model

Harry Buhrman David Garćıa-Soriano Arie Matsliah

{buhrman, david, ariem}@cwi.nl

CWI Amsterdam

Abstract

We study the problem of learning parity functions that depend on at most k variables (k-
parities) attribute-efficiently in the mistake-bound model. We design a simple, deterministic,
polynomial-time algorithm for learning k-parities with mistake bound O(n1− c

k), for any constant
c > 0. This is the first polynomial-time algorithms that learns ω(1)-parities in the mistake-bound
model with mistake bound o(n).

Using the standard conversion techniques from the mistake-bound model to the PAC model,
our algorithm can also be used for learning k-parities in the PAC model. In particular, this
implies a slight improvement on the results of Klivans and Servedio [KS04] for learning k-parities
in the PAC model.

We also show that the Õ(nk/2) time algorithm from [KS04] that PAC-learns k-parities with
optimal sample complexity can be extended to the mistake-bound model.

1 Introduction

The study of attribute-efficient learning was initiated in the on-line mistake-bound model, which
was introduced by Littlestone in [Lit88]. In this model learning proceeds in rounds, where in each
round the “teacher” provides an unlabelled example x ∈ {0, 1}n, and the “learner” must predict
the value f(x) of the unknown target function f . Then the learner is given the true value of f(x),
according to which it can update its hypothesis. The mistake bound of the learner, with respect to
a target function f , is the worst-case number of mistakes that it makes over all (arbitrary, possibly
infinite) sequences of examples. The mistake bound on a concept class C (of functions that map
{0, 1}n to {0, 1}) is the maximum of the mistake bounds taken over all possible target functions
f ∈ C.

Given a concept class C and a Boolean function f ∈ C, let size(f) denote the description length
of f , under some reasonable encoding scheme. A learning algorithm A for C in the mistake-bound
model is attribute-efficient if the mistake bound of A on C is polynomial in max{size(f) : f ∈ C}.
Similarly, algorithm A for learning C in Valiant’s PAC model is attribute-efficient if the sample size
required by A to learn C is polynomial in max{size(f) : f ∈ C}.

One of the long-standing open questions in both the mistake-bound and the PAC learning
models is whether parities can be learned attribute-efficiently in polynomial time [Blu96].

1
Dagstuhl Seminar Proceedings 09421
Algebraic Methods in Computational Complexity
http://drops.dagstuhl.de/opus/volltexte/2010/2417

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

There are several standard conversion techniques (see e.g. [Ang88, Lit89]) which can be used
to transform any mistake-bound algorithm into a PAC learning algorithm. These transformations
preserve the running time of the mistake-bound algorithm, and the sample size required by the PAC
algorithm is equal to the mistake bound, up to constant factors that depend on its approximation
and confidence parameters.

Theorem 1.1 ([Ang88, Lit89]) Any algorithm A that learns C in the mistake-bound model with
mistake bound m and maximum running time per round t can be converted into an algorithm A′

that learns C in the PAC model using a sample set of size O(1
εm + 1

ε log 1
δ) and running time

O(1
εmt+ t

ε log 1
δ), where ε and δ are the approximation and confidence parameters of A′.

These conversion techniques imply that positive results for mistake-bound learning, in particular
those given in this paper, directly yield corresponding positive results for PAC learning. We mention
here that for the other direction no such conversion is known. In fact, Blum [Blu94] proved that
under widely held assumptions (namely, the existence of one-way functions) the mistake-bound
model is strictly harder than the PAC model.

2 Our results and related work

In this paper we show the first non-trivial algorithm for learning parities in the mistake bound
model. In order to state our results formally we need several definitions. Every parity function
f : {0, 1}n → {0, 1} is associated with a vector f̃ ∈ {0, 1}n that for every x ∈ {0, 1}n satisfies
f(x) = 〈f̃ , x〉 ,

∑n
i=1 f̃ixi mod 2. Learning a parity function can thus be thought of as learning

the corresponding n-bit vector f̃ . With a slight abuse of notation, from now on we will denote by f
both the parity function f : {0, 1}n → {0, 1} and its corresponding vector f̃ ∈ {0, 1}n. We will also
refrain from explicitly mentioning n throughout the paper. The concept class PAR(k) is defined
as the class of all parity functions of Hamming weight at most k. The description length of any
function f ∈ PAR(k) is O(k log n), and thus ideally we would like to have poly(n)-time algorithms
which learn PAR(k) with a mistake bound (respectively sample size) of poly(k log n). This would
correspond to attribute-efficient learning as defined above.

It is well known that, in exponential time, PAR(k) can be learned attribute-efficiently in the
mistake-bound model (and hence in the PAC model) too. A simple algorithm with mistake bound at
most k log n is the halving algorithm. It maintains a set H ⊆ PAR(k) of candidate parity functions,
and given an example x, it predicts majority{h(x) : h ∈ H}. Whenever a mistake is made, all (at
least |H|/2) “wrong” candidates are removed from H. If initially the set H was set to be PAR(k),
then after at most log |PAR(k)| ≤ k log n mistakes the function f is learned. The running time of
the halving algorithm is dominated by computing the predicate majority{h(x) : h ∈ H}. Currently
the best known implementation for computing this predicate requires |PAR(k)| ≥

(
n
k

)
many steps,

which is super-polynomial for any k ∈ ω(1).
On the other hand, with a mistake bound of n (respectively, a sample set of size O(n)), parities

can be learned straightforwardly in polynomial time by checking, for each new example, whether it

2

is a linear combination of the previous ones. We will call this the trivial algorithm (see also [Blu96]).
Despite the simplicity of these algorithms, no other methods for learning parities in the mistake-

bound model were known prior to this work. In particular, it was unknown whether ω(1)-parities
can be learned in polynomial time with o(n) mistakes. Our main result (stated next) is the first
step in this direction.

Theorem 2.1 (Main result) Let k, t : N → N be two functions satisfying k(n) ≤ t(n) ≤ n.1

For every n ∈ N (and the corresponding integers k = k(n) and t = t(n)) there is a deterministic
algorithm that learns PAR(k) in the mistake-bound model, with mistake bound kdnt e+ dlog

(
t
k

)
e and

running time per example O
((

t
k

)
(kn/t)2

)
.

Let us examine a few interesting values for the parameters in Theorem 2.1, and see when
PAR(k) can be efficiently learned with o(n) mistakes. It follows from the lower bound techniques
described in [Lit88] that for k = Ω(n) it is impossible to learn PAR(k) with sub-linear mistake
bound, even disregarding computational efficiency. So we can only consider the case k = o(n).
Recall that the running time of the halving algorithm is at least

(
n
k

)
, which is super-polynomial for

any super-constant k, and is 2Ω(k logn) for any positive k = n1−Ω(1). In the following we show that,
with appropriate parameters, our main theorem can be used to outperform the halving algorithm.
Specifically,

• for any k = o(log n), PAR(k) can be learned with o(n) mistakes in polynomial time;

• for any k = o(n), PAR(k) can be learned with o(n) mistakes in time ≈ 2O(k+logn).

The two items above are formalized next.

Corollary 2.2 (Case k ∈ O(log n))
For any k ∈ O(log n) and c ∈ N define t = t(n) = dknc/k

e e. Then PAR(k) can be learned determinis-
tically with mistake bound O(n1−c/k) and running time per round O(nc+2−2c/k). Consequently (see
Theorem 1.1), PAR(k) can be learned deterministically in the PAC model with O(n1−c/k) samples
and running time O(n3+c−(c+2)/k).

In particular, if k = o(log n) then the mistake bound (sample size) is o(n).

Corollary 2.3 (Case k ∈ o(n)) For any k ∈ o(n) let t = t(n) be an arbitrary function in ω(k).
Then PAR(k) can be learned deterministically with mistake bound O(kn/t+k log t

k) = o(n), and to-
tal running time 2O(k log t

k
+logn). Consequently (see Theorem 1.1), PAR(k) can be learned determin-

istically in the PAC model with O(kn/t+k log t
k) = o(n) samples and running time 2O(k log t

k
+logn).

For example, if t = k log k then the running time in both cases is 2O(k log log k+logn).

In addition to the corollaries above, observe that Theorem 2.1 with t = n
logn gives the same

mistake bound as the halving algorithm with slightly better running time. Similarly, we can obtain
the features of the trivial algorithm by setting k = t = n.2

1Throughout this paper, we assume that the functions k(n), t(n) are computable in O(n2) time.
2Usually k is a parameter of the concept class (not the algorithm), but it is clear that the class PAR(n) contains

PAR(k) for all k ≤ n.

3

2.1 Learning parities in the PAC model

In the PAC model, Klivans and Servedio [KS04] were the first to show non-trivial algorithms for
learning parities with sample sets of sub-linear size. (The second item in the following theorem is
attributed to Dan Spielman.)

Theorem 2.4 ([KS04])

1. PAR(k) can be learned in the PAC model with O(n1−1/k log n) samples in time O(n4).

2. PAR(k) can be learned in the PAC model with O(k log n) samples in time Õ(ndk/2e).

Since our main theorem holds in the harder mistake-bound model, using a standard conversion
techniques (see Theorem 1.1) it also implies results similar to those in Theorem 2.4, even with
improved parameters. In particular, from Corollary 2.2 (with c = 1) and Corollary 2.3 we get the
following.

Theorem 2.5

1. PAR(k) can be learned in the PAC model with O(n1−1/k) samples in time O(n4−3/k).

2. PAR(k) can be learned in the PAC model with o(n) samples in time ≈ 2O(k+logn).

In the first item, the number of samples required by our algorithm is improved by a factor of
log n, and the running time is improved by a factor of n3/k. As for Item 2, our algorithm requires
more than O(k log n) samples (although still o(n)), but its running time is reduced to ≈ 2O(k+logn),
compared to the 2Ω(k logn) time required by both the halving algorithm and the algorithm from
Item 2 of Theorem 2.4. In addition to these features, our algorithms are deterministic whereas the
algorithms from [KS04] are probabilistic.

2.2 Extending Spielman’s algorithm to the mistake-bound model

The second item in Theorem 2.4 brings down the running time of the halving algorithm to roughly
O(nk/2), while still using a sample set of optimal size (up to constant factors). It is natural to ask
whether such an improvement is attainable in the mistake-bound model too. Our main result does
not directly imply such an improvement; however, using similar ideas it is possible to extend Item
2 of Theorem 2.4 to the mistake-bound model as well. Specifically, the following theorem is proved
in Section 4.

Theorem 2.6 PAR(k) can be learned in the mistake-bound model with mistake bound O(k log n)
and maximum running time per round O(ndk/2e).

4

3 Proof of Theorem 2.1

The algorithm from Theorem 2.1 is based on an idea that was recently used by Alon, Panigrahy and
Yekhanin, who gave elegant deterministic algorithms for approximating the Nearest Codeword and
Remote Point problems (see [APY08] for details). First we outline the main idea in this algorithm,
and then provide its formal description together with the proof.

3.1 Informal description of the algorithm

Recall that, in the halving algorithm, a set H of candidate parity functions is maintained, and
given an example x, the prediction of the learner is majority{h(x) : h ∈ H}. The problem with
this method is that for any k = ω(1), the initial set H = PAR(k) is of super-polynomial size, and
we have no efficient algorithm to compute the majority vote.

In order to overcome this problem, we use a special set of affine spaces that enables a compact
representation of (a superset of) the candidate parity functions, while at the same time enabling ef-
ficient approximation of their majority vote, for any example x. Specifically, our learning algorithm
begins by obtaining a set of affine spaces N1, N2, . . . ⊆ {0, 1}n, at least one of them containing the
target parity function f . In every step of the the learning process, these sets of affine spaces are
updated according to the response given by the teacher. The way these updates are performed
guarantees:

• the running time is polynomial in n and linear in the number of affine spaces Ni;

• after every mistake, some sets Ni get shrunk, so that the quantity
∑

i |Ni| is at least halved
(this is ensured by approximating the majority vote);

• the target function f is never removed from any Ni.

Since
∑

i |Ni| ≥ |
⋃
iNi|, after at most a logarithmic (in

∑
i |Ni|) number of mistakes the target

function f is the only element left in
⋃
iNi, and hence f is learned.

3.2 Formal description and proof of Theorem 2.1

Define S ⊆ 2[t] as S = {s ⊆ [t] : |s| = k}, hence |S| =
(
t
k

)
. Let π = C1, . . . , Ct be an arbitrary

partition of {e1, e2 . . . , en} (the standard basis for {0, 1}n) into t equally (up to ±1) sized parts.
For every s ∈ S we define the linear subspace Ms = span(Us), where Us is a set of unit vectors
defined as

Us ,
⋃
i∈S

Ci.

That is, Ms consists of all binary vectors whose non-zero entries are in the parts that belong to s.
Notice that for every s ∈ S, Ms is a span of at most kdnt e vectors, and hence

|Ms| ≤ 2kdn/te.

5

Proposition 3.1

1. Every f ∈ {0, 1}n with |f | ≤ k is contained in
⋃
s∈SMs; this follows from the fact that every

set of k unit vectors is contained in the union of some d subsets Ci1 , . . . , Cid in the partition
π, where d ≤ k. Let s ⊆ [t], |s| = k be a set that contains i1, . . . , id. Then f ∈Ms.

2. |
⋃
s∈SMs| ≤

∑
s∈S |Ms| ≤

(
t
k

)
2kdn/te.

3. Let ` = kdnt e. For every affine space N ⊆ {0, 1}`, x ∈ {0, 1}` and z ∈ {0, 1}, we define
the affine space N(x, z) , {y ∈ N : 〈y, x〉 = z mod 2}. Given x ∈ {0, 1}`, z ∈ {0, 1} and
a representation for N as a system LinN ∈ {0, 1}`×`+1 of independent linear equations in
triangular form, the corresponding representation of N(x, z) (and the cardinality |N(x, z)|)
can be computed in time O(`2). This is done by adding x′ = x t z ∈ {0, 1}`+1 to LinN

and performing only one step of the Gaussian elimination procedure. Namely, XOR-ing x′

(one-by-one) with the equations y ∈ LinN that have more leading zeroes than x′. Notice
that this procedure has three possible outcomes: (i) x′ is inconsistent with LinN , and hence
|N(x, z)| = 0; (ii) x′ is a linear combination of equations in LinN , and hence |N(x, z)| = |N |;
(iii) x′ is linearly independent of LinN , and hence |N(x, z)| = |N |/2.

4. Let {Ns : s ∈ S} be a family of affine subspaces of {0, 1}n. The equality |Ns(x, 0)|+|Ns(x, 1)| =
|Ns| holds for any s ∈ S and x ∈ {0, 1}n. This implies that for any x ∈ {0, 1}n there exists
z ∈ {0, 1} for which

∑
s∈S |Ns(x, z)| ≥ 1

2

∑
s∈S |Ns|.

The learner proceeds as follows:

Initialization:
Obtain a system of equations describing each of the linear spaces Ms as defined above; and
then initialize the affine spaces Ns = Ms for all s ∈ S.

On example x ∈ {0, 1}n:
Compute n0 =

∑
s∈S |Ns(x, 0)| and n1 =

∑
s∈S |Ns(x, 1)|. Let l′ ∈ {0, 1} be a value that

satisfies nl′ ≥ n1−l′ . Output l′.

On answer l = 〈f, x〉:
Update Ns := Ns(x, l) for each s ∈ S.

First notice that the invariant f ∈
⋃
s∈S Ns holds at any stage of the learning algorithm.

Initially it holds by Item 1 of Proposition 3.1, and every time the algorithm shrinks the sets Ns,
only elements that are not equal to f are removed.

Since all the subspaces Ns contain vectors of Hamming weight at most ` = kdnt e, we can treat
them as linear subspaces in {0, 1}` by truncating all their irrelevant coordinates. In addition, for
any Ns, an example x ∈ {0, 1}n can be truncated to the corresponding `-bit vector by removing all
the irrelevant coordinates (with respect to Ns). Making this observation, the bound on the running

6

time (per round) of the algorithm now follows from Item 3 of Proposition 3.1 and the fact that
|S| ≤

(
t
k

)
.

Finally, we have to show that the number of mistakes that the learner makes is bounded by
kdnt e+ dlog

(
t
k

)
e. Notice that by the definition of the output value l′ and Item 4 of Proposition 3.1,

every time the learner makes a mistake the quantity
∑

s∈S |Ns| reduces by a factor of at least 2.
Since at every step 0 <

∣∣⋃
s∈S Ns

∣∣ ≤ ∑s∈S |Ns|, and since initially we started with
∑

s∈S |Ns| =∑
s∈S |Ms| ≤

(
t
k

)
2kdn/te (see Item 2 of Proposition 3.1), after at most log

(∑
s∈S |Ms|

)
≤ kdnt e +

dlog
(
t
k

)
e mistakes the size of

⋃
s∈S Ns will decrease to 1, which by the invariant above will imply

that
⋃
s∈S Ns = {f}, and the learner will no longer make any errors.

4 Proof of Theorem 2.6

In this section we show how Spielman’s algorithm from [KS04], which improves the running time
of the halving algorithm to roughly O(nk/2), extends to the mistake-bound model.

Theorem 2.6 PAR(k) can be learned in the mistake-bound model with mistake bound O(k log n)
and maximum running time per round O(ndk/2e).

Proof. Let A = PAR(dk/2e) × PAR(dk/2e). Then |A| ∈ O(nk+1). We can associate each
element (p, q) ∈ A with the “parity-pair” p ⊕ q; each parity r ∈ PAR(k) will then correspond to
several pairs in A, namely those such that r(x) = p(x)⊕ q(x) for all x ∈ {0, 1}n. Thus, we can view
A as a multiset of k-parities (as well as a set of parity-pairs). The answer of a parity-pair (p, q) on
x is defined as p(x)⊕ q(x).

We will show that, given any input x, we can compute the majority vote of the answers of all
parity-pairs in A that agree with all previous examples in O(ndk/2e) time, effectively simulating the
halving algorithm over the multiset A. This implies that the number of mistakes will be bounded
by log |A| = O(k log n).

In order to compute this majority, it is enough to know how many parity-pairs in A are consistent
with all the examples seen so far and would output 0 for the new example (and how many of them
would output 1). Assume we have been given the examples x = x1, x2, . . . , xm−1 ∈ {0, 1}n×m−1

with answers y = y1, y2, . . . , ym−1 ∈ {0, 1}m−1, together with thew new example xm ∈ {0, 1}n,
and we are required to output our prediction for f(xm), where f is the unkown parity function.
Let a = y1y2 . . . ym−10 be the m-bit vector that contains the answers to all previous m − 1 ex-
amples and whose last entry is 0 (representing that we are trying to count how many consistent
parity-pairs would answer 0 for xm). Each parity p ∈ PAR(dk/2e) will give an answer for ex-
amples x1, . . . , xm−1, xm; let vp = p(x1)p(x2) . . . p(xm) ∈ {0, 1}m their concatenation. Consider
the multiset V = {vp | p ∈ PAR(dk/2e)}, and the multiset Wa = {vp + a | vp ∈ V } (where
the ‘+’ denotes bitwise addition mod 2). Sort the multiset V ∪Wa in, say, lexicographical order,
keeping track of whether each vector comes from V or from Wa. For each range of (consecutive)
equal elements in the sorted sequence V ∪Wa (corresponding to some vector c ∈ {0, 1}m), count

7

how many of them are from V and how many are from Wa; call these numbers r and s respec-
tively. This means that there are exactly r + s dk/2e-parities p1, p2, . . . , pr, q1, . . . , qs such that
c = p1(x) = p2(x) = . . . = pr(x) = q1(x) + a = q2(x) + a = . . . = qs(x) + a, where p(x) ∈ {0, 1}m

denotes the answers of parity p on all examples, including the new one.
Thus, there are exactly rs pairs of parities in PAR(dk/2e) such that p(x) + q(x) = a and

p(x) = c. For each range of equal elements in the sorted sequence V ∪Wa, we will find a possible
value of c. Summing rs over all ranges of equal elements in the sorted sequence V ∪Wa, we obtain
the number of pairs (p, q) ∈ A such that p(x) + q(x) = a. We can compute this in linear time by
making one pass over the sorted sequence. We can similarly compute the number of parity-pairs
consistent with previous examples that output 1, and then predict the bit that agrees with the
majority of consistent parity-pairs.

For the implementation, note that we can go through all PAR(dk/2e) parities and compute
their answers on xm in O

((
n
dk/2e

))
time (a naive implementation would give an additional factor

of n, but this factor can be avoided with some care). Note also that before any example has been
given, the sequence V ∪Wa can be regarded as a multiset of empty vectors, and is thus sorted; and
given a new example, if we keep the multiset V ∪Wa corresponding to our answer from the previous
round, we can update the sequence in O(|V |) time by performing one step of radix-sort, since it is
already sorted with respect to the first m− 1 bits and we only need to sort it with respect to the
newly computed bit (the answer of the parity to xm), which we can consider the most significant
one.

Hence, the total running time per round is O(|V |) = O
((

n
dk/2e

))
.

5 Concluding remarks

We developed new deterministic algorithms for learning parities in both the mistake-bound and
the PAC models of learning. For the mistake-bound model we showed the first efficient algorithm
that learns k parities for non-constant k while making sub-linear number of mistakes.

The mistake bound of our algorithm is still far from the optimal mistake bound that is achieved
by the halving algorithm. It remains a major open problem whether parities can be learned
attribute-efficiently in polynomial time. The halving algorithm is currently not efficient, but if
P=NP it can be converted into one that runs in polynomial time, and has approximately the same
mistake bound. Two possible lines of research remain open: either construct an efficient algorithm
with improved mistake bound (ideally approaching the bounds of the halving algorithm), or show
that the existence of such an algorithm is unlikely.

References

[Ang88] Dana Angluin. Queries and concept learning. Mach. Learn., 2(4):319–342, 1988.

8

[APY08] N. Alon, R. Panigrahy, and S. Yekhanin. Deterministic approximation algorithms for
the nearest codeword problem. Technical Report TR08-065, Electronic Colloquium on
Computational Complexity, 2008.

[Blu94] Avrim L. Blum. Separating distribution-free and mistake-bound learning models over the
boolean domain. SIAM J. Comput., 23(5):990–1000, 1994.

[Blu96] Avrim Blum. On-line algorithms in machine learning. In In Proceedings of the Workshop
on On-Line Algorithms, Dagstuhl, pages 306–325. Springer, 1996.

[KS04] Adam R. Klivans and Rocco A. Servedio. Toward attribute efficient learning of decision
lists and parities. In In Proceedings of COLT, pages 234–248. MIT Press, 2004.

[Lit88] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. In Machine Learning, pages 285–318, 1988.

[Lit89] Nick Littlestone. From on-line to batch learning. In COLT ’89: Proceedings of the second
annual workshop on Computational learning theory, pages 269–284, San Francisco, CA,
USA, 1989. Morgan Kaufmann Publishers Inc.

9

