
An Axiomatic Approach to Algebrization

Russell Impagliazzo ∗ Valentine Kabanets † Antonina Kolokolova ‡

January 21, 2009

Abstract

Non-relativization of complexity issues can be interpreted as giving some evidence that these
issues cannot be resolved by “black-box” techniques. In the early 1990’s, a sequence of impor-
tant non-relativizing results concerning “non-controversially relativizable” complexity classes
was proved, mainly using algebraic techniques. Two approaches have been proposed to under-
stand the power and limitations of these algebraic techniques: (1) Fortnow [For94] gives a
construction of a class of oracles which have a similar algebraic and logical structure, although
they are arbitrarily powerful. He shows that many of the non-relativizing results proved using
algebraic techniques hold for all such oracles, but he does not show, e.g., that the outcome of the
“P vs. NP” question differs between different oracles in that class. (2) Aaronson and Wigder-
son [AW08a] give definitions of algebrizing separations and collapses of complexity classes, by
comparing classes relative to one oracle to classes relative to an algebraic extension of that
oracle. Using these definitions, they show both that the standard collapses and separations “al-
gebrize” and that many of the open questions in complexity fail to “algebrize”, suggesting that
the arithmetization technique is close to its limits. However, it is unclear how to formalize alge-
brization of more complicated complexity statements than collapses or separations, and whether
the algebrizing statements are, e.g., closed under modus ponens; so it is conceivable that several
algebrizing premises could imply (in a relativizing way) a non-algebrizing conclusion.

In this paper, building on the work of Arora, Impagliazzo, and Vazirani [AIV92], we pro-
pose an axiomatic approach to “algebrization”, which complements and clarifies the approaches
of [For94] and [AW08a]. We add to the axiomatic characterization of the class P from [AIV92]
a new axiom, Arithmetic Checkability, and argue that, in a certain sense, the resulting theory
provides a characterization of “algebrizing” techniques. In particular, we show the following:
(i) Fortnow’s algebraic oracles from [For94] all satisfy Arithmetic Checkability (so arithmetic
checkability holds relative to arbitrarily powerful oracles). (ii) Most of the algebrizing collapses
and separations from [AW08a], such as IP = PSPACE, NP ⊂ ZKIP if one-way functions exist,
MA-EXP 6⊂ P/poly, etc., are provable from Arithmetic Checkability. (iii) Many of the open
complexity questions (shown to require non-algebrizing techniques in [AW08a]), such as “P vs.
NP”, “NP vs. BPP”, etc., cannot be proved from Arithmetic Checkability. (iv) Arithmetic
Checkability is also insufficient to prove one known result, NEXP = MIP (although relative to an
oracle satisfying Arithmetic Checkability, NEXPO restricted to poly-length queries is contained
in MIPO, mirroring a similar result from [AW08a]).

∗U. C. San Diego and IAS; russell@cs.ucsd.edu
†Simon Fraser University; kabanets@cs.sfu.ca
‡Memorial University of Newfoundland; kol@cs.mun.ca

Dagstuhl Seminar Proceedings 09421
Algebraic Methods in Computational Complexity
http://drops.dagstuhl.de/opus/volltexte/2010/2415

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Many basic questions in Complexity Theory (e.g., P vs. NP) have so far resisted all the attacks
using currently known techniques. To understand better the limitations of the “currently known
techniques”, it is natural to try to identify some general property that these techniques share, and
show what is provable and what is not provable by any techniques satisfying this property. The
hope is that such classification of techniques will guide the search for new techniques that may
potentially resolve some of the open questions.

There have been several such “meta-results” in Complexity Theory. In the mid-1970’s, Baker,
Gill and Solovay [BGS75] used relativization as a tool to argue that techniques like simulation and
diagonalization cannot, by themselves, resolve the “P vs. NP” question. Intuitively, a technique
relativizes if it is insensitive to the presence of oracles (thus, a result about complexity classes
holds for all oracle versions of these classes). If there are oracles giving a contradictory resolution
of a complexity question (e.g., PA = NPA, but PB 6= NPB), then no relativizing technique can
resolve this question. This method of relativization has been brought to bear upon many other
open questions in Complexity Theory, for example, P vs. PSPACE [BGS75], NP vs. EXP [Dek69,
GH83, Lis86], BPP vs. NEXP [Hel86], IP vs. PSPACE [FS88], and a long list of other classes.

In an informal sense, contrary relativizations of a complexity theory statement have been viewed
as a mini-independence result, akin to the independence results shown in mathematical logic. But
what independence is implied by contradictory relativizations, and what are the proof techniques
from which this independence is implied? This was made precise in [AIV92]. There the au-
thors introduced a theory RCT (based on Cobham’s axiomatization of polynomial-time compu-
tation [Cob64]) and argued that, for any complexity statement S about P, this statement S is
provable relative to every oracle A (in some “Relativized Math” proof system) iff S is provable
in the system RCT ; more precisely, [AIV92] argue that the (standard) models of the theory RCT
are exactly all relativized classes PO, for all possible oracles O. It follows that a non-relativizing
statement is precisely a statement independent of RCT , and thus, e.g., the “P vs. NP” question is
independent of RCT . [AIV92] also show that extending RCT with another axiom, which captures
the “locality” of a Turing machine computation in the style of the Cook-Levin theorem, almost
exactly characterizes the class P in the following sense: the models for the resulting theory, denoted
by LCT (for Local Checkability) in [AIV92], are necessarily of the form PO with O ∈ NP ∩ co-NP.
This makes the theory LCT “too strong”, in the sense that resolving most complexity questions in
LCT is essentially equivalent to resolving them in the non-relativized setting.

In the early 1990’s, a sequence of important non-relativizing results concerning “non-controversially
relativizable” complexity classes was proved, mainly using algebraic techniques. Although the tech-
niques used to obtain these results seem similar in flavor, it is not clear what common features they
are exploiting. It is also not clear to what extent oracle results should be trusted as a guide to
estimating the difficulty of proving complexity statements, in light of these algebraic techniques.
Finally, it is unclear what the true power of these techniques is. Could they resolve the longstanding
open problems in complexity, such as P vs. NP, or BPP vs. P? To answer this question requires a
formalization of the “arithmetization technique” and its power.

Two approaches to this question have been formulated. Fortnow [For94] gives a construction of
a class of oracles which have a similar algebraic and logical structure, although they are arbitrarily
powerful. He shows that many of the non-relativizing results proved using algebraic techniques hold
for all such oracles. While this is revealing, it is only a partial characterization of the technique.
For example, he does not show that the outcome of P vs. NP differs between different oracles in
that class. The second approach is due to Aaronson and Wigderson [AW08a] who give definitions

1

of algebrizing separations and collapses of complexity classes, by comparing classes relative to one
oracle to classes relative to an algebraic extension of that oracle. Using these definitions, they show
that the standard collapses “algebrize” and that many of the open questions in complexity fail
to “algebrize”, suggesting that the arithmetization technique is close to its limits. However, it is
unclear how to formalize algebrization of more complicated complexity statements than collapses
or separations, and it is unclear whether the algebrizing statements are, e.g., closed under modus
ponens. So, in particular, it is conceivable that several algebrizing premises could imply (in a
relativizing way) a non-algebrizing conclusion.

Our results: In this paper we provide an axiomatic framework for algebraic techniques in the style
of [AIV92]. We extend their theory RCT with an axiom capturing the notion of arithmetization:
the Arithmetic Checkability axiom. Intuitively, Arithmetic Checkability postulates that all NP
languages have verifiers that are polynomial-time computable families of low-degree polynomials;
a verifier for an NP language is a polynomial f (say, over the integers) such that the verifier
accepts a given witness y on an input x iff f(x, y) 6= 0. Standard techniques (the characterization
of “real world” non-deterministic Turing Machines in terms of consistent tableaux, and algebraic
interpolations of Boolean functions) show that this axiom holds for unrelativized computation.

The models for the resulting theory, which we call ACT (for Arithmetic Checkability Theory),
are, essentially, all relativized classes PO with oracles O such that Arithmetic Checkability holds
relative to this O, i.e., all NPO languages have PO-computable families of low-degree polynomials as
verifiers. Arithmetic Checkability is implied by, yet is strictly weaker than Local Checkability, since
ACT has models PO for arbitrarily powerful oracles O (in particular, any oracle from Fortnow’s
[For94] recursive construction). Thus, ACT is a theory that lies between the theories RCT and
LCT .

We use the Arithmetic Checkability axiom (and the theory ACT based on it) as an axiomatic
framework to capture the “arithmetization technique”. We show that many complexity theorems
(like the ones shown to algebrize in [AW08a]) are provable in ACT , and that many open complex-
ity questions (like the ones shown to non-algebrize in [AW08a]) are independent of ACT . Since
all provable consequences of ACT are closed under deduction, we avoid the limitations of the ap-
proach in [AW08a]. However, there are some known complexity statements (proved using algebraic
techniques) that are also independent from ACT .

The following is a summary of our main results: (i) Fortnow’s algebraic oracles from [For94] all
satisfy Arithmetic Checkability (so arithmetic checkability holds relative to arbitrarily powerful or-
acles). (ii) Most of the algebrizing collapses and separations from [AW08a], such as IP = PSPACE,
NP ⊂ ZKIP if one-way functions exist, MA-EXP 6⊂ P/poly, etc., are provable from Arithmetic Check-
ability. (iii) Many of the open complexity questions (shown to require non-algebrizing techniques
in [AW08a]), such as P vs. NP, P vs. BPP, the existence of explicit functions without small circuits,
etc., cannot be proved from Arithmetic Checkability. (iv) Arithmetic Checkability is also insuffi-
cient to prove one known result, NEXP = MIP (although relative to an oracle satisfying Arithmetic
Checkability, NEXPO restricted to poly-length queries is contained in MIPO, mirroring a similar
result from [AW08a]).

Remainder of the paper: In Section 2, we define the axiom of Arithmetic Checkability and
study its properties. Section 3 contains a number of provable consequences of ACT , and Section 4
a number of complexity statements independent from ACT .

2

2 Arithmetic Checkability

In this section, we define the axiom of arithmetic checkability, and prove some of its basic properties.
We could view this axiom in one of two ways. Proof-theoretically, we could add the axiom to
the theory RCT of [AIV92], and view the results provable in this theory as those provable with
relativizing and algebrizing techniques. Somewhat simpler conceptually, for the purposes of this
paper, we instead take a model-theoretic viewpoint, where we look at the class of oracles that satisfy
(are consistent with) the new axiom. In the model-theoretic viewpoint, a complexity statement is
algebrizing if it holds for all oracles that satisfy the new Arithmetic Checkability axiom.1 In this
abstract, we will only consider the model-theoretic interpretation, to avoid a long discussion of the
[AIV92] axioms.

The Arithmetic Checkability axiom intuitively says that every easily computable function can
be interpolated into an easily computable, low-degree polynomial by adding extra variables. While
extensions of Boolean functions to polynomials makes sense over many fields and rings, for simplic-
ity, we limit ourselves to polynomials over the integers.

Below we define two versions of the Arithmetic Checkability axiom: one for checkability of
nondeterministic computation (where the verifier polynomial accepts a proof if its output is any
non-zero integer), and one for deterministic computation (where the verifier polynomial accepts a
proof if its output is 1, and, moreover, the proof is unique and efficiently computable). We call the
first version weak ACT (or simply ACT), and the second version strong ACT (or ACT∗). Most
of our positive results (in Section 3) are provable from the weak version of ACT, while all our
independence results (in Section 4) are with respect to the stronger theory based on ACT∗.

Definition 2.1. A polynomial family is a family of polynomials fn : Zn → Z, where, for each
n ∈ N, fn is an n-variate polynomial over Z of total degree nO(1). It is polynomial-time computable
if the function F (n, y1, ..yn) = fn(y1, ..yn) is in FP.

The class ALG-PF (algebraically checkable proof systems) is the class of languages L such
that there is a polynomial-time computable polynomial family {fn} and a polynomially bounded
polynomial-time computable function m = m(n) so that x = x1 . . . xn ∈ L iff ∃y1 . . . ym ∈ {0, 1}m
such that fn+m(x1, . . . , xn, y1, . . . , ym) 6= 0.

The (weak) Arithmetic Checkability axiom is the statement NP = ALG-PF. We will denote
this axiom by ACT (for Arithmetic Checkability Theorem). The theory ACT is defined to be
RCT +ACT (i.e., the theory RCT together with the axiom ACT). An oracle A is consistent with
ACT if NPA = ALG-PFA.

The class ALG-PF∗ is the class of languages L such that there are a polynomially bounded
polynomial-time computable function m = m(n), a polynomial-time computable function family
{gn : {0, 1}n → {0, 1}m}, and a polynomial-time computable polynomial family {fn} so that (i) if
x = x1 . . . xn ∈ L then fn+m(x, g(x)) = 1, (ii) if x = x1 . . . xn 6∈ L then fn+m(x, g(x)) = 0, and
(iii) for all y ∈ {0, 1}m, y 6= g(x) =⇒ f(x, y) = 0. The strong ACT, denoted by ACT∗, is the
statement P = ALG-PF∗; the corresponding strong version of ACT is denoted ACT ∗. An oracle A
is consistent with ACT∗ if PA = ALG-PF∗A.

A set A of integers is self-algebrizing if there is a polynomial family Ã extending A under
projection, i.e., A[x1, . . . , xn] = Ãn+1[0, x1, . . . , xn] for Boolean x, and such that Ã ∈ PA.

1It is somewhat stronger to say that a statement does algebrize in the proof-theoretic sense than in the model-
theoretic sense (because the statement may be true for all such oracles without being provable). Contrapositively, an
independence result is stronger in the model-theoretic sense than in the proof-theoretic sense (because we only consider
standard models). All of our positive implications hold in the proof-theoretic sense, and all of our independence results
hold in the model-theoretic sense.

3

We will relate arithmetic checkability to the notion of local checkability from [AIV92]. The latter
essentially says that (non-deterministic) computation can be verified in terms of a small number of
conditions that each involve a small part of an input and proof. There were a number of different
versions in [AIV92]. In order to make the way to properly relativize this statement less controversial
(although probably still not non-controversial), we use an intermediate-strength version that allows
the verifier to make polynomial length queries to the oracle (but not to query the input).

Definition 2.2. Let PF-CHK[poly, log] be the class of languages L so that there is a polynomial
p(n) and a polynomial-time computable verifier V x,Π(1n, r) with random access to the input x and
a proof Π ∈ {0, 1}p(n) so that V makes at most O(log n) queries to the input and proof, and so
that x ∈ L if and only if ∃Π ∈ {0, 1}p(|x|)∀r ∈ [1, . . . , p(n)] V x,Π(1n, r) = 1.

The Local Checkability axiom is the statement NP = PF-CHK[poly, log], which we also denote by
LCT (for Local Checkability Theorem). The theory LCT is RCT +LCT . An oracle O is consistent
with LCT if NPO = PF-CHK[poly, log]O.

[AIV92] and many others have observed that NP = PF-CHK[poly, log] follows from the standard
proof of the Cook-Levin Theorem in terms of tableaux. [AIV92] also observed that all oracles O
consistent with the version of LCT defined above are in NP/poly∩coNP/poly, and that NPO reduces
to unrelativized NP (via PO reductions). This severely limits the power of such oracles, and the
number of provable independence results from LCT .

Here, we show that most (but not all) of the known complexity consequences of local checkability
actually follow from the weaker statement, ACT, but that ACT (even ACT∗) does not suffice to
resolve many of the open problems in complexity. Thus, provability in ACT is a good surrogate for
“provable with relativizing and algebrizing techniques”. Independence from ACT suggests that not
only do we need non-black-box techniques, but also we need to go beyond algebraic interpolation
as the only non-black-box technique.

The following theorem relates ACT to LCT and the notion of algebrizing suggested by [For94].

Theorem 2.3. 1. Any language A that is consistent with LCT is also consistent with ACT.

2. For any language A, and any polynomial extension Ã, PA ⊆ ALG-PF∗Ã and NPA ⊆ ALG-PFÃ.

3. Any language A that is self-algebrizing is consistent with ACT∗ and ACT.

Proof. (1.) We claim for any A, PF-CHK[poly, log]A ⊆ ALG-PFA. If L ∈ PF-CHK[poly, log]A, let
V A be a O(log n)-query proof checker that accepts L, i.e., x ∈ L if and only if ∃Π ∈ {0, 1}nc∀r ∈
[1, . . . , nc] MA,x,Π(1n, r) = 1. For each r computation, it is possible to compute (using oracle
A) a decision tree of queries to bits of its inputs (x,Π) of depth c log n (and hence polynomial
size) that expresses acceptance along this path. (Note that we bound the number of queries of
M to x or Π to O(log n), but M may make any number of queries to A.) We can then represent
this decision tree as a degree c log n polynomial by taking the sum over all accepting paths of the
product of the corresponding literals, where the negation of a variable z is represented by 1 − z.
Let the resulting polynomial be called pr(x1, . . . , xn,Π1, . . . ,Πm). On Boolean inputs, pr will have
value 1 if MA,x,Π(1n, r) accepts and 0 otherwise. We can then let p(x1, . . . , xn,Π1, . . . ,Πm) =
Πrpr(x1, . . . , xn,Π1, . . . ,Πm). Each pr and hence p can be computed in polynomial time, and p has
degree at most O(nc log n). So p is a polynomial-time computable polynomial family. For Boolean
inputs, p is 1 if all pr are 1 and 0 otherwise, so p is 1 if and only if MA,x,Π(1n, r) = 1 for all r.

(2.) Let A be an oracle with algebraic extension Ã. Let L ∈ PA be accepted by a machine MA.
We define the proof to be the tableau of the computation on x of the deterministic machine MA,

4

together with the oracle answers given as bits b1, . . . , bT . Since M is deterministic, such a proof
is unique. Let g be the function mapping inputs x into proofs (i.e., tableaux of MA and oracle
answers). Clearly, g(x) is computable in FPA ⊆ FPÃ.

Without loss of generality, we can assume the time step and length of the i’th oracle query is
known in advance (say, by clocking the maximum number of steps between queries and by having
the machine make dummy queries of all possible lengths in order). So the i’th query will be at a
fixed li consecutive positions in the tableau. An accepting tableau is valid if each square of six is
possible for the machine, and if each bi = A[qi1 , . . . , qili]. The first set of conditions can each be
written as a polynomial using the decision tree method above, and the second by the polynomials
1− (bi − Ãli+1[0, qi1 , . . . , qili])

2. (Note that on Boolean inputs starting with a 0, Ã is either 0 or 1,
as is bi. Therefore the above polynomial is either 0 or 1.) Then the total correctness is the product
of these polynomials, which is clearly of polynomial degree, is computable in PÃ, is Boolean-valued
on Boolean inputs, and is 1 on a given input x and a proof y iff y is the unique correct proof that
x ∈ L. Hence, L ∈ ALG-PF∗Ã.

For the case of L ∈ NPA, we define L′ ∈ PA to be the set of those pairs (x, y) such that x ∈ L
and y is a witness for x ∈ L. By the above, we get that L′ ∈ ALG-PF∗Ã, with a polynomial family
f . It follows that x ∈ L iff there exist y and z such that f(x, y, z) = 1, where z represents the proof
that (x, y) ∈ L′ (moreover, z is unique and efficiently computable from (x, y), but we do not need
this extra property here). Thus, we get L ∈ ALG-PFÃ.

(3.) Follows from (2), since if A is self-algebrizing, then ALG-PF∗A = ALG-PF∗Ã and ALG-PFA =
ALG-PFÃ.

Part (3) essentially says that any technique that “algebrizes” in our sense also algebrizes in the
sense of Fortnow [For94]. While we cannot prove that “being a consequence of ACT” characterizes
algebrizing techniques in the sense of [AW08a], part (2) is an explanation why results that algebrize
in the two senses frequently coincide. Namely, to show NP ⊆ C2 algebrizes in both senses, it suffices
to show that ALG-PF ⊆ C2 relativizes.2

The following theorem summarizes a construction due to Fortnow, which shows that the self-
algebrizing languages come in arbitrarily strong complexities. By Theorem 2.3, it follows that so
do oracles consistent with ACT∗ and ACT.

Theorem 2.4 ([For94]). For each language L there is a self-algebrizing language A such that
A ∈ PSPACEL and L ∈ PA.

Proof. We will give two constructions. First we present the construction due to Fortnow [For94].
Fortnow’s construction: Let 〈y1, . . . , yk〉 be a standard pairing function such that |〈y1, . . . , yk〉| >

|y1| + · · · + |yk|. For a language A, denote by An the restriction of A to {0, 1}n. We define
A = ∪n≥1An inductively over n as follows.

Set A1 = ∅. Suppose An is already defined for some n ≥ 1. Let fn(x1, . . . , xn) be the unique
multilinear polynomial extension of An(x1, . . . , xn). We extend the definition of A according to the
following three cases.

1. For each b1 . . . bn ∈ {0, 1}n, we put 〈0, b1, . . . , bn〉 into A iff b1 . . . bn ∈ L.
2. For each n-tuple of integers (c1, . . . , cn), we put 〈1, c1, . . . , cn〉 into A iff fn(c1, . . . , cn) > 0.
3. For each n-tuple of integers (c1, . . . , cn) and an integer i ≥ 0, we put 〈i + 2, c1, . . . , cn〉 into

A iff the ith bit of the binary representation of the integer value fn(c1, . . . , cn) is one.
2More generally, for C1 ⊆ C2, give a containment for C1 from some construction over NP, and then give a

relativizing inclusion of the same construction over ALG-PF inside C2.

5

It is easy to see that the constructed language A is self-algebrizing, and hence, in particular,
L ∈ PA. To see that A ∈ PSPACEL, observe that for each n ≥ 1 and b1 . . . bn ∈ {0, 1}n, the value
An(b1, . . . , bn) is computable either in PLn′ for some n′ < n (in case 1 above), or in PSPACEAn′′

for some n′′ < n (in cases 2 or 3, since the multilinear extension fn′′ of An′′ can be evaluated at
any given point, using a polynomial-space algorithm with oracle access to An′′). In other words,
A is downward self-reducible, with a polynomial-space reduction. The latter easily implies that
A ∈ PSPACEL.

Alternative construction: For a given language L, let A be any PSPACEL-complete language
(e.g., the TQBFL language). Then the unique multilinear extension Ã is computable in PSPACEA ⊆
PSPACEL ⊆ PA, where the first inclusion is because A ∈ PSPACEL, and the second one because A
is PSPACEL-hard. Finally, observe that L ∈ PA since L ∈ PSPACEL ⊆ PA.

We will call the self-algebrizing language A obtained from a given language L using Theorem 2.4
the self-algebrizing encoding of L.

3 Consequences of Arithmetic Checkability

First we show that the famous PSPACE = IP theorem [LFKN92, Sha92] can be proved from
Arithmetic Checkability.

Theorem 3.1. Let O be any oracle consistent with ACT. Then PSPACEO = IPO.

Proof. For any oracle O, the relativized version of TQBF is a complete problem for PSPACEO:
Given an input x1 . . . xn ∈ {0, 1}n, decide if ∃y1 ∈ {0, 1} ∀z1 ∈ {0, 1} . . . ∃ym ∈ {0, 1} ∀zm ∈
{0, 1} P (x1, . . . , xn, y1, . . . , ym, z1, . . . , zm), where P ∈ PO and m is a polynomially bounded func-
tion of n. Since P ∈ PO ⊆ NPO = ALG-PFO, we can write P (x1, . . . , xn, y1, . . . , ym, z1, . . . , zm) as
∃w1 . . . wm′ ∈ {0, 1}m

′
[fn+2m+m′(x1, . . . , xn, y1, . . . , ym, z1, . . . , zm, w1, . . . , wm′) 6= 0], where f is a

polynomial family computable in PO.
Fix input x, merge the w’s with y’s and z’s, and consider f2. The problem becomes to decide

if ∃y1 ∈ {0, 1} ∀z1 ∈ {0, 1} . . . ∃ym ∈ {0, 1} ∀zm ∈ {0, 1} [p2m(y1, . . . , ym, z1, . . . , zm) 6= 0], where
p2m is an efficiently computable polynomial that is always non-negative. We will follow the same
protocol as in the standard proof of the PSPACE = IP theorem (see, e.g., [AB09]).

For a polynomial p(a1, a2, . . . , at) and variable ai, define the multilinearization of p with respect
to ai by p′(a1, . . . , at) = ai(p(a1, . . . , ai−1, 1, ai+1, . . . , at) + (1 − ai)p(a1, . . . , ai−1, 0, ai+1, . . . , at).
Note that p′ agrees with p whenever ai is Boolean, and p′ is linear in ai.

Define a system of polynomials pi,j [a1, . . . , ai], with 0 ≤ j ≤ i ≤ 2m, inductively as follows:
p2m,0 = p2m. For j 6= 0, pi,2j−1 is the multilinearization of pi,j−1 with respect to yj , and similarly
pi,2j with respect to zj . Observe that

p2i,0[y1, z1, . . . , yi, zi] = p2i+1,2i+1[y1, . . . , zi, 0] + p2i+1,2i+1[y1, . . . , zi, 1],

and
p2i+1,0[y1, z1, . . . , yi, zi] = p2i+2,2i+2[y1, . . . , zi, yi+1, 0] · p2i+1,2i+1[y1, . . . , zi+1, 1].

Note also that for any Boolean values y1, . . . , zi, we have p2i,j ≥ 0, with non-equality if and only
if the quantified expression with those values evaluates to true. The expression p0,0 is a constant,
which is non-zero if and only if x ∈ L. Finally, note that pi,j is of at most polynomial total degree.
(In fact, each pi,i is multilinear, so each pi,j has degree at most 2 in each variable if i < 2m, and at
most the degree of p2m otherwise.)

6

At the start of the protocol, the prover picks a prime q, so that p0,0 6= 0 mod q. Since the
polynomial p2m is polynomial-time computable, its values cannot be too huge, and so the same is
true for p0,0, which is at most a 2m’th power of these values. (The value is thus at most doubly
exponential, so has at most an exponential number of prime factors. The number of primes of a
suitable polynomial length will be much larger than its number of factors.) So such a q will exist.
The verifier checks that q is prime.

The prover also gives a value v0 6= 0 mod q, and claims that p0,0 = v0 mod q. The rest of the
protocol goes in stages 0 ≤ j ≤ i ≤ 2m. At each stage, there will be values r1, . . . , ri assigned to the
first i variables, and a value vi,j , with the implicit claim that pi,j(r1, . . . , ri) = vi,j . The property is
that if the claim for i, j is false, so will the claim be for i, j + 1 if j 6= i, or for i+ 1, 0 if j = i.

In all cases, there is a simple formula relating pi,j to its successor polynomial (pi,j−1 if j 6= 0,
or pi+1,i+1 if j = 0), with the successor polynomial only evaluated when a variable a is replaced
by constants. First, the prover sends a polynomial g(a) that is supposed to be the value of the
successor polynomial at an arbitrary value of a, and giving the corresponding values in r1, . . . , ri
to the other variables. This will be a low-degree polynomial. The verifier checks that the defining
formulas hold between vi,j , g(0) and g(1). So if g were the correct restricted successor polynomial,
then vi,j would be the correct value of the original polynomial on the inputs. Conversely, if vi,j is
incorrect, g is incorrect, and only agrees with the correct restriction in very few places. The verifier
then sends a random value r for a, which replaces the value for a in r1, . . . , ri if it exists. The
successor value of v is set to g(r).

When we reach i = 2m, j = 0, the prover is claiming that p2m,0(r1, . . . , r2m) = v2m,0 mod q.
Since p2m,0 = p2m, which is a restriction of a polynomially computable function, the verifier can
test this claim in polynomial time, by evaluating p2m(r1, . . . , r2m) and then reducing the resulting
value modulo q. If x ∈ L and the prover follows the protocol, the claim is always true. Inductively,
if x 6∈ L and the verifier has not previously rejected, with high probability this is false.

We also get that many known circuit lower bounds (based on the collapses like PSPACE = IP)
are provable from ACT or ACT∗. The corresponding non-relativized versions of the lower bounds
in the next theorem (items 1–3) are from [BFT98, Vin05, San07], respectively; the last item is from
[BFL91].

Theorem 3.2. Let O and O∗ be any oracles consistent with ACT and ACT∗, respectively. Then
all of the following statements hold: (1) MA-EXPO 6⊂ PO/poly; (2) For each constant k, PPO

∗ 6⊂
SIZEO

∗
(nk); (3) For each constant k, promise-MAO

∗ 6⊂ SIZEO
∗
(nk); (4) NEXPO

∗[poly] ⊆ MIPO
∗
.

Proof sketch. The proofs are similar to the corresponding proofs in [AW08a].
(1): Observe that for any ACT-consistent languageO, if PSPACEO ⊂ PO/poly, then PSPACEO =

MAO following the same argument as in the unrelativized case: the prover in the IPO-protocol for
PSPACEO is computable in PSPACEO, and hence, Merlin can give to Arthur a small circuit for this
prover, and Arthur can simulate the IPO-protocol by interacting with the circuit.

If PSPACEO 6⊂ PO/poly, then also MA-EXPO 6⊂ PO/poly, and we are done. Otherwise, we get
by the argument above that PSPACEO = MAO, which by padding yields EXPSPACEO = MA-EXPO.
Finally, by diagonalization, we conclude that EXPSPACEO 6⊂ PO/poly.

(2): Let O∗ be any ACT∗-consistent oracle. Relative to O∗, counting the number of accepting
paths of a given NP-machine on a given input x is reducible to the polynomial summation problem∑

z1,...,zm∈{0,1} p(z1, . . . , zn), where p is a polynomial family computable in FPO
∗
. Indeed, let L ∈

NPO
∗

be any language decided by a nondeterministic machine NO∗ . Let L′ ∈ PO
∗

be the language
consisting of those pairs (x, y) such that x ∈ L and y describes an accepting computation of N

7

on x. By the definition of ACT∗-consistency, there is a polynomial-time computable polynomial
family f such that, for any (x, y), we have (x, y) ∈ L′ iff there is some Boolean w such that
f(x, y, w) = 1, and moreover, such Boolean w is unique (if exists). It follows that the number of
accepting computations y on a given input x is exactly

∑
y,w∈{0,1}∗ f(x, y, w).3

We can now use the LFKN protocol [LFKN92] to argue that #PO
∗

has proof checkers. In
particular, we get that if PPO

∗ ⊂ PO
∗
/poly, then P#PO

∗
= PPO

∗
= MAO

∗
.

This is sufficient to prove item (2) of Theorem 3.2, arguing as in the non-relativized case.
Indeed, if PPO

∗ 6⊂ PO
∗
/poly, then we are done. Otherwise, we have by the above that P#PO

∗
=

PPO
∗

= MAO
∗
, and by relativizing Toda’s theorem [Tod91], we have (Σp

2)O
∗ ⊆ P#PO

∗
. Finally, by

relativizing Kannan’s theorem [Kan82], we get that for every fixed constant k, (Σp
2)O

∗ 6⊂ SIZEO
∗
(nk),

and therefore, also MAO
∗ 6⊂ SIZEO

∗
(nk). Since MA ⊆ PP (and this inclusion relativizes), we get

item (2) of Theorem 3.2.
(3): We follow the corresponding proof in [AW08b], using the PPO

∗
-complete problem of de-

ciding, for a given efficiently computable low-degree polynomial, whether its sum over the Boolean
domain is at least a given integer k. The argument is the same as that in [AW08b].

(4): The proof of item (4) is also based on the proof of the corresponding non-relativized re-
sult [BFL91]. As pointed out in [AW08b], the tableau of a NEXP-machine remains locally checkable
even if we allow oracle access to any oracle A, provided that the machine is only allowed to ask
polynomial-length oracle queries. Since O∗ is ACT∗-consistent, we have access to the polynomial
extensions of O∗ and it complement, and therefore can arithmetize the local-check algorithm for a
given NEXPO

∗[poly]-machine. The result of arithmetization is a polynomial that is 1 iff the check is
satisfied. By subtracting 1 and squaring the result, we get a new polynomial that is 0 iff the check
is satisfied, and greater than 0 otherwise. Then the problem is to verify that the sum of all these
local-check polynomials is 0. This can be done as in the original proof of [BFL91]; see [AW08b] for
details.

Note that Theorem 3.2 above shows that NEXPO
∗ ⊆ MIPO

∗
is provable from ACT∗ only for

the case of polynomial-length oracle queries (the restriction assumed also in [AW08a]). This is
unavoidable. As we show below (Theorem 4.1, item 3), it is impossible to prove NEXP ⊆ MIP from
ACT∗.

We also show that the famous GMW theorem [GMW91] (NP ⊆ ZKIP if one-way functions exist)
can be proved from ACT. We prove that the theorem holds relative to every oracle O consistent
with ACT. A similar result for a restricted case was also shown in [AW08a], but they have since
independently obtained essentially the same result as we do below for their setting [AW08b]. (More
precisely, their new result shows that if Ã is an algebraic extension of oracle A, and there is a one-
way function with respect to Ã, then NPA ⊆ ZKIPÃ. While the phrasing is different, their protocol
is very close to ours.)

Theorem 3.3. Let O be any oracle consistent with ACT and such that there is a one-way function
in PO secure against adversaries in BPPO. Then NPO ⊆ ZKIPO.

Proof. If there are one-way functions, then there are semantically secure statistically binding com-
mitment schemes ([Nao91, HILL99]; all arguments there relativize). Let C be such a scheme. For
simplicity of notation, we drop the randomness used by C and refer to any commitment to a number
a as C(a).

3This is where we use the assumption that O∗ is consistent with the strong version of ACT. We do not know if the
weak version of ACT suffices to prove the items (2)–(4) of Theorem 3.2, and leave it as an interesting open question.

8

The prover in our protocol will use indirect commitments. An indirect commitment to a given
value a is a pair of commitments C(r) and C(a+ r), where r is a randomly chosen residue mod q,
and addition is modulo q (for some q chosen at random within the protocol). A general subroutine is
to prove that a certain set of indirectly committed values satisfies a linear relationship

∑
αiai = 0,

where the αi’s are publicly known and the ai’s are indirectly committed to. We refer to this as
a linear relationship test. In such a test, the prover will have sent (in addition to the indirect
commitment (C(ri), C(ai + ri))) a commitment C(

∑
αiri) = C(s). The verifier then flips a coin;

if heads, the prover decommits to all ri’s and s, and the verifier checks that s =
∑
αiri. Since

the ri’s are random, and s really is this sum, this reveals no information. Alternatively, if the
coin is tails, the prover decommits to s and all (ai + ri)’s and the verifier does the same check that
s =

∑
(αi(ai+ri)). Again, these are random numbers and a predefined linear combination of them,

so this reveals no information about the ai’s. Note that both checks work for the same value of s
if and only if

∑
αiai = 0.

Let L ∈ NPO. Then there is a polynomial-time (with respect to O) computable polynomial
family {fk} such that x = x1 . . . xn ∈ L iff ∃y1, . . . , ym ∈ {0, 1}m fn+m(x1, . . . , xn, y1, . . . , ym) 6= 0.
For the rest of the proof, we fix x, and think of f as a polynomial in the variables yi only. To
simplify the notation, we will denote this new polynomial by f(y1, . . . , ym). We denote by d the
degree of f (as a polynomial in the yi’s).

First, the prover selects ~y = (y1, . . . , ym) such that f(~y) 6= 0, and the verifier selects a moderately
sized random prime q. With high probability f(~y) 6= 0 mod q. (The prime q should be sufficiently
larger than d, and in fact could be larger than the possible values of f on m-bit inputs, in which
case f(~y) 6= 0 mod q is certainly true.)

Next, the prover picks a random bit b, and directly commits to b. If b = 0, the prover indirectly
commits to yi, i = 1, . . . ,m, and then to (1 − yi), i = 1, . . . ,m. If b = 1, the prover does these
indirect commitments in reverse, i.e., indirectly commits to the (1− yi)’s and then to the yi’s.

The prover also picks a random non-zero vector ~s = (s1, . . . , sm) ∈ Zmq and indirectly commits
to the following values:

• each sj , for j = 1, . . . ,m,

• each coordinate of z(t) = ~y + t~s for each t = 1, 2, . . . , d+ 1,

• the value vt = f(z(t)) for each t = 0, 1, . . . , d+ 1, and

• the coefficients c0, ...cd of the univariate polynomial f(~y + t~s) (in the variable t).

Note that the values vt can be computed easily by the prover since f is in PO. Using these values,
the prover can also easily compute the coefficients c0, . . . , cd by interpolation.

Finally, let r0 be the random number used in the indirect commitment (C(r0), C(v0 + r0)) to
v0. The prover picks values a, b at random (with a 6= 0), and directly commits to a, b, ar0 + b, and
a(r0 +v0)+b. The prover does similarly for the random numbers used in the indirect commitments
to the sj ’s, for 1 ≤ j ≤ m.

The verifier chooses one of the following tests at random:

1. Test for Booleanness. The verifier picks a random i and the prover reveals the two bits
corresponding to yi and 1 − yi (but does not reveal b.) If the prover follows protocol, these
bits are just 0 and 1 in a random order. If the verifier does not choose this test, b is revealed.

2. Non-zeroness test. The verifier views one of the three possibilities: a, b, r0, ar0 + b (checking
that the last really is computed correctly from the first three); a, b, (r0 + v0), a(r0 + v0) + b,

9

(similarly checking); or, ar0 + b and a(r0 +v0)+ b, checking that these two are distinct (hence
v0 6= 0, if they are correctly computed).

3. Non-degeneracy test. The verifier picks a random 1 ≤ j ≤ m, and performs the non-zeroness
test on sj , as described above.

4. Test of polynomial values. The verifier picks a random t and tests that vt =
∑d

i=0 cit
i, i.e.,

that the committed polynomial really has value vt at this point. This is a linear relationship
test, handled as described above (without actually revealing vt or any of the coefficients).

5. Test of linearity of the z(t)’s. The verifier picks a random t 6= 0 and a coordinate 1 ≤ j ≤ m,
and verifies that yj + tsj = z(t)j . Again, this is a linear relationship test.

6. Test of consistency with f . The verifier picks a random t 6= 0 and tests that vt = f(z(t)).
For this, the prover completely reveals z(t) and vt. If the prover follows the protocol, z(t)
is a random vector independent of y, and vt is the (easily computable) value above, so the
revealed information can be simulated by the verifier.

It is easy to see that any of the tests performed by the verifier reveals no information that the
verifier could not simulate by himself; so the described protocol is zero-knowledge. Completeness
of the protocol is obvious. For soundness, suppose that the committed values pass all of the above
tests, then it follows that: There is an indirectly committed vector ~y that is Boolean, and a non-zero
value v0, and a polynomial c(t) of degree d with c(t) = vt for each t. There are points z(t) = ~y+ t~s
for some non-zero vector ~s. And f(~y + t~s) = vt for d + 1 non-zero values of t. Since c and the
restriction of f to this line both have degree d and agree on d + 1 points, they must be equal
polynomials. Therefore they have the same value on t = 0, so f(~y) = c(0) = v0 6= 0. Therefore,
x ∈ L.

4 Independence results

Using Fortnow’s construction of Theorem 2.4, we get a rich family of oracles consistent with ACT∗,
which we can use to prove a number of complexity statements independent from ACT ∗, including
the known true statement that NEXP ⊆ MIP [BFL91]. The following theorem (the last item) shows
that even the weaker statement E ⊆ MIP is not provable in ACT ∗.

Theorem 4.1. ACT ∗ does not imply any of the following: (1) P 6= PSPACE (and hence, also
P 6= NP); (2) EXP ⊆ P/poly4; (3) E ⊆ MIP.

Proof. (1): Let L be a language complete for PSPACE, and let A be its self-algebrizing encoding
(obtained using Theorem 2.4). We get that A is consistent with ACT∗, and L ∈ PA and A ∈
PSPACEL. Then PSPACEA ⊆ PSPACEL = PL ⊆ PA ⊆ PSPACEA. In particular, PA = PSPACEA.

(2): Take L and A as in the previous item. We get that PSPACEA = PA. By padding (which
relativizes), we get EXPSPACEA = EXPA. By counting we know that EXPSPACEA 6⊂ PA/poly.
Hence, EXPA 6⊂ PA/poly.

(3): Since both PSPACEL and MIPL only depend on strings in L of polynomial-size, it is easy
to diagonalize to construct an oracle L so that EL 6⊂ MIPPSPACEL . Now let A be the self-algebrizing
encoding of this L, and so A is consistent with ACT∗. We get MIPA ⊆ MIPPSPACEL and EL ⊆ EA,
so EA 6⊆ MIPA.

4See also Theorem 4.2, item (1), for a stronger result.

10

Using Fortnow’s construction of Theorem 2.4 together with communication complexity lower
bounds, we get the following independence results, which show that many of the complexity frontier
questions (non-determinism, derandomization, quantum computing, circuit lower bounds) are not
resolvable within ACT ∗.

Theorem 4.2. ACT ∗ does not imply any of the following: (1) NP ⊆ io-SIZE(2n/4) (which, with
the previous theorem, implies independence for NP = P and NP ⊆ BPP); (2) BPP 6= P or P = NP;
(3) BPP ⊆ DTIME(2o(n)); (4) EXP 6⊆ io-P/poly; (5) coNP ⊆ MA; (6) NP ⊆ BQP; (7) BQP ⊆ BPP;
(8) QMA ⊆ MA.

Similarly to [AW08a], we prove these non-algebrization results by reduction to communication
complexity. However, our reduction is a bit more indirect than theirs. We now sketch the reduction
to communication complexity. The proof of Theorem 4.2 is given in Section 4.1 below.

For any two languages A0 and A1, let A0 + A1 = {(b, x) | x ∈ Ab} be their disjoint union. We
show that for any two languages A0 and A1 consistent with ACT∗, A0 +A1 is also ACT∗-consistent
(see Lemma 4.3 below).

Let L1 and L2 be arbitrary oracles, which we think of as two inputs to a communication
protocol, such as for set disjointness (e.g., we are trying to see if there is an x of length n so that
x ∈ L1∩L2). Using Theorem 2.4, we can construct from each oracle Li its self-algebrizing encoding
Ai, which is consistent with ACT∗. Then Li is reducible to Ai, and Ai ∈ PSPACELi . (For the
communication-complexity setting we will consider, we actually won’t even need any upper bound
on the complexity of Ai.)

Consider the communication complexity problem relative to the oracle A1 +A2. Set disjointness
is easily solved in coNPL1+L2 , and hence also in coNPA1+A2 . We will argue that it can’t always
be solved in PA1+A2 , since otherwise we would get a deterministic communication protocol for set
disjointness on N = 2n-bit input strings of communication complexity only polynomial in n, which
is impossible by the well-known Ω(N) lower bounds for set disjointness (see, e.g., [KN97]). The
idea is that queries to A1 +A2 are either to A1, which depends only on L1, or to A2, which depends
only on A2. Thus, any algorithm with such an oracle can be simulated by two players, Alice and
Bob, where Alice knows L1 and Bob knows L2. The overall communication complexity of the
resulting protocol is exactly the number of oracle queries. The same reasoning holds for almost
any other model of communication complexity, e.g., probabilistic, quantum, and non-deterministic
communication complexities. We’ll use stronger distributional lower bounds for the direct product
of many set disjointness problems of [BPSW06] to extend this to a strong circuit lower bound.

This strategy can be used to prove all parts except (2) and (4). However, (2) and (4) follow di-
rectly from (1) and (3), and the fact that the hardness-randomness tradeoffs from [IW97, BFNW93]
relativize. We provide more details in the next subsection.

4.1 Proof of theorem 4.2

First we prove that the class of ACT∗-consistent oracles is closed under disjoint union.

Lemma 4.3. If A0 and A1 are consistent with ACT∗, then A0 +A1 is also consistent with ACT∗.

The proof will depend on the following.

Lemma 4.4. PA = ALG-PF∗A if and only if A ∈ ALG-PF∗A ∩ coALG-PF∗A.

Proof. It is obviously necessary. For the other direction, let p1 be a PA-computable polynomial
family for A, and let p0 be a PA-computable polynomial family for Ā (the complement of A). Let

11

g0 and g1 be the corresponding FPA-computable functions that compute proofs for membership in
A and Ā, respectively. We will show that for every language L ∈ PA, there is a PA-computable
polynomial family showing that L ∈ ALG-PF∗A, and a FPA-computable function g mapping inputs
to proofs.

Let L ∈ PA be decided by a PA machine MA. This machine accepts input x = x1 . . . xn ∈ {0, 1}n
iff there is an accepting tableau w = w1 . . . wT of the machine on x, with bits b1 . . . bt representing
answers to oracle queries q1, . . . , qt, and z1, . . . , zt being witnesses corresponding to the queries
(where zi’s are provided by the function g0 or g1, depending on bi being 0 or 1), so that (1) w
is a correct accepting tableau, assuming that all oracle answers are correct (i.e., assuming that
bi = A(qi) for all 1 ≤ i ≤ t), and (2) all oracle answers are correct.

Observe that this tableau, oracle queries qi, oracle answers bi, and oracle witnesses zi (i.e., a
proof that x ∈ L) are all computable in FPA. We let g be the FPA-computable function mapping
inputs x to such proofs. Also, without loss of generality, we may assume that for each query
qi the dimension of the witness zi is the same for both p0 and p1. Indeed, suppose that the
dimension of witness for p0 is m0, which is less than the dimension m1 of the witness for p1. Let
` = m1 −m0. Define g̃0 : {0, 1}n → {0, 1}m1 by g̃0(x) = g0(x)1` (i.e., g0(x) followed by ` ones).
Define p̃0(x1, . . . , xn, y1, . . . , ym1) = p0(x1, . . . , xn, y1, . . . , ym0) ·

∏m1
i=m0+1 yi. Clearly, the defined p̃0

and g̃0 also show that Ā ∈ ALG-PF∗A. (The case of m1 < m0 is similar.)
The first condition above can be expressed by a low-degree polynomial (in the variables x,w, b, q)

in a standard way (as the product, over all 2 × 3 “windows” of the tableau, of the polynomials
expressing the correctness of the window). The second condition can also be expressed as the
product, over 1 ≤ i ≤ t, of the following low-degree polynomial p on the variables qi, bi, zi:

p(qi, bi, zi) = bi · p1(qi, zi) + (1− bi) · p0(qi, zi),

which is 1 (for Boolean-valued bi) iff [bi = 1 and zi is a witness that qi ∈ A] or [bi = 0 and zi is
a witness that qi 6∈ A]. Finally, the product of the polynomials for these two conditions yields a
polynomial family computable in FPA, showing that L ∈ ALG-PF∗A.

Proof of Lemma 4.3. By Lemma 4.4, we get that A0 and its complement are in ALG-PF∗A0 , and
similarly, A1 and its complement are in ALG-PF∗A1 . Let R0 and R1 be polynomial families for A0

and A1. Let g0 and g1 be the corresponding witness-computing functions for R0 and R1. Suppose
that g0 : {0, 1}n → {0, 1}m0 and g1 : {0, 1}n → {0, 1}m1 . As before, we may assume without loss of
generality that m0 = m1 = m.

The polynomial families for A0 are computable in FPA0 , and those for A1 in FPA1 . Define the
polynomial family R for A0+A1 by R((b, x), y) = b·R1(x, y)+(1−b)·R0(x, y), where x = x1, . . . , xn
and y = y1, . . . , ym. Define the witness-computing function g for R on Boolean inputs (b, x) equal
to gb(x). These R and g are computable in FPA0+A1 . It follows that A0 +A1 ∈ ALG-PF∗A0+A1 .

Similarly, we can argue that the complement of A0 + A1 is also in ALG-PF∗A0+A1 . So by
Lemma 4.4, A0 +A1 is consistent with ACT∗.

Next we prove the items of Theorem 4.2. We show the existence of ACT∗-consistent oracles for
which the negations of the corresponding statements in Theorem 4.2 hold. Each of these oracles
will have the form of a disjoint union of two ACT∗-consistent oracles, and hence, by Lemma 4.3,
these oracles are also ACT∗-consistent, as required. We give the details next.

12

4.1.1 NP 6⊆ io-SIZE(2n/4)

We construct an oracle L1 + L2 so that, relative to the oracle A1 + A2 (for the corresponding
self-algebrizing encodings of L1 and L2), we have a language in NP∩E with exponential circuit size
complexity. This will allow us to prove item (1) of Theorem 4.2.

We’ll use the following result from [BPSW06, Corollary 4.12, page 27].

Theorem 4.5 ([BPSW06]). There is a constant c so that, if N and k are integers with k ≤
2c
√
N , then the following holds: Consider the distribution on sets S ⊆ N where each element is

independently added to S with probability 1/
√
N . Let S1, . . . , Sk independently chosen sets from

this distribution be the input to player 1, and similarly independently chosen such sets T1, . . . , Tk be
the input to player 2. Then any communication protocol to determine, for each 1 ≤ i ≤ k, whether
Si ∩ Ti = ∅, with o(k

√
N) bits of communication, has at most 2−Ω(k) probability of success.

Lemma 4.6. There exist languages L1 and L2 with the corresponding self-algebrizing encodings A1

and A2 such that NPA1+A2 6⊆ io-SIZEA1+A2(2n/4).

Proof. Let L1 and L2 be chosen at random so that queries of the form (x, y), where |x| = |y| = 2n,
are in Lb independently with probability 2−n, and no other queries are in Lb, for b = 1, 2. Let
M(L1, L2) = {x|∃y, (x, y) ∈ L1 ∩ L2}. For every L1, L2, M(L1, L2) is in NPL1+L2 ⊆ NPA1+A2 . We
claim that the probability, for each even length 2n, that there is a circuit with oracle A1 + A2 of
sub-exponential size for M(L1, L2) is doubly exponentially small in n. It follows that there is a
non-zero probability that the circuit complexity is exponentially large for all but finitely many n.

To see this, fix n, let K = 22n, and let N = 22n. Condition on all elements of L1 and L2 not of
the form (x, y) where |x| = |y| = 2n (up to size, say 22n, so that conditioning is finite).

For each oracle circuit C of size 2n/4, describable using 2αn bits of advice for some suitable
constant α, we can define a communication protocol for the direct product of K random set in-
tersection problems as follows: Let S1, . . . , SK be the inputs to player 1, T1, . . . , TK to player 2.
Player 1 adds to L1 all queries (i, y) where y ∈ Si and computes A1 (note that A1 only depends on
the part of L1 of strictly smaller length, so the part of A1 up to length 2n is defined by the part
of L1 up to length 2n). Similarly, player 2 computes L2 and A2 from T1, . . . , TK . The players then
simulate CA1+A2 on all inputs x of length 2n (in an arbitrary order). Whenever a query is made
to A1, player 1 gives the value, and similarly for A2. They output the tuple of outputs for C on
all such x’s. Since for each x, the number of queries C makes is at most 2n/4, the total number of
bits communicated is at most 22n · 2n/4 = K · 2n/4 = o(K

√
N). Therefore, by Theorem 4.5, the

probability of success is at most 2−Ω(K) = 2−Ω(22n). Note that if the protocol fails, then CA1+A2

fails to compute M(L1, L2) for length 2n inputs. Taking a union bound over all 22αn such circuits,
the probability (over random L1 and L2) that there is an oracle circuit of size 2n/4 that correctly
decides the language M(L1, L2) on 2n-bit inputs is doubly exponentially small for any α < 2.

Since the sum of these probabilities over all n converges, there is an n0 so that there is a non-zero
chance (over the choice of L1 and L2) of an exponential circuit-size lower bound for all n > n0.

4.1.2 BPP = P and P 6= NP

Corollary 4.7. There exist languages L1 and L2 with the corresponding self-algebrizing encodings
A1 and A2 such that BPPA1+A2 = PA1+A2 and NPA1+A2 6= PA1+A2.

Proof. The language M(L1, L2) defined in the proof of Lemma 4.6 is always in E. By relativizing
[IW97], it follows that BPPA1+A2 = PA1+A2 for the same choice of A1 and A2. At the same time,
that language M(L1, L2) is in NPA1+A2 \ PA1+A2 .

13

4.1.3 RP 6⊆ DTIME(2o(n))

Next we prove the existence of an ACT-consistent oracle which separates RP from subexponential
deterministic time.

Lemma 4.8. There exist languages L1 and L2 with the corresponding self-algebrizing encodings A1

and A2 such that RPA1+A2 6⊆ DTIMEA1+A2(2o(n)).

Proof. We use the separation for deterministic and probabilistic communication complexities. Let
ni be a sequence of integers with ni+1 > 2ni .

Think of L1 and L2 as inputs to the inequality problem. More precisely, let B(L1, L2) =
{1n|∃x, |x| = n, x ∈ L1∆L2}, where ∆ denotes symmetric difference. Relative to any A1 + A2,
B(L1, L2) is always in RPA1+A2 . This is because A1 and A2 are self-algebrizing and extend L1 and
L2, and hence can be used to compute polynomial extensions L̃1 and L̃2 of L1 and L2, respectively.
Observe that L1 = L2 on length n inputs if and only if the same is true for L̃1 and L̃2 on dimension
n inputs. If L1 6= L2 on inputs of length n, then L̃1 and L̃2 will differ with high probability on a
random input of dimension n. This gives the RP algorithm.

We will construct L1 and L2 so that there is no subexponential-time machine M deciding the
inequality problem for all large enough inputs. We pick L1 and L2 to only contain strings of
length ni (and be empty elsewhere). Consider an enumeration of clocked 2n/2-time oracle machines
M1,M2, Note that the oracle machine Mi(1ni) cannot ask oracle queries of length ni+1.

We will construct the languages L1 and L2 so that they are empty everywhere outside the input
lengths ni’s. Suppose that after stage i, both L1 and L2 are defined for inputs of length up to ni
(and empty elsewhere). Also suppose that each of the first i oracle machines M1, . . . ,Mi incorrectly
solves the inequality problem for L1 and L2 for some length less than ni, when given oracle access
to A1 and A2 which are the self-algebrizing encodings of the languages L1 and L2 (defined after
stage i; as before, for each b = 1, 2, the set Ab up to length ni+1 is determined by Lb up to length
ni, since there are no elements of Lb of lengths between ni and ni+1).

Observe that for any extensions L′1 and L′2 of L1 and L2 obtained in later stages, and for the
corresponding self-algebrizing encodings A′1 and A′2, each of the first i machines will make the same
mistakes solving inequality, even though the oracles have been modified. The reason is simple:
the modifications of L′1 and L′2 are at the lengths that are beyond the reach of any such oracle
machine, and the portions of the self-algebrizing encodings before the length ni+1 depend only on
the portions of L′1 and L′2 before the length ni, which stay the same.

Thus we are free to diagonalize against the oracle machine M = Mi+1 at some length n = nj
for j > i. We will argue that there exist some strings X1 and X2 of lengths N = 2n, so that if
we extend L1 and L2 by setting their nth slices equal to X1 and X2, respectively, MA′1+A′2(1n) is
wrong on the inequality problem, where A′i is the self-algebrizing encoding of the updated language
Lb, for b = 1, 2. Clearly, this will conclude the proof of the lemma.

For the sake of contradiction, suppose no such strings X1 and X2 exist. Then M can be used
to deterministically solve the inequality problem on all N = 2n-bit strings X1 and X2, with only
2n/2-bit communication complexity. Indeed, let X1 be given to Alice, and X2 to Bob. They will
simulate the machine MA′1+A′2 on input 1n (for A′b the self-algebrizing encoding of Lb ∪ Xb, for
b = 1, 2). This machine queries either A′1 or A′2. Alice can answer queries to A′1, since she knows
X1 (and the earlier part of L1 , which is fixed for all inputs to Alice). Similarly, Bob can answer
queries to A′2. So the two players can simulate MA′1+A′2 on input 1n by communicating to each other
the one-bit answers to the oracle queries made by M . Hence, the total communication complexity
of this protocol is exactly the number of oracle queries made by M , which is at most 2n/2. This

14

is a contradiction since the deterministic communication complexity lower bound for inequality on
N = 2n-bit strings is at least N .

4.1.4 EXP ⊂ io-P/poly

Corollary 4.9. There exist languages L1 and L2 with the corresponding self-algebrizing encodings
A1 and A2 such that EXPA1+A2 ⊂ io-PA1+A2/poly.

Proof. Let L1, L2, A1, A2 be as in Lemma 4.8. Relative to A1 + A2, we have that RP 6⊆
DTIME(2o(n)). By relativizing the hardness-randomness tradeoff of [BFNW93], this implies that
EXP ⊂ io-P/poly, relative to the same oracle A1 +A2.

4.1.5 Items (5)–(8) of Theorem 4.2

As in [AW08a], the other items are proved using analogs of Lemma 4.6 for other complexity classes
where we know communication-complexity separations; we skip the details.

We conclude this section by pointing out that although we are able to re-prove most of the
results from [AW08a] for our notion of algebrization, we do not know how to construct an ACT-
consistent oracle O so that NEXPO ⊆ PO/poly. We state the following much weaker result for the
case where oracle access is restricted to polynomial-length queries only; however, such a restriction
is very unsatisfactory, and it would be interesting to remove it.

Theorem 4.10. There is an oracle A consistent with ACT∗ such that NEXPA[poly] ⊆ PA/poly.

Proof. Let L be an oracle such that NEXPL ⊆ PL/poly [Wil85]. Let A be the self-algebrizing encod-
ing of L. Then we have NEXPA[poly] ⊆ NEXPPSPACEL[poly] ⊆ NEXPL[poly] ⊆ PL/poly ⊆ PA/poly.

5 Conclusions

ACT seems like a useful intermediate theory for capturing some of what algebraic techniques add to
relativizing complexity theory. Unlike the Aaronson-Wigderson [AW08a] approach, it is clear that
the provable consequences of ACT are closed under deduction. However, we do not have some of the
results they could prove for their notion of algebrization; e.g., we do not know how to get an oracle
O consistent with ACT so that EXPO ⊆ PO/poly (although we do have this inclusion infinitely
often.) Also there are known results, proved using algebraic techniques, which do not follow from
ACT ; e.g., ACT cannot prove NEXP = MIP. One way to interpret this is that, although the proof
of NEXP = MIP certainly uses algebraic interpolation, it also uses other non-black-box arguments.
Thus, while a statement failing to algebrize shows a broad range of techniques that will fail to resolve
it, it certainly does not mean that it is beyond the scope of all current techniques in complexity.
We should use algebrization as a tool for homing in on the correct proof techniques to solve open
problems, not as an alibi for failing to solve them.

One way to make further progress is to use algebraic techniques in a non-algebrizing way. ACT
treats the way we interpolate relations as polynomials as a black box. However, as observed in
[AW08b] (footnote, p. 46), the particular interpolant we choose often has other nice properties
besides being low degree. In a standard application of arithmetization, one takes a small 3-cnf
formula φ(x1, . . . , xn) on m clauses c1, . . . , cm, and produces its arithmetized version as the product
of the polynomials p1, . . . , pm, where each polynomial pi is a multilinear polynomial that depends
only on 3 variables (occurring in clause ci), is Boolean-valued on Boolean inputs, and is 1 on

15

a Boolean input iff that input satisfies clause ci. The distinguishing feature of this polynomial
obtained from φ is that it can be completely factored into 3-variate polynomials. In contrast,
polynomials we get for NPO, with ACT-consistent oracles O, do not necessarily have this feature.

Can a BPP algorithm distinguish between a polynomial p(x1, . . . , xn) obtained by arithmetizing
some 3cnf φ(x1, . . . , xn) (as described above) and a random low-degree polynomial q(x1, . . . , xn),
when given oracle access to the polynomials?5 We observe that the answer is yes. The idea is that
a BPP algorithm with oracle access to the polynomial p can learn p (and also φ) by factoring p.
Namely, one can use the BPP algorithm of [KT90] to get a list of algorithms (each with oracle
access to p) that compute all factors of p. Since each factor of p depends on at most 3 variables 6,
we can learn a small arithmetic formula for each such factor (doing Polynomial Identity Tests to
figure out which one is the right formula). Thus we can recover a small arithmetic formula for
the entire polynomial p. In particular, this means that we can verify that p has small arithmetic
complexity (and actually learn a small arithmetic formula for p). On the other hand, a random
low-degree polynomial q is most likely of very high arithmetic circuit complexity, and so, when
given oracle access to q, our algorithm will not be able to find any small arithmetic formula that
computes q. Thus our BPP algorithm will distinguish between polynomials p and q.

Interestingly, the property of the polynomial p we have exploited in the above algorithm is very
similar to the “locality of computation” property (Local Checkability) which was used as the basis
for the theory LCT : the reason p has a factorization into 3-variate polynomials is that we use a 3-
cnf formula to describe a computation of a nondeterministic polynomial-time machine. So perhaps,
the arithmetization technique can be pushed further, if we learn how to exploit this additional
“locality” property of the polynomials obtained by arithmetization.

Another avenue to explore in future work are variants of ACT and their consequences. As
mentioned before, interpolation of easily computable functions is possible over a large variety of
algebraic structures, not just the integers. How do variants of ACT for different algebraic domains
compare?

Acknowledgments We want to thank Scott Aaronson and Lance Fortnow for their comments
on an early draft of this paper.

References

[AB09] S. Arora and B. Barak. Complexity theory: a modern approach. Cambridge University
Press, New York, 2009.

[AIV92] S. Arora, R. Impagliazzo, and U. Vazirani. Relativizing versus nonrelativizing tech-
niques: The role of local checkability. Manuscript, 1992.

[AW08a] S. Aaronson and A. Wigderson. Algebrization: A new barrier in complexity theory. In
Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pages
731–740, 2008.

[AW08b] S. Aaronson and A. Wigderson. Algebrization: A new barrier in complexity theory.
ACM Transactions on Computation Theory, 2008. (to appear).

5This was an open question in [AW08a], but has been resolved in [AW08b], independently of our work.
6It is also easy to handle the case of k-cnf formulas on n variables for any k ∈ O(log n).

16

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:3–40, 1991.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simu-
lations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318,
1993.

[BFT98] H. Buhrman, L. Fortnow, and L. Thierauf. Nonrelativizing separations. In Proceedings
of the Thirteenth Annual IEEE Conference on Computational Complexity, pages 8–12,
1998.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. SIAM
Journal on Computing, 4(4):431–442, 1975.

[BPSW06] P. Beame, T. Pitassi, N. Segerlind, and A. Wigderson. A strong direct product theorem
for corruption and the multiparty communication complexity of disjointness. Compu-
tational Complexity, 15(4):391–432, 2006.

[Cob64] A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel, editor,
Proceedings of the 1964 International Congress for Logic, Methodology, and Philosophy
of Science, pages 24–30. North-Holland, Amsterdam, 1964.

[Dek69] M. Dekhtiar. On the impossibility of eliminating exhaustive search in computing a
function relative to its graph. DAN SSSR = Soviet Math. Dokl., 14:1146–1148, 1969.

[For94] L. Fortnow. The role of relativization in complexity theory. Bulletin of the European
Association for Theoretical Computer Science, 52:229–244, February 1994. Columns:
Structural Complexity.

[FS88] L. Fortnow and M. Sipser. Are there interactive protocols for co-NP Languages? In-
formation Processing Letters, 28:249 –251, 1988.

[GH83] I. Gasarch and S. Homer. Relativizations comparing NP and EXP. Information and
Control, 58:88–100, 1983.

[GMW91] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the Association
for Computing Machinery, 38:691–729, 1991.

[Hel86] H. Heller. On relativized exponential and probabilistic complexity classes. Information
and Computation, 71(3):231 –243, 1986.

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing, 28:1364–1396, 1999.

[IW97] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Deran-
domizing the XOR Lemma. In Proceedings of the Twenty-Ninth Annual ACM Sympo-
sium on Theory of Computing, pages 220–229, 1997.

[Kan82] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information
and Control, 55:40–56, 1982.

17

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,
New York, 1997.

[KT90] E. Kaltofen and B. Trager. Computing with polynomials given by black boxes for their
evaluations: Greatest common divisors, factorization, separation of numerators and
denominators. Journal of Symbolic Computation, 9(3):301–320, 1990.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. Journal of the Association for Computing Machinery, 39(4):859–868, 1992.

[Lis86] G. Lischke. Relationships between relativizations of P,NP,EL, NEL, EP and NEP.
Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, 2:257 –270, 1986.

[Nao91] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4:151–158,
1991.

[San07] R. Santhanam. Circuit lower bounds for Merlin-Arthur classes. In Proceedings of the
Thirty-Ninth Annual ACM Symposium on Theory of Computing, pages 275–283, 2007.

[Sha92] A. Shamir. IP=PSPACE. Journal of the Association for Computing Machinery,
39(4):869–877, 1992.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

[Vin05] N.V. Vinodchandran. A note on the circuit complexity of PP. Theoretical Computer
Science, 347(1-2):415–418, 2005.

[Wil85] C.B. Wilson. Relativized circuit complexity. Journal of Computer and System Sciences,
31:169–181, 1985.

18

